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Celestial Mechanics on a Microscopic Scale 

Classical and semiclassical methods are unrivaled in pro- 
viding an intuitive and computationally tractable ap- 
proach to the study of atomic, molecular, and nuclear 
dynamics. An important advantage of such methods is 
their ability to uncover in a single picture underlying 
structures that may be hard to extract from the profusion 
of data supplied by detailed quantum calculations. Mod- 
ern trends in semiclassical mechanics are described, par- 
ticularly the combination of group theoretical methods 
with techniques of nonlinear dynamics. Application is 
made to intramolecular energy transfer and to the elec- 
tronic structure of atomic Rydberg states in external 
electric and magnetic fields. 

T HE POPULAR IMAGE OF THE ATOM AS A MINIATURE SOLAR 

system stems from the experiments of Rutherford and the 
old quantum theory of Niels Bohr. This theory is described 

in Max Born's book Mechanics of the Atom and is based on  the 
assumption that the laws of classical mechanics apply equally t o  
electrons and planets (1, 2). Within months of the appearance of 
Born's book in 1925, however, a dramatic revolution in physics 
occurred and the old quantum theory was ousted by the new 
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quantum mechanics of Schrodinger and Heisenberg. As a result, 
attention in atomic and molecular physics shifted away from classical 
mechanics, which was thought by many to be a complete and closed 
field. The analogy between the structure of the atom and that of the 
solar system seemed invalid, and classical mechanics became the 
domain of the astronomer. However, new developments within the 
last two decades have spurred a remarkable revival of interest in 
classical mechanics (3). The implications extend well beyond astron- 
omy, and much present-day research in classical mechanics is being 
performed in the context of microscopic dynamics. This confluence 
of interests between atomic and molecular physicists and astrono- 
mers is proving beneficial to  the study of both classical and quantum 
systems, as will be illustrated in this article. 

The fundamental connection between classical and quantum 
mechanics has fascinated physicists ever since the discovery of 
quantum theory ( 3 4 ,  with the most interesting questions relating 
to  the regime where quantum and classical behavior start to  overlap. 
Classical mechanics is an asymptotic limit of quantum mechanics 
valid when l'lanck's constant h is small in comparison to relevant 
system parameters. Although quantum mechanics provides a correct 
description of nature, it does not hold the intuitive appeal of classical 
theories, which are also easier t o  implement: the challenge, there- 
fore, is to  understand when the asymptotic classical behavior sets in. 
Unexpectedly, classical methods many times work rather well in 
regimes that appear to  be removed from the formal asymptotic limit; 
it is apparent that the uncertainty principle has vanishing impact on 
the dynamics of a galaxy, but it might seem surprising that 
interesting behavior of quantum systems can often be described with 
the use of classical methods. Much of the analysis in molec.ular 
vibrational and rotational spectroscopy, for example, is performed 
using an essentially classical normal mode analysis, which provides a 
good picture of the dynamics (7). 
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Fig. 1. A 2-D torus aris- 
ing in the quantization 
of a 2-D integrable 
Hamiltonian based on 
Eq. 2. This manifold is 
embedded in a 4-D 
phase-space and two 
possible quantization 
paths V, and %2 are 
shown. Adapted from 
(50).  

r Path C 2  

Path C, --I 

The revival of interest in classical mechanics has been due in large 
part to the development of high-speed computers, which have made 
possible the simulation of classical (as well as quantum) systems. A 
surprising and fairly recent discovery stemming from these simula- 
tions is the phenomenon of classical chaos (3, 8). Two prominent 
examples of chaotic dynamics from astronomy and astrophysics are 
the tumbling of Saturn's moon Hyperion and the dynamics of the 
Giant Dark Spot on Neptune (9). However, chaos exists in systems 
as simple as a one-dimensional (1-D) pendulum subjected to a 
periodic perturbation (10). Although the motion of chaotic (tech- 
nically called nonintegrable) Hamiltonian systems is deterministic, 
the long-time evolution is, in practice, unpredictable (3, 4, 9, 11) 
becauqe of the extreme sensitivity of the dynamics to initial condi- 
tions. These developments in classical mechanics indicate that the 
relation between classical and quantum mechanics is intricate. 
Understandably, much attention has been directed toward deter- 
mining the possible ramifications of chaos for quantum theory 
(3-6). Even in the absence of a clear-cut connection between 
classical chaos and quantum mechanics, much can be learned from 
an application of classical and semiclassical methods to microscopic 
dynamical systems. 

Experimental advances have made it possible to probe the dynam- 
ics of highly excited atoms and molecules (12), but the enormous 
density of states in these energy regimes often makes it difficult to 
perform or interpret quantum calculations. By contrast, in these 
regimes classical methods may still be tractable (3, 6, 13-20). The 
most obvious classical approach is to integrate trajectories numeri- 
cally and try to extract trends from the resulting data. However, even 
in a classical simulation, interpretation of the actual dynamics in 
high-energy regimes is fraught with difficulty because of the com- 
plexity of the motion and the mass of data that must be generated 
and interpreted in order to develop a global picture of the dynamics. 
A better approach is based on the use of classical perturbation 
theory, which can provide a geometrically appealing and compre- 
hensive overall description of the classical behavior that often 
uncovers systematic trends buried in the otherwise complicated 
dynamics. This type of analysis also lends itself willingly to quanti- 
zation by semiclassical approaches, thus allowing a connection to be 
made with quantum mechanics. 

Semiclassical Mechanics 
Semiclassical mechanics (21-23), an outgrowth of Bohr's theory, 

provides the link between classical and quantum dynamics. The basic 
idea is to impose quantization on various classical quantities in order to 
provide agreement with empirical observations. This was first done by 
Bohr for the hydrogen atom, where quantization of the angular mo- 
mentum of the electron was postulated in order to account for the 
hydrogenic spectrum. A simpler example that is relevant to molecular 
structure is that of bound 1-I) vibrational motion (a harmonic oscillator, 
for example) whose energy E can be quantized semiclassically by means 
of the modified Wilson-Sommerfeld condition, 

In Eq. 1 P and q are the conjugate momentum and position, the 
quantum number n = 0, 1, 2, . . . , and J is a generalized momen- 
& variable called the classical action (the generalized coordinate 
associated with the action is called an angle, best thought of as a 
phase). This formula establishes the close connection between 
classical actions and quantum numbers. The integral is over a single 
classical period and represents an implicit equation for the allowed 
(quantized) energies. Quantization of multidimensional separable 
systems is straightforward because there is one such condition for 
each degree of freedom. Although an N-dimensional system may be 
separable, most physically interesting systems are not. If N indepen- 
dent classical conserved quantities exist, then the problem is termed 
integrable and can be accomplished by the use of a 
method developed by Einstein in 1917. This approach is referred to 
as Einstein-Bruillouin-Keller (EBK) quantization (15, 16, 17, 24) 
and is a generalization of Eq. 1. For vibrational motion the EBK 
rule is 

giving rise to N quantization conditions, all of which must be 
satisfied simultaneously. The Ci are contours of integration, which 
are a set of N topologically independent paths on the surface of a 
torus having dimension N in the 2N-dimensional phase-space. 
Figure 1 illustrates two such paths on a torus embedded in a 4-D 
phase-space corresponding to an integrable Hamiltonian system. 
Most interesting atomic and molecular problems feature Hamilto- 
nians that are nonintegrable (chaotic) and Eq. 2 breaks down. The 
object of current research in this area is to develop semiclassical 
methods capable of treating multidimensional nonintegrable dy- 
namics, building on the semiclassical techniques pioneered by Miller 
and co-workers (21, 22) and by Marcus and co-workers (15) [for 
reviews, see (14-23)]. Nevertheless, hndamental problems remain 
in the extension of these methods to nonintegrable dynamics. Even 
in the integrable case it may be unclear how to effect quantization if 
multidimensional tunneling is important. 

Recent advances in the application of semiclassical theory to 
nonseparable dynamics have resulted from combining group theory 
with classical perturbation methods developed mainly in the context 
of celestial mechanics. An outstanding and historically important 
example of the use of classical perturbation theory was provided by 
Delaunay for the earth-moon-sun system (3, 25). He performed an 
extraordinarily tedious series of canonical transformations by hand 
to obtain a pe.rturbation expansion approximating the actual Hamil- 

Fig. 2. Diagram illus- 
trating the structure of 
the enerm swctrum of a 
2 : 1 anis6tropic oscilla- 
tor. It can be viewed as 16, ++. 16. *+ -1 
being made up of the 15, *+, 15, O> 
energy levels of two 1 : 1 
resonant isotro~ic oscil- 14, * l W 3  14, Ow 

lators with diffkent zero 1% *vp 
point energies. The 
states are labeled In, r > ,  12, *'I? 

where n is the total num- 
11, Ow 

ber of quanta and r 
quantizes the action J ,  in 10, b 

Eq. 7. Adapted from 
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Fig. 3. Trace of trajectories for a model of the formaldehyde molecule on  the 
vibrational constant energy sphere for two different values of the Coriolis 
coupling. In (A) there is relatively weak Coriolis coupling and the SU(2) 
generator (corresponding to  the difference in energy between the modes, 
see Eq. 4) is preserved. In (B) the Coriolis coupling is stronger and a, is no 
longer a good constant of the motion, corresponding to  extensive mode- 
mode energy transfer. 

tonian and ultimately obtained good agreement with observations. 
In the language of modern-day nonlinear classical dynamics, the 
actual chaotic (nonintegrable) Hamiltonian is replaced by a noncha- 
otic (integrable) approximation that is designed to give good 
agreement with the real dynamics. This is a philosophy that is by no 
means outdated: The upsurge of interest in classical and celestial 
mechanics is due in large measure to modern-day successors of 
Delaunay such as Deprit and his colleagues (26, 27), who have 
developed efficient computer algebra programs to perform the 
necessary manipulations and equally sophisticated color graphics 
methods that provide significant new insights into the classical 
behavior. The level of success enjoyed by these approaches in terms 
of both accuracy and insight is quite spectacular. Deprit and 
co-workers have obtained very high order normal (integrable) 
approximations to problems of interest in celestial mechanics (25), 
the theory of artificial satellites (26), and atomic physics (27) [see 
also (3, 4, 28) for fi~rther details of the implementation of pertur- 
bation theory]. 

Once an approximate integrable Hamiltonian has been obtained, 
the energy can then be quantized semiclassically. In molecular 
physics the use of classical perturbation techniques [the Birkhoff- 
Gustavson normal form (BGNF) method] in semiclassical quanti- 
zation was pioneered by Swimm and Delos (29), who quantized a 
simple nonresonant Hamiltonian designed to model vibrations in a 
triatomic molecule. However, their approach needed augmentation 
because it did not generate a complete energy spectrum when 
applied to a 1 : 1 resonant Hamiltonian (that is, a system with equal 
frequencies). Jaffe and Reinhardt (30) solved this problem by a 
different choice of unperturbed action-angle variables (polar rather 
than Cartesian). They were also able to calculate level splittings due 
to tunneling by using a uniform semiclassical quantization (21-23), 
which goes beyond the simple EBK rule. Despite early successes, 
however, it rapidly became clear that a more general approach had 
to be developed to treat the case of Fermi (or m:n) resonant systems 
(31-33). This issue was not addressed directly until fairly recently 
and concerns how to choose the best unperturbed action-angle 
variables in which to perform perturbation theory, effect quantiza- 
tion, and study the dynamics. The resolution of this problem has 
significant implications for both classical and semiclassical mechan- 
ics. 

Many of the development? in the semiclassical theory of bound 
states have resulted from studies of perturbed harmonic oscillators, 
which may be used to model molecular vibrational modes. The 
unperturbed part of the Hamiltonian typically has the form 

where it will be assumed for now that 0, = 20, [the case for the 
anisotropic oscillator containing the famous 2 : 1 ~ e r m i  resonance of 
molecular physics (31)l. Figure 2 shows some of the low-lying levels 
of the Hamiltonian in a rather suggestive way. It is apparent that the 
enerw levels can be broken up into two sets, each bf which is in ", 
one-to-one correspondence with the eigenvalues of an isotropic 
oscillator (the two sets of levels correspond to those of two isotropic 
oscillators with different zero point energies). If the resonance is 
m:n, then the energy levels may be broken up into (m x n) sets of 
isotropic oscillator levels. The degeneracy pattern is complicated, 
and in an application of degenerate quantum perturbation theory 
some care would have to be exercised in choosing appropriate basis 
functions. The situation is analogous in semiclassical mechanics 
where the unperturbed actions (or tori) must be chosen judiciously 
in order to avoid unphysical singularities in the limit of vanishing 
perturbation. The diagram in Fig. 2 implies that a study of the 
symmetry of the isotropic oscillator might shed light on the choice 
of the correct actions. In fact, extensive group theoretical analysis by 
a number of workers (32) shows that the symmetry of the 2: 1 (or 
m:n) resonant 2-D oscillator is SU(2) just like the isotropic oscilla- 
tor. 

For the 1 : 1 isotropic oscillator, 

there are three conserved classical quantities besides H itself, 

which satisfy the same classical commutation (Poisson bracket) 
relations as angular momentum (to within a factor of 2) 

where E,,? is the Levi-Civita symbol for permutations of the indices 
(i, j, k) :  ~t is equal to 1 for even permutations and to - 1 for odd 
permutations and is zero otherwise. Together with the relation 

2 2 2 2 
IT" = IT, + IT2 + "3 (6) 

the 7,'s (i = 1,2,3) generate an SU(2) Lie algebra. Equation 6 
shows an interesting geometric property of these quantities. They 
define a constant-energy sphere (the Hopf sphere) whose radius is 
the unpern~rbed energy IT,. The other IT'S act like Cartesian coordi- 
nates on the surface of the sphere. Thus the isotropic oscillator 
orbits in 4-D phase-space may be mapped into points on the surface 
of the 3-D Hopf sphere. The same is true for a Fermi resonance but 
the generators have different and much more complicated functional 
forms, which can be obtained by the use of methods described 
elsewhere (32, 33). For the purposes of this article it is sufficient to 
note that the SU(2) symmetry is preserved for resonances other than 
1 : 1 in two dimensions. 

A problem in dealing with resonant systems is the nonuniqueness 
in the choice of unperturbed actions. However, the Lie algebraic 
approach described by Farrelly (33) explains how to construct an 
appropriate set of unperturbed actions in which to apply perturba- 
tion theory and subsequently effect quantization. The transforma- 
tion to action-angle variables can be performed directly, and the 
beauty of the approach is that extensive and intricate canonical 
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transformations to switch between the different sets of unperturbed 
actions are avoided. In this case two unperturbed actions must be 
defined. J ,  (the principal action) defines the radius of the sphere and 
is conserved (its conjugate angle variable does not appear in a 
perturbation expansion). One possible transformation from SU(2) 
generators directly to action-angle variables is the following (30, 
33-35), 

T o  = 1 1  

= 2/j= ~ 0 5 2 ~ ~  

The Lie algebraic approach is being used by several groups and is 
of considerable importance in both vibrational and rotational prob- 
lems. In particular the idea of using the SU(2) sphere to portray 
phase-space has proved useful in analyzing the resonance structure 
of nonlinearly coupled oscillators (34, 36) (see Fig. 3). The com- 
mutation relations satisfied by the SU(2) generators also allow a 
connection to be made between vibrational problems in two &men- 
sions and the asymmetric top (36). Harter (34, 37) has pointed out 
the connection between SU(2) generators and the theory of optical 
polarization ellipsometry as developed by Stokes 130 years ago. 
Another significant application in optics is by Holm and co-workers 
(38) in the study of chaos in nonlinear optical beams. 

Rotational and Vibrational Dynamics 
It is becoming apparent that rotational-vibrational interactions 

are of central importance to the dynamics of highly excited poly- 
atomic molecules (12). In particular, studies of the role of rotation 
in intramolecular energy transfer have focused on the determination 
of good or almost good quantum numbers. Classically, these 
correspond to conserved or almost conserved classical actions. For 
example, the breakdown of the quantum number K, which quan- 
ti7,s the projection of the total molecular angular momentum onto 
a molecule-fixed axis, signals strong rotational-vibrational interac- 
tions in molecules such as formaldehyde, CH20.  Several studies of 
C H 2 0  connect the breakdown of K to vibrations in the molecular 
frame, which may be modeled as a pair of nearly degenerate 
nonlinearly coupled modes (39, 40). Much of the analysis described 
in the previous section can be used to provide a compelling and 
informative picture of how energy flow proceeds in excited rnole- 
cules in which rotational and vibrational energy transfer is occur- 
ring. 

It is useful to begin with the asymmetric top, which is one of the 
simplest problems relevant to molecular rotations. This system also 
constitutes a basic paradigm for the applications that will be 
discussed in this article. The Hamiltonian for the torque-free motion 
of an asymmetric top may be written in terms of the body-fixed 
components of angular momentum (41, 42), 

where A, B, and C are the rotational constants. Conservation of 
angular momentum requires that 

J' = J;' + J," + J: (9) 
Because J is an angular momentum, its components also generate an 
SU(2) Lie algebra. This allows the vibrational Hamiltoniu~s of the 
previous section to be mapped onto the asymmetric top, and vice 
versa (34, 40). A superb way of visualizing the mechanics, which 
provides insight into the energy level structure, was invented by 

Harter and Patterson (41) and consists of constructing a rotational 
energy surface (RES) for the problem using the generators of the 
Lie algebra. An RES is a plot of total energy as a function of the 
direction of an angular momentum vector (in a body-fixed frame) 
for a constant value of I J j  (41, 42). The components of angular 
momentum are interpreted as Cartesian coordinates of a position 
vector whose length is given by H, which is plotted radially 
outward. The rotational energy surface will be used in the consid- 
eration of the hydrogen atom in external fields described in the next 
section, which can also, in certain cases, be represented as a 2-D 
oscillator. An example of an RES for an asymmetric top is shown in 
Fig. 4. The contours on the surface represent the intersection of 
spheres (whose radii are the total energy) with the rotational energy 
surface. For the asymmetric top there are two types of energy state 
corresponding to librational and rotational motion. In Fig. 4 the 
two topologically different lunds of state are clearly visible on the 
RES, as is the separatrix between them (41). Also shown in Fig. 4 
is a path along which tunneling occurs, lifting the degeneracy 
between the vibrational states. 

A good example of the appeal of classical techniques in discussing 
intramolecular dynamics is provided by the C H 2 0  molecule. Stim- 
ulated emission pumping experiments by Dai et al. (43) imply that 
rotation-vibration coupling is a major way in which intramolecular 
energy flow occurs, even for moderate values of the total angular 
momentum. Although C H 2 0  is a fairly simple molecule, the 
existence of very strong mode-mode coupling means that the general 
problem of intramolecular energy flow cannot be treated in any 
simple way. However, in certain energy regimes it is possible to 
construct a simple model Hamiltonian that provides a reasonably 
good approximation to the vibrational and rotational dynamics. The 
molecular Hamiltonix1 is approximated as two coupled vibrations 
(out-of-plane bending and the HCO wagging) and molecular 
rotation. As noted, an attractive geometrical way to portray the 
dynamics (39, 40) is to plot the trajectories on the SU(2) sphere. 
Figure 3 shows the trace of a trajectory on the vibrational constant 
energy sphere for weak and strong Coriolis couplings. For weak 
Coriolis coupling there is minimal vibrational energy flow, whereas 
for the higher Coriolis coupling energy flow is much more pro- 
nounced between the two vibrational modes. This simple geomet- 
rical analysis provides a way of understanding the breakdown of 
conserved quantities as a route to chaos as well as explaining the role 
of the various couplings in mediating energy Aow. 

Phase-space analysis of the C H 2 0  molecule reveals a strong 
similarity between it and the famous Lipkin-Meshkov-Glick (LMG) 
model of nuclear physics (44). The LMG Hamiltonian is a collective 
particle model consisting of N spins, and the unperturbed part of the 
LMG model corresponds to an asymmetric top. The connection 
with C H 2 0  has been exploited to treat the LMG model classically as 

Fig. 4. Rotational ener- 
gy surface for the asym- 
metric top. The contours 
are level curves of equal 
energy obtained by in- 
tersecting the RES with 
spheres of progressively 
greater energy. The li- 
brational (vibrational) 
and rotational states are 
indicated as is the classi- 
cal separatrix between 
them. Also shown is a 
possible tunneling path 
between the otherwise 
degenerate librational 
states. Adapted from 
(41) .  
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Fig. 5. Rotational en- 
ergy surface for the 
QZE where the princi- 
pal hydrogenic quan- 
tum number n = 30 
and the magnetic field 
(y) is 1.26 x 
atomic unit (1 atomic 
unit = 2.35 x lo5 T). 
The quasi-Landau (lo- 
calized around the 
lobes) and Landau 
states (confined to the 
dimples) are clearly vis- 
ible. The contours 
have the same meaning 
as in Fig. 4. Each RES 
has been pseudocol- 
ored (26) to indicate 
the absolute value of 
the "apt" classical action as a function of its conjugate phase angle $ as 
measured around the z axis (the z axis is colored red) (32): the color scale 
goes from blue (low) to red (high) (52). 

well as to explain aspects of the rotational-vibrational dynamics of 
CH,O itself (40). 

Electronic Structure of Rydberg Atoms 
In view of the relatively heavy effective masses involved, the 

treatment of molecular rotations and vibrations by classical and 
semiclassical methods might appear reasonable. It is perhaps more 
surprising that, in certain cases, classical approaches can be used to 
study the electronic structure of atoms. Although it would be 
unphysical to expect that any method could follow the actual 
dynamics of an electron, semiclassical methods can and do provide 
an accurate description of the electronic level structure of atomic 
Rydberg states. Far from being a solved problem, the interaction of 
the hydrogen atom with external fields has become a unique atomic 
laboratory for the study of chaos. In 1980 Zimmerman, Kash, and 
Kleppner (45) proposed that the hydrogen atom in a strong 
magnetic field [the quadratic Zeeman effect (QZE)] has a hidden 
symmetry. This proposal marked the start of a decade of extraordi- 
nary theoretical and experimental interest in this and related prob- 

lems (3, 5, 6, 13, 47, 48). Activity is continuing, and recent 
experiments by Kleppner and co-workers have also revealed the 
existence of orderly progressions in the spectra of Li atoms in strong 
magnetic fields (46). This order is so remarkable because it is found 
in a regime in which the classical motion is strongly chaotic. 

Many studies of the QZE have been concerned primarily with 
understanding the chaotic nature of the dynamics (3, 6, 13, 47). The 
external fields break the symmetry, and it is this symmetry breaking 
that gives rise to nonintegrability in the system. Although dynamical 
symmetry breaking as a route to chaos is quite well understood in 
purely classical systems, much less can be said in the case of quantum 
systems (3, 5, 6). From the point of view of understanding the 
interaction of fields with Rydberg states and their spectroscopy, 
partially broken or approximate symmetries can often be used to 
provide important insight into the physics. Quite apart from 
considerations related to nonlinear dynamics and chaos, Rydberg 
states in external fields are of significant interest in their own right: 
an important and technologically relevant example from solid-state 
physics is the interaction of excitonic states with external electro- 
magnetic fields. 

For the QZE through second order in the magnetic field, the 
"hidden" dynamical constant of motion is (45, 49, 50) 

where A is the Laplace-Runge-Lenz vector and A lies in the range 
-1 I A I 4. Classically the Laplace-Runge-Lenz vector is a 
constant of the motion that is in the direction of the radius vector to 
the perihelion of the orbit and is responsible for the closure of the 
Kepler orbit. The quantum operator corresponding to this quantity 
accounts for the extra degeneracy in the hydrogen atom (49). 

In cylindrical coordinates and atomic units (m = e = h = 1, where 
m is mass and e is electronic charge) the QZE is 2-D, with 
Hamiltonian 

where P is momentum, p = m, and the reduced field, y = 
Bl(2.35 x lo5 T), where B is the external magnetic field. The 
discussion is simplified if only the m = 0 (P+ = mh = 0) case, which 

Fig. 6. A series of rotational energy surfaces for the SQZE where the 
principal hydrogenic quantum number n = 30. The contours have the same 
meaning as in Fig. 4. The magnetic field (y) is 1.26 x atomic unit in 
all frames and the electric field (F) is being progressively increased. The 
perturbation strength is defined by p = (4125) F/(nyZ) (56). The surfaces 
have been pseudocolored according to the scheme described in Fig. 5. The 
librational states are localized in the dimples (see Fig. 5), which appear red, 

indicating high absolute values of the action. The case for p = 0 (the pure 
QZE) is shown in Fig. 5. In (A) p = 0.2 and one class of librational state has 
vanished (not visible) while the other has grown. The librational states 
C O ~ M U ~  to take over as the elecaic field increase. as is evident in (B) where p 
= 0.5. In (C) p = 1.0, the rotational states have completely disappeared, and 
only a single dass of librational states exists. At this high field the variation of 
the action with I$ is minimal, indicating ia  approximate conservation. 
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extended lobes of the RES (53) and correspond to the ridge states of 

Fig. 7. A global view of the transition of the RES on going from the pure 
QZE to a case that is almost the pure Stark effect. The energy contours have 
been omitted, and the RES is viewed from behind as compared to Fig. 6. 
The surfaces have been pseudocolored according to the scheme described in 
Fig. 5, and the perturbation parameters are as in Fig. 6. The pure QZE (P 
= 0) is shown in the center. The image at 12 o'clock has P = 0.2. If we 
continue clockwise, the electric field is increased according to the sequence: 
f3 = 0.5, 0.7, 0.9, 1.0, and 2.0. The disappearance of a class of librational 
states at p = 0.2 and the rotational states at P = 1.0 is readily apparent. 

has been the subject of most experimental studies and is repre- 
sentative of the dynamics for all m, is considered. If we use a 
transformation from celestial mechanics, the singularity can be 
avoided by going over to "regularized" parabolic coordinates u, v 
(50, 51), which make the SU(2) symmetry of the system apparent 
and facilitate application of classical perturbation theory. The m = 0 
Hamiltonian becomes (50, 51) 

Interestingly, this Hamiltonian resembles a problem in molecular 
vibrations where the coupling depends on the strength of the 
applied field. BGNF theory provides an integrable approximation 
(the normal form) to XN, which can be written in terms of the 
SU(2) generators. To order y2 it is 

where the T'S have the same meaning as in Eq. 4 (if the Cartesian 
coordinates are replaced by regularized coordinates) and A depends 
on the magnetic field quadratically. 

One can map the QZE onto an asymmetric top by using Eq. 13 
and interpreting the SU(2) generators as the components of a 
generalized angular momentum (52-54). Doing so allows an RES to 
be constructed as displayed in Fig. 5. The low-energy vibrational or 
librational (Landau) and higher energy rotational (quasi-Landau) 
states are seen to be separated by the classical separatrix. The Landau 
states are located in either dimple of the RES, and tunneling 
between these dimples lifts the degeneracy of the states. The 
high-lying localized quasi-Landau (rotor) states are contined to the 

Fano (52, 55). Obtaining the correct geometrical picture is impor- 
tant for the success of semiclassical calculations of energy levels 
themselves. Quantization of the classical perturbation exbansion 
obtained with Lie algebraic methods gives outstanding agreement 
with quantum results, even reproducing all of the splittings due to 
tunneling on the RES (52). Although application has only been 
described for the m = 0 case, which has SU(2) symmetry, the full 
QZE may be treated as an SU(2) x SU(2) problem in a similar 
fashion, and this also provides good agreement with quantum 
results. 

A related problem of experimental (56) and theoretical (57) 
interest is the QZE in the presence of a weak electric field [the 
Stark-QZE (SQZE)]. Addition of a weak electric field parallel to the 
magnetic field direction does not break the approximate SU(2) 
symmetry but does result in more complicated dynamics. By per- 
forming BGNF theory for the SQZE Hamiltonian to second order 
in the magnetic field and to first order in the electric field, RES's may 
be constructed as shown in Fig. 6 as a function of increasing electric 
field. The sequence of RES's in Fig. 6 illustrates the major changes 
that occur as-the electric field is increased. The symmetry between 
the librational states in the pure QZE is broken for nonzero values 
of the electric field resulting in three classes of state (two librational 
classes, localized in the dimples of the RES and a rotational class of 
states): as the electric field is increased, one class of librational levels 
disappears, followed by the disappearance of the rotational states. 
Eventually only a single class of librational states persists (56). This 
manifests itself in Fig. 6 by the gradual growth of the states around 
one of the red dimples and the eventual merging of the two lobes of 
the RES. The bestclassical action variable to  is the same as 
for the QZE as described by Farrelly and Krantzman (52). The 
RES's in Fig. 6 have been pseudocolored to reflect the value of this 
action variable as a function of its conjugate angle, 4, which is the 
azimuthal angle around the z axis. The variation in the action ip 
found by tracing along contours of equal energy on the RES. At 
low electric fields there is substantial variation in the action as a 
function of 4. As the electric field is increased this variation 
decreases, indicating that the action is progressively becoming a 
better constant of motion [in the absence of the magnetic field it is 
an exact constant (58)l. Figure 7, which provides an alternative view 
of the RES's, gives a clear and accurate description of this process. 

These recent developments in the study of the QZE provide an 
outstanding example of how classical and semiclassical methods can 
provide qualitative and quantitative insight into dynamical systems. 
Most initial theoretical studies of the QZE were large-scale quantum 
calculations that reproduced experimental observations fairly well 
and confirmed the existence of an approximate symmetry. However, 
as illustrated in a series of three recent publications by Farrelly and 
Krantzman (52), Uzer (53), and Rau and Zhang (54), all this 
information is contained in simple classical and semiclassical models, 
which provide a simple interpretation of trends buried in the 

Conclusions 
The application of classical mechanics to essentially quantum 

systems has a long history, and it appears that classical methods will 
continue to be applied successfully to problems in atomic, molecu- 
lar, and nuclear physics. Combining nonlinear dynamics, group 
theory, and semiclassical methods provides a powerful way of 
determining the underlying structure and trends in either experi- 
mental data or detailed numerical simulations. For several examples 
chosen from microscopic physics, a simple picture emerged that 
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unified and clarified the results of a large number of experimental, 
auantum. and even classical studies. A number of issues remain, 
however, including the treatment of more than two dimensions 
where phenomena such as Arnold diEusion (4) may be important, 
and the correspondence principle limit of quantum mechanics (3, 5 )  
when the clas'ical dynamics is-chaotic.  everth he less, it is likely that 
the approaches briefly overviewed in this article will continue to be 
of widespread utility in interpreting the ever-increasing amounts of 
experimental and computational data that are becoming available to 
chemists and physicists. 

-- 
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