
face of trypanosomes. Like the trypanosome 
surface membrane, the vacuolar membrane had 
underlying microtubules (Fig. 5F). The origin 
of these structures is unknown, but it mav 
involve membrane transport or targeting. 

The toxicity of 0 -11  for bloodstream 
trypanosomes may be related to the metab- 
olism or function of the VSG GPI, especially 
because similar concentrations do not affect 
the growth and viability of procyclic try- 
pan6somes. However, our experiments can- 
not rule out the possibility that toxicity is 
mediated by alteration of N-myristoylated 
proteins or- by some change i n  membrane 
structure. The latter could be caused by 
incorporation of analog into phospholipids as 
well as into VSG. Whatever the mechanism of 
toxicity, these studies suggest a new approach 
to antitrypanosome chemotherapy. 
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Reading a Neural Code 

Traditional approaches to neural coding characterize the encoding of known stimuli in 
average neural responses. Organisms face nearly the opposite task-extracting infor- 
mation about an unknown time-dependent stimulus fkom short segments of a spike 
train. Here the neural code was characterized fkom the point of view of the organism, 
culminating in algorithms for real-time stimulus estimation based on a single example of 
the spike train. These methods were applied to an identified movement-sensitive neuron 
in the fly visual system. Such decoding experiments determined the effective noise level 
and fa& tolerance of neural computation,and the structure of the decoding algorithms 
suggested a simple model for real-time analog signal processing with spiking neurons. 

A LL OF AN ORGANISM'S INFORMA- answers to these questions have been elusive 
tion about the sensory world comes (1, 2). We present an approach to the char- 
from real-time observation of the acterization of the neural code that provides 

activity of its own neurons. Incoming sen- explicit and sometimes surprising answers to 
sory information is represented in sequences these questions. 
of essentially identical action potentials, or The first recordings from single sensory 
"s~ikes." To understand real-time signal pro- neurons demonstrated that the in tens i~  of a 

', 

cessing in biological systems, one must first static stimulus can be coded in the firing rate 
understand this representation: Does a sin- of a sensory neuron (3). This concept of rate 
gle neuron signal only discrete stimulus "fea- coding, extended to time-dependent stimuli, 
kres." or c& the spike train represent a provides the framework formost studies of 
continuous, time-varying input? How much neural coding, leading to the definition of 
information is carried by the spike train? Is receptive fields, temporal filter characteris- 
the reliability of the encoded &nal limited tics,-and so on. ~ e ~ o n d  rate coding, a variety 
by noise at the sensory input or by noise and of different statistical measures have been 
inefficiencies in the subsequent layers of proposed-interval distributions, correla- 
neural processing? Is the neural code robust tion functions, and so forth (1, 4). As with - 
to errors in spike timing? Clear experimental the rate itself, these quantities can be seen as 

moments of the probability distribution 
P[{t i}1s(~)] that describes thk likelihood of 

W. Bialek. F. Rieke. D. Warland. De~amnent of Physics different spike trains it;], given the stimulus . .,. 
and DepaAent o f ~ ~ ~ e c u l a r  ad Biology, u ~ v e r -  S ( T )  (5) .  'flyse moments, however, are not 
sity of California, Berkeley, Berkeley, CA 94720. 
R. R. de Ruyter van Steveninck, Department of Biophys- properties of a single spike train; they are 
ics, Rijksuniversiteit Groningen, the Netherlands. average properties of an ensemble of spike 

. , L A  

*Present address, NEC Research Institute, 4 Indepen- trains (6).  Organisms have the 'ppor- 
dence Wav. Princeton. NT 08540. tunitv to com~ute these averages: To sav 

Hospital, p.0, gox jO,OO1, 9700 RB, G;oningen, UldL llllullllduull ID cuucu 111 llllllg L ~ L C D  IJ VI 

Netherlands. no Use to the organism unless one can 
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explain how the organism could estimate 
these firing rates from real-time observation 

u 

of the spike trains of its own neurons (7). 
The simplest problem of real-time signal 

processing-is decoding the spike train to 
estimate the signal waveform. If one chooses 
an inappropriate definition of the signal this 
reconstruction will fail; for example, we 
have studied auditorv neurons that brovide 
enough information for reconstruction of 
the envelope of the acoustic stimulus but not 
of the waveform itself (8). One can define 

\ ,  

the signal encoded by a particular neuron to 
be that signal which is reconstructed most 
accurately from observation of the spike 
train. If one can reconstruct analog signals, 
then one can begin to understand how spike 
trains could be manipulated in subsequent 
stages of neural cirGtry to perform more 
complex processing of these signals. It may 
not be possible, however, to interpolate 
between the discrete spikes to estimate a 
continuous stimulus. 

The decoding problem is completely spec- 
ified by the probability P[s(~)l{t~}] of a par- 
ticular stimulus waveform s ( ~ )  conditional 
on the spike wain {ti}. From this distribu- 
tion, one can estimate the stimulus, for 
example, by finding the fimction of time that 
maximizes P[s(T) l{ti}]. Thus, one approach 
to the decoding problem is to design exper- 
iments that directly measure P[s(~)l{t~}] (2). 
An alternative approach is to model the 
encoding process and analytically develop 
decoding algorithms within the context of 
the model; this approach (9) indicates that 
there is a broad regime in which linear 
filtering of the spike train results in an 
optimal estimate of the stimulus waveform 
(10). Are such simple decoding algorithms 
applicable to a real neuron? - - 

The problem of reading the neural code is 
essentially the problem of building a (gen- 
erally nonlinear) filter that operates contin- 
uously on the spike train to produce a 
real-time estimate-of the unknown stimulus 
waveform (Fig. 1). If the spikes arrive at 
times {ti), our estimate of the signal is 

To optimize the reconstructions one choos- 
es the filters {F,,) to minimize X2 = $ dtls(t) 
- sest (t)I2, where s(t) is the true stimulus 
and the integration is over the duration of 
the experiment (1 1). The stimulus s (t) is not 
restricted to simple sine waves or Gaussian 
noise, and thus one can study the coding of 
complex and naturalistic signals (8, 12). In 
this initial experiment, however, we used 
relatively simple stimuli. 

Stimulus 

I 
Estimated stimulus & 

7 

Spiketrain- 
(HI  neuron) 

Fig. 1. Schematic view of the decoding process. 
The "black box" filters the spike train input {ti} to 
produce an estimate s,,,(T) of the stimulus. 

We applied these ideas in experiments on 
a single, wide-field, movement-sensitive 
neuron (Hl )  in the visual system of the 
blowfly Calliphora erythrocephela. H 1  en- 
codes rigid horizontal movements over the 
entire visual field (13). Flies and other in- 
sects exhibit visually guided flight; during 
chasing behavior, course corrections can oc- 
cur on time scales as short as 30 ms (14). 
The maximum firing rate in H l  is 100 to 
200 s-l, so behavioral decisions are based 
on just a few spikes from this neuron. Fur- 
thermore, the horizontal motion detection 
system consists of only a handfd of cells, so 
the fly has no opportunity to compute aver- 
age responses (for example, firing rates). 

In our experiments, the stimulus S(T) was 
the angular velocity of a rigidly moving 
random pattern. We chose S(T) from an 
ensemble that approximated Gaussian noise 
with standard deviation 132 deg s-l; the 
spectrum of S(T) was constant up to a cutoff 
frequency of 1 kHz. We recorded the spike 
arrival times {ti} extracellularly from the H l  
neuron (2, 15). We began by trying to 
reconstruct S(T) with just the linear term of 
the general expansion, Eq. 1 (Fig. 2). Re- 
constructions including higher order terms 

in Eq. 1 were not significantly different, as 
quantified below. The filters used in the 
reconstruction integrated over short time 
intervals, so the optimal estimate of angular 
velocity at each instant of time was con- 
trolled by just a handfd of spikes, as expect- 
ed from behavioral studies. 

How good are the reconstructions? The 
recons&ctions consist of a piece that is 
deterministically related to theLstimulus and 
a random noise piece. We separated these by 
introducing a frequency-dependent gain 
g(w) such that Gst(o) = g(0) [S(w) + fi(w)], 
where fi(w) is the noise referred to the input. 
In a plot ofS(w) versus SeSt(w), the gain is the 
slope of the best linear fit and fi(o) is the 
scatter about this line. The distribution of 
fi(o) is approximately Gaussian. 

Plotting the spectral density of the angular 
displacement noise, we found (Fig. 3) a peak 
signal-to-noise ratio (SNR) of better than 
5: 1, and an SNR of greater than one across a 
bandwidth of roughly 25 Hz. Using Shan- 
non's formula (16), shown in Eq. 2, we 
converted these spectra into an estimate of the 
average rate at &ch we gained information 
about the stimulus (R,,) by virtue of observ- 
ing the spike train; the result was 64 + 1 bits 
per second (baud). 

The second term in the expansion improved 
the information rate by less than 5%. We 
have not explored conditions that might 
maximize this information transmission. 

The noise level achieved in the reconstruc- 
tions is the noise against which an observer 
of the H 1  spike trains (such as the fly) must 
discriminate to estimate horizontal motion. 

Fig. 2. First-order reconstruction (solid 
line) using method 1 (11). The stimulus is 
shown as a dotted line for comparison, and 
the spike train is shown at the bottom. 
This example is from a segment of the 
spike train that was not used in the filter 
calculations. Stimulus and reconstruction 
were smoothed with a 5-ms half-width 
Gaussian filter. (Inset) Filters calculated 
from methods 1 and 2 (1 1); the time scale 
is the same as the main figure, the scale bar 
= 10 deg s-', and the arrow marks t = 0. 
H 1  has a highly asymmetric response pro- 
file, with a much larger dynamic range for 
movement in the excitatory direction. To 
compensate for this asymmetry, we record- 
ed spike trains in response to r(t) and to 
the inverted stimulus -s(t); these are 
shown as positive and negative spikes in 
the spike train. These two spike trains 

, , 
approximate the trains that wodd be gen- 
erated by H1 cells on opposite sides of the 

I head during a rigid rotation of the fly (2). 

8700 8800 8900 9000 9100 9200 9300 Our reconst"ction is then 
nme (ms) s,,,(t) = x [ ~ l ( t  - ti+) - ~ ~ ( t  - t;)]. 

I 
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Frequency (Hz) 
Fig. 3. Stimulus level (smooth curve) and spectral 
density of displacement noise from the recon- 
struction (middle curve). The bottom curve is the 
limit to the resolution of small displacements 
(valid for frequencies > 10 Hz) set by noise in the 
photoreceptor array (5) 

S,(o) 32a'I2 (A+)' 
s;E(o) = - - - 

IT (,,,)I2 NSC 4; 

where S, is the spectral density of the random 
contrast pattern used in the experiment, A+ is the 
width of the photoreceptor aperture, +, is the 
photoreceptor spacing along the direction of 
movement, T ( w )  is the frequency response of the 
photoreceptor (millivolts per unit contrast), and 
S,(o) is the spectral density of voltage noise in 
the photoreceptor. The limiting noise power 
spectrum varies as the inverse of the number N of 
photoreceptors. These quantities were measured 
in photoreceptor recordings under conditions 
identical to those used for the H1 experiments 
(15), so we can make meaningful comparisons of 
theory and experiment. 

The absolute noise level of the reconstruc- 
tions is very low. With a behaviorally rele- 
vant integration time of 30 ms, one could 
judge the amplitude of a 20-Hz dither to 
within -0.1 deg, which should be com- 
pared to the photoreceptor spacing of +, = 
1.35". This angular resolution corresponds 
to the phenomenon of hyperacuity in hu- 
man vision (1 7 )  and is in quantitative agree- 
ment with direct measures of discriminabil- 
ity for stepwise displacements in H1 (15). 
Defining an equivalent spectral density of 
noise in a spiking neuron allows one to 
exhibit hyperacuity in a real-time estimation 
task. 

Information about movement across the 
visual field is carried in the spatiotemporal 
correlations of photoreceptor outputs, but 
these correlations are degraded by noise in the 
photoreceptors. How accurately can one es- 
timate rigid motion if one optimally processes 
these noisy photoreceptor signals? In our 
stimulus ensemble, the angular displacements 
were small (68 < +,) for frequencies above 
10 Hz. In this limit, the optimal movement 
estimator involves multiplying the direct cur- 

rent voltage in one cell by the alternating 
current voltage in its nearest neighbor (5). 
This is essentiallv the "correlation" scheme for 
movement detection proposed by Reichardt 
(18); in our case, this algorithm was not a 
minimal model but rathe; the o ~ t i m d  com- 
putational strategy. Analysis of the correla- 
tion scheme (5) led to the limiting angular 
displacement noise level shown in Fig. 3, 
where the displacement noise from the h e a r  
reconstruction approaches the limits imposed 
by the photoreceptor noise, at least at fre- 
quencies above 10 Hz, where our theory of 
the limiting noise level is valid. The fly visual 
system thus performs an optimal and nearly 
noiseless extraction of movement signals from 
the array of photoreceptor voltages. 

Coding is often used to reduce the effects 
of noise on signal transmission. Does the 
neural code have any such noise immunity? 
For several noise sources, such as timing 
errors, dropped spikes, and spontaneously 
generated spikes, we created an ensemble of 
spike trains which were randomly corrupted 
versions of the original data and then treated 
these as new data that required decoding. 
We were able to recover 95% of the original " 
information R,, for the following noise 
levels: (i) spikes added to increase the firing 
rate by 20%, (ii) 5% of the spikes deleted, 
and (iii) Gaussian timing jitter k i th  standard 
deviation of 2 ms introduced to each spike 
time. One objection to "spike timing" as a 
coding strategy is the need for precise mea- 
surement of spike arrival times. In the case 
of H1, this objection is irrelevant. The code 
is robust to errors of several milliseconds in 
spike timing and to other corruptions of the 
spike train.. 

Preliminary results from four studies sug- 
gest that linear decoding is not a special 
property of H 1  under particular stimulus 
conditions but a more general property of 
sensory neurons. 

1)  In H1, we performed reconstruction 
experiments using stimuli with different spa- 
tial characteristics. These different stimulus 
ensembles provided different SNRs, and 
these differences were reflected in the recon- 
structions. Despite large changes in SNR, 
linear reconstr&on c6ntinuedto work and 
the reconstruction filters were essentially 
identical up to a constant scale factor. 

2)  In the mechanorece~tor cells of the 
cricket cercal system, the displacement wave- 
form for motions of the filiform hairs was 
reconstructed from the spike trains of pri- 
mary afferent neurons (12). For this system, 
the information transfer rates exceeded 300 
baud (-3 bits per spike). 

3) In simulations on realistic models (19) 
for spike initiation, we reconstructed the 
waveform of injected currents by linearly 
filtering the spike train. 

4) In vibratory receptors of the bullfrog 
sacculus, we reconstructed the waveform of 
groundborne vibration using a linear decod- 
ing algorithm, although in this case the 
reconstructions improved substantially (by 
-10 to 15%) with the addition of second- 
order terms (8). We again measured infor- 
mation rates close to 3 bits per spike. 

I t  is, of course, not known if organisms 
perform the sort of reconstructions demon- 
strated in Fig. 2. Because linear reconstruc- 
tion is possible, however, analog processing 
of the encoded signals can be done in a 
simple way. I t  is not unusual for the 
postsynaptic voltage response to a single 
presynaptic spike to have the qualitative 
form of the optimal filter, with a relatively 
sharp positive peak followed by a slower 
negative tail. Thus simple synapses could 
serve as decoders. With this decoding done, 
cells could then perform analog cokputa- 
tions using the nonlinearities contributed by 
voltage-gated channels along the dendrites 
and cell body, much as envisioned for non- 
spiking cells (20). The results of such analog 
computations could then be encoded by the 
spike-generating region of the cell, and the 
process could then begin again. In this view 
of computation with spike trains, the com- 
bination of nonlinearities in spike genera- 
tion and the filter characteristics of the svn- 
apse results in an essentially linear 
transmission of analog signals from presyn- 
aptic cell bodies to postsynaptic dendrites. 
The dramatic "all-or-none" nonlinearities of 
spike generation (the focus of so many 
models for neural computation) are then not 
as important as the more subtle analog 
dynamic properties of nonspiking regions of 
the cell. 

It is surprising that time-dependent sig- 
nals can be recovered so simply from neural 
spike trains. Reconstruction of the stimulus 
waveform permitted quantification of the 
fault tolerance of the code and allowed us to 
show that the fly visual system approaches 
optimal real-time computation. These re- 
sults demonstrate that the representation of 
time-dependent sensory data in the nervous 
system is simpler than might have been 
expected. Correspondingly simpler models 
of sensory signal processing may be appro- 
priate. 
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Massive Cortical Reorganization After Sensory 
Deafferentation in Adult Macaques 
T I M P. P O N S / PRESTON E. GARRAGHTY, ALEXANDER K. OMMAYA, 
JON H. KAAS, EDWARD TAUB, MORTIMER M I S H K I N 

After limited sensory deafferentations in adult primates, somatosensory cortical maps 
reorganize over a distance of 1 to 2 millimeters mediolaterally, that is, in the dimension 
along which different body parts are represented. This amount of reorganization was 
considered to be an upper limit imposed by the size of the projection zones of 
individual thalamocortical axons, which typically also extend a mediolateral distance of 
1 to 2 millimeters. However, after extensive long-term deafferentations in adult 
primates, changes in cortical maps were found to be an order of magnitude greater 
than those previously described. These results show the need for a reevaluation of both 
the upper limit of cortical reorganization in adult primates and the mechanisms 
responsible for it. 

M ERZENICH AND HIS COLLEAGUES 

demonstrated that primary corti
cal sensory maps in adult animals, 

like those in infant animals, are capable of 
reorganization after various peripheral sen
sory perturbations (1, 2). Yet, compared to 
the massive functional changes that have 
been found in neonates, in which entire 
cortical maps may be reorganized (3), the 
changes reported in adults have been rela
tively small, with an upper limit of 1 to 
2 mm along the cortical surface (1, 2, 4). 
Although the rinding of any plasticity in 
primary sensory maps of adult animals was 
unexpected, the limited extent of the 
changes suggested they were confined to the 
projection zones of single thalamocortical 
axons (1, 2). Both the limits of reorganiza
tion and the mechanisms responsible must 
now be reconsidered because of new evi
dence in adult macaques showing reorgani
zation in the cortex at least an order of 
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magnitude greater than that reported previ
ously. 

Tactually elicited neuronal activity was 
recorded in area SI (5) of four cynomolgus 
monkeys {Macaca fascicularis) that had re
ceived deafferentations of an upper limb, 
three unilateral and one bilateral, more than 
12 years before the recording session (6). All 
procedures were carried out in accordance 
with NIH guidelines on the care and use of 
laboratory animals (7). Electrode penetra
tions were placed approximately 0.75 mm 
apart across the mediolateral extent of the 
cortical region that had been deprived of its 
normal input and less densely in parts of the 
cortex containing maps of body parts that 
were unaffected by the deafferentation pro
cedure. We typically recorded activity for 
each 300-|xm advance of the electrode in a 
penetration. 

Normally the cortical representations of 
body parts are organized into highly topo
graphic maps (8, 9) (Fig. 1). In macaques, 
the upper limb representation in SI is always 
bordered by the representation of the trunk 
medially and the face laterally (10). In the 
region of the border of the face and hand 
representations, which is located opposite 
the tip of the intraparietal sulcus (#), the face 
map contains the representation of the chin 
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