
Localization and Its Absence: A New Metallic 
State for Conducting Polymers 

A widely held view in solid-state physics is that disorder 
precludes the presence of long-range transport in one 
dimension. A series of models has been recently proposed 
that do not conform to this view. The primary model is 
the random dimer model, in which the site energies for 
pairs of lattice sites along a linear chain are assigned one 
of two values at random. This model has a set of conduct- 
ing states that ultimately allow an initially localized par- 
ticle to move through the lattice almost ballistically. This 
model is applicable to the insulator-metal transition in a 
wide class of conducting polymers, such as polyaniline 
and heavily doped polyacetylene. Calculations performed 
on polyaniline demonstrate explicitly that the conducting 
states of the random dimer model for polyaniline are 
coincident with recent calculations of the location of the 
Fermi level in the metallic regime. A random dimer 
analysis on polyparaphenylene also indicates the presence 
of a set of conducting states in the vicinity of the band 
edge. The implications of this model for the metallic state 
in other polymers, including heavily doped polyacetylene, 
are discussed. 

E LECTRONIC STATES IN A CRYSTAL ARE ESSENTIALLY OF TWO 

types: they either carry current or they do not. Current- 
carrying states are spatially delocalized and extend over the 

entire crystal. States that do not carry current are confined or 
localized to a small region of the lattice-. Typically, the envelope of a 
localized state decays exponentially from some lattice site in the 
crystal. When impurities are added to a crystal, the electronic states 
change fundamentally. Intuitively, one suspects that adding impu- 
rities would lead to scattering processes that would decrease the 
amplitude for the electron to move from one end of the crystal to the 
other. In 1958 the role that impurity scattering (disorder) plays in 
transforming delocalized electronic states into localized electronic 
states was revealed (1). Since then, Anderson's 1958 paper has 
stimulated a vast body of literature on insulator-metal transitions 
induced by disorder (1-15). 

The model Anderson treated originally was the tight-binding 
approximation for the conduction band in a crystal, in which one 
orbital and a single random site energy are assigned to each lattice 
site. The site energies were chosen from a uniform distribution of 
width W. Let V be the electronic overlap connecting nearest 
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neighbor sites. Although the overall dynamics of this model depend 
in a complex way on the precise values of W and V, the transport 
properties in two simple limits can be identified immediately. When - - 

W = 0, an ordered system obtains because all of the site knergies 
have the same value; transport is thus ballistic. For V = 0, none of 
the sites are connected and transport ceases. On physical grounds, 
then, one might suspect that gradually increasingth; ratio-of v/W 
in all cases would lead to a smooth interpolation betyeen the limit 
of extreme localization (V = 0) and the ballistic regime (in which 
v +  q. 

We know now from Anderson (1) that this is not the case. The 
surprising result that Anderson showed [as did Mott and Twose (2) 
later] is that regardless of the strength of the nearest neighbor 
overlap V, all transport ceases in a one-dimensional (1-D) site- 
disordered lattice when W > 0. The absence of diffusion or long- 
range transport is generally viewed as the signature of the onset of 

., exponential localization of the electronic eigenstates (1, 2). A more 
precise statement of Anderson's result. then, is that a lattice with 
site-diagonal disorder in one dimension possesses no eigenstates that 
have nonzero amplitudes on all the sites. That is, lifting the energetic 
degeneracy of the lattice sites even infinitesimally leads to exponen- 
tial spatial decay of the eigenstates in one dimension. ~ l t h o i ~ h  all 
proofs establishing quasi-particle localization in one dimension are 
model-dependent (24) ,  exponential localization of all eigenstates in 
one dimension is viewed as a rigorous result. That is, quasi-particle 
localization in one dimension is considered to be unaffected by small 
details of the distribution of the site energies. In addition, short- 
range correlations are also thought to have little effect on the 
localization of the eigenstates of a 1-D disordered material (2-6). In 
their early work, however, Mott and Twose (2) expressed a modi- 
cum of caution regarding the universality of the 1-D result. They 
argued that "perhaps in all" 1-D systems, all states are localized (2, 
p. 107). 

In this article, we review two disordered models we have recently 
proposed that exhibit surprising localization-delocalization transi- 
tions even in one dimension: (i) the random dimer model (RDM) 
(1 6) and (ii) its dual, the repulsive binary alloy (17). We show that 
in the RDM, if the site energies for pairs of lattice sites are assigned 
at random one of two values, a mobility edge separating conducting 
from insulating states will exist. The source of the delocalization is 
traced to a simple resonance effect. Special emphasis is given to the 
application of the RDM to conduction in the polymer polyaniline 
(18) and other similar conducting polymers, such as polypyrolle and 
polyparaphenylene. These polymers are similar in that (i) their 
ground states are nondegenerate and (ii) their conducting states are 
described by a disordered bipolaron lattice (19-22). We show in 
general that any disordered bipolaron lattice can be mapped onto a 
RDM. Our analysis shows that the RDM is of wide applicability to 

28 JUNE 1991 ARTICLES 1805 



-0.5 
1 I (16j withLpermission, O 

1 1990 American Physical 
Society] 

0 

-1 0 

0.5. Flg. 1.  (A) The real part 

Sites (number) 

the insulator-metal transition in polymers that lack a degenerate 
ground state. 

of a typical eigenstate in 
a random binary alloy 

, and (B) an unscattered 
eigenstate in the RDM. 
T(B) Reorinted from 

0.0- 

Random Dirner Model 

A 

To introduce the RDM, we focus on probably the simplest model 
exhibiting Anderson localization, the random binary alloy. In the 
tight-binding (or linear combination of atomic orbital) model of a 
random binary alloy, site energies E, and E, are assigned at random 
to the lattice sites with probability q and 1 - q, respectively. When 
only site disorder is present, a constant nearest neighbor matrix 
element V mediates transport between the lattice sites. In one 
dimension, it is well accepted that for all nonzero q all the eigenstates 
will be exponentially localized, and no long-range transport will 
obtain at long times. A typical wavefunction in the random binary 
alloy is shown in Fig. 1A. The wavefunction does not spread over 
all the sites; it is localized. Consider a particular realization of the 
site energies in a certain segment of an infinite lattice: 
- ~ - E , E , E ~ E , E , E , E ~ E ~ E ~ E ~ E ~ E ~ E ~ E ~ ~ ~ ~ .  Given the rigorous nature of the 
theorems establishing quasi-particle localization in one dimension, 
one can safely assume that the 1-D results are independent of both 
q and the number of E,S or E,S that appear in clusters in the lattice. 
That is, the localization of 1-D quasi-particles still persists at zero 
temperature if all clusters containing an odd number of E,S are 
replaced by clusters containing an odd number of E,S, for example. 
After all, under such a transformation the system is still random and 
the localization theorems guarantee an absence of transport for any 
degree of randomness in one dimension. 

We have shown that this is not the case (16). In particular, we 
showed that when one of the site energies is assigned at random to 
pairs of lattice sites (that is, two sites in succession), V% of the 
electronic states extend over the entire sample, where N represents 
the number of lattice sites. A delocalized eigenstate in the RDM is 
shown in Fig. 1B. We refer to a lattice in which at least one of the 
site energies is assigned at random to pairs of lattice sites as the 
RDM. An additional curiosity of the RDM is that the mean square 
displacement of an initially localized particle grows superdifisively 
as t3I2 (where t is time) provided that -2V < E, - E, < 2V. 
Diffusion obtains only when the disorder is increased such that 
E, - E, = +2V. In all other cases, the particle remains localized at 
long times. Numerical simulations of the mean square displacement 
illustrating this behavior are shown in Fig. 2. Increasing disorder in 
the RDM smoothly interpolates between the limits of delocalization 
lea - < 2Vto the limit of extreme localization lea - E,] > 2V. In 
contrast to the transport in the Anderson model, transport in the 
RDM is more in line with the physical intuition that increasing the 
disorder should gradually (not abruptly) lead to an absence of 
transport. For this reason, the RDM is fundamentally different from 

the standard site-disordered Anderson model, in which transport is 
at best diffusive only for d > 2, where d is the dimension of the 
lattice. 

We can begin to understand the properties of the RDM by first 
focusing on an ordered lattice with a single dimer defect. We place 
the dimer on sites 0 and 1, assign the energy E, to all of the sites 
except sites 0 and 1, and let the energy of sites 0 and 1 be E,. A 
constant nearest neighbor matrix element V mediates transport 
between the sites. To calculate the scattering characteristics of a 
single dimer in this lattice, we compute the reflection and transmis- 
sion coefficients through the dimer impurity. The eigenvalue equa- 
tion for the site amplitudes C, 

EC, = E,C, + V(C, + 1 + C, - (1) 

where E represents energy, obeys the standard nearest neighbor 
Schrodinger equation. The site amplitudes are C, = eik" + Repik" 
for n I -1 and C, = Teikn for n r 1 where R and T are the 
reflection and transmission amplitudes, respectively. From the 
eigenvalue equation for sites - 1 and 1, it follows that C, = 1 + R 
= T ( E - ~ - ' ~  + V)/V with E- = E, - E,. Substitution of this result 
into the eigenvalue equation for site 0 results in the closed expres- 
sion 

for the reflection probability. The reflection coefficient vanishes 
when E, - E, = -2Vcosk, which will occur for some value of k if 
-2V I E, - E, I 2V. The location in the parent-ordered band of 
the perfectly transmitted electronic state corresponds to the wave 
vector, b, where = COS-'[(E, - ~,)/21/1. At k, there is no 
difference between the ordered and disordered bands; the density of 
states coincides at this point. The vanishing of the reflection 
coefficient through a single dimer at a particular energy can be 
understood as a resonance effect. That is, the dimers are acting as 
resonance cavities. At a particular energy, the reflection from the 
second site in the dimer is 180" out of phase with the reflection from 
the first. At this energy, unit transmission obtains. The resonance is 
analogous to the transmission resonance that arises between two 
delta function potentials. The single cavity resonance is surprisingly 
preserved when dimers are randomly placed along a linear chain. 

Of course, no transport would obtain if only a single electronic 
state remained unscattered. To determine the total number of states 
that extend over the entire sample, we expand R around k,. To 
lowest order we find that in the vicinity of k,, pi2 = (Ak)2, where 
Ak = k - k,. A crystal containing a certain fraction of randomly 
placed dimer impurities will have electronic states in the vicinity of 
k, reflected with a probability proportional 'to (Ak)2. The time 
between scattering events r is inversely proportional to the reflection 
probability. As a result, in the random system the mean free path 
A = (velocity)~ - l/(Ak)2 in the vicinity of k,. Let Ak = AN/2rrN. 
Upon equating the mean free path to the length of the system (N), 
we find that the total number (AN) of states whose mean free path 
is equal to the system size scales as AN fi. Because the mean free 
path approximately equals the localization length in one dimension, 
total number of states whose localization lengths diverge is fi. 
Consequently, in the RDM <N of the electronic states remain 
extended over the total length of the sample. Classical models such 
as the mass-disordered harmonic chain also have extended states but 
only at the band edge, k = 0 (6). The extended states in the RDM 
can occur anywhere in the band. 

We can now estimate the contribution of the extended states to 
the transport properties. Because the mean free path of the extended 
states in the RDM is at least the system size, such states move 
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through the crystal ballistically with a constant group velocity 
[v(k)], except when they are located at the bottom or the top of the 
band, where the velocity vanishes. Because all of the other electronic 
states are localized, the diffusion constant is determined by integrat- 
ing v(k)A(k) over the width of k-states that participate i n  the 
transport. The upper limit of the integration is then proportional to 
the total fraction of unscattered states or l/V% and A(k) = N. 
When the velocity is a nonzero constant, we obtain that the diffusion 
coefficient D = <N. Because the states that contribute to transport 
traverse the length of the system with a constant velocity, t and N 
can be interchanged or D = t1I2. Consequently, the mean square 
displacement grows as t3I2. At the bottom or the top of the band, 
where the group velocity vanishes, v(k) = k and D = 0 (1). The 
formal definition of the mean square displacement is 

where C, is the site amplitude defined in Eq. 1. Numerical 
simulations that confirm thk time dependence of the mean square 
displacement presented here are shown in Fig: 2. In addition, the 
conductance lTl2/~l2 diverges at the energy at which pi2 = 0. This 
behavior is in contrast to the off-diagonal disorder problem, which 
has a vanishing conductance even at the band center (E = 0) where 
the localization length diverges (12). This behavior ran be attributed 
to the fact that the reflection coefficient in this model does not vanish 
at E = 0 as it does in the RDM. 

We now construct explicitly the unscattered states in the RDM. In 
the absence of any dimer impurities, the eigenstates are simply Bloch 
states of the form eik". When the dimer impurities are present, 
because the eigenstates in the vicinity of k, have unit transmission, 

f these states are still of the Bloch form. These states can be 
constructed as follows. Consider the single dimer impurity case 
discussed earlier. The dimer impurity is located on sites 0 and 1. The 
unscattered state must be of the form eik" for n I 0 and ei(k" + ") fo r 
n r 1. That is. the onlv difference between the electron wavefunc- 
tion before and after it has interacted with the impurity is that its 
phase changes by R. There is no reflected component. To determine 
R, we consider the eigenvalue equation E - E, = v(eik + " + ePik) 
for site 0. This equation has H trivial solution with E, = E, or 
equivalently in the limit of an ordered system. In this case R = 0. 
The nontrivial solution occurs when E - E, = 0. Recall that when 
E - E, = 0, the reflection coefficient vanishes and the product of 
two b-type transfer matrices yields the unit matrix. Because E is the 
energy of the ordered band E, + 2Vcosk, the vanishing of 
E - E, = 0 corresponds to the condition -2V 5 E, - E, 5 2V. In 
this case, R = -2k + T. Consequently, the Bloch state that satisfies 
the Schrodinger equation is elk" for n 5 0 and -elk(" - 2, for n r 1, 
provided that -2V I E, - E, 5 2V. The wavefunction on the 
second atom of the dimer is the negative of the a-type atom located 
on site - 1. If another dimer were located on sites 2 and 3, the 
corresponding perfectly transmitted wave would be ...e-2ik, e-lk, 1, 
-e-ik 1, e-ik, 1, eik, e2ik , ... , provided of course that 
-2V 5 E, - E, 5 2V. Such states can be constructed regardless of 
the number of dimer impurities that are placed at random in the 
lattice. Figure 1B shows the real part of a perfectly transmitted 
electronic state at a particular value of k for a dimer concentration of 
50%. The electronic state is extended, although "scattering" occurs 
at each dimer. 

The delocalization characteristics of the RDM are completely 
compatible with the standard localization theorems. A standard test 
of the onset of localization is the vanishing of the imaginary part of 
the self-energy [ImS(E)] along the real energy axis ( 3 ) .  The inverse 
of ImS(E) determines the lifetime of the state at energy E. Conse- 
quently, if ImS(E) vanishes, the state at energy E is a localized state. 

Fig. 2. The mean square 
displacement divided by 
( ~ t ) ~ / "  for varying 
amounts of disorder m 
the RDM: Curve A, 
E, - = V, curve B, 
- E~ = 2V, and curve 

C, E, - eb = 3V. The 
mean square displace- 
ment grows as t3l2 in A, 
linearly as t in B, and is 
bounded for C. [Re- 
printed from (16) with 
permission, 0 1990 
American Physical Soci- 

One can easily verify that ImS(E) vanishes at all energies for the 
RDM. This is probably the reason the RDM was not discovered 
until recently. The vanishing of ImS(E) for the RDM can be 
understood as follows. The value of ImS(E) is determined by the 
nature of the singularities of the Green function. In fact, ImS(E) will 
only be nonzero if the Green function has an imaginary part or 
equivalently has a branch point singularity. The presence of a branch 
point signifies the presence of overlapping states. Isolated singular- 
ities or simple poles indicate the presence of localized states. An 
infinitesimal number of extended states is not sufficient in the 
thermodynamic limit to give rise to a branch cut of nonvanishing 
width. Consequently, ImS(E) will vanish for all energies in the 
RDM. As a result, the standard localization theorems (1-3) are 
completely consistent with the occurrence of a set of delocalized 
states of zero measure. Surprisingly, they are of sufficient number 
V% to give rise to transport. As mentioned above, the extended 
state in the off-diagonal disorder problems, in direct contrast to the 
extended states in the RDM, is insufficient to give rise to a nonzero 
conductance, Pendry (8) has shown that in standard disordered 
models, isolated states at particular energies remain extended over 
<N of the lattice sites. However, the number of states that behave 
in this fashion is exponentially small (8). As a result, such states, in 
contrast to the extended states in the RDM. do not affect the 
asymptotic value of the mean square displacement of an initially 
localized 

Conducting Polymers: The Metallic State in 
Polyaniline 

In this section, we illustrate how the RDM is applicable to the 
insulator-metal transition in the conducting polyaniline. In 
contrast to metals, polymers are typically insulators. Many industrial 
applications of polymers are based on their inability to carry current. 
However, in recent years new classes of polymers have been 
synthesized that are capable of carrying unusually high currents. For 
example, in 1977 a doped form of polyacetylene was reported to 
have a conductivity on the order of lo3 S/cm (23). Because 
interchanging the double and single bonds in polyacetylene results 
in an equivalent structure, the ground state of this polymer is termed 
degenerate. The transport properties of this polymer are intrinsically 
tied to this degeneracy. Su, Schrieffer, and Heeger (24) suggested 
that soliton-like excitations from either ground state are responsible 
for the observed insulator-metal transition in polyacetylene. In 
recent years a new class of conducting polymers has been discovered 
experimentally that is different in kind from polyacetylene. Polymers 
such as polyaniline, polypyrolle, and polythiophene all lack a 
degenerate ground state but have high conductivities when doped 
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appropriately (18, 25-27). Consequently, one must invoke a mech- 
anism distinct from the soliton conduction in polyacetylene to 
explain the high conductivities in this class of quasi-1-D conduc- 
tors. 

To illustrate the connection between the RDM and the poly- 
aniline class of conducting polymers, we will explicitly perform the 
mapping of polyaniline onto the RDM. We choose polyaniline as 
our paradigm system because of the extensive experimental and 
theoretical data available. Let us start by summarizing the experi- 
mental work. Polyaniline refers to the general class of aromatic rings 
of benzenoid and quinoid character connected by nitrogen. The 
parent form of the polymer containing only benzenoid rings is 
referred to as leucoemeraldine. Emeraldine, on the other hand, 
contains a mixture of benzenoid and quinoid rings. These parent 
forms of the polymer are shown in Fig. 3, A and B. Both parent 
forms of polyaniline are insulators. However, upon electrochemical 
oxidation of the leucoemeraldine or acidification of the emeraldine 
parent, polyaniline undergoes an insulator-metal transition (18, 28). 
Experimentally, the metallic phase is characterized by a conductivity 
on the order of 10 S/cm, a value 10" times the conductivity in the 
insulating forms of the polymer (18, 28). 

The dramatic increase in the conductivity upon oxidation or 
acidification has sparked recent experimental work on polyaniline 
(18-23, 28, 29). Theoretical interpretations (19, 30-34) of the 
insulator-metal transition in polyaniline have been shaped by the 
observation that the Pauli susceptibility appears to be proportional 
to the degree of protonation or oxidation of the polymer (22). 
Physically, this behavior signifies that on the metallic side, the 
material is inherently inhomogeneous and phase-segregates into 
oxidized or protonated metallic islands embedded in a sea of 
insulating islands. Consequently, the view that polyaniline is a 
granular polymeric metal has emerged (28). However, not all 
experimental findings support this view (29). For example, the 
momentum dependence of the energy loss spectrum of the electron 
does not corroborate the granular metal picture (29). Recent 
calculations (33) suggest that the grain size required by the granular 
metal picture is at the least inconsistent with the experimental data 
on polyaniline derivatives. 

Regardless of which global picture of polyaniline is most appro- 
priate, the finding that polyaniline on the metallic side has conduct- 
ing domains with high spin concentration appears to be intact. For 
example, recent electron spin resonance (ESR) and nuclear magnetic 
resonance (NMR) experiments by Mizoguchi et al. (22) have 
provided clear evidence for the conducting domain picture. The 
most surprising result of this experiment, however, is that the 
conducting domains do not correspond to three-dimensional (3-D) 
islands, as in the granular metal picture, but rather to single strands 
or few strands of the polymer (22). In polyaniline, single strands of 
the polymer contain 1000 or more repeat units (35). However, in a 
given sample the length of single strands can vary depending on the 

sample preparation. Mizoguchi et al. (22) concluded as did Glarum 
and Marshall (21) that polyaniline is a unique example of a 1-D 
conductor in which the conductivity is carried by single strands of 
the polymer. These results are particularly important in light of 
recent extensive molecular orbital calculations by Galvao et al. (19) 
on single strands of randomly protonated emeraldine. Galvao et al. 
performed a series of calculations on linear chains of the polymer 
containing at least 200 rings of benzenoid or quinoid character (19). 
The quinoid rings were randomly placed in an otherwise ordered 
chain of benzene rings connected by nitrogen. Galvao et al. con- 
cluded that (i) the peak in the absorption spectrum at 1.5 eV is 
intrinsically tied to disorder and that (ii) upon protonation of the 
emeraldine form of the polymer, the Fermi level moves within the 
band to a region where extended states are located (19). They 
concluded, then, that the insulator-metal transition in polyaniline 
arises from the movement of the Fermi level (upon protonation or 
oxidation) to conducting states located in the vicinity of the band 
edge. The precise origin of the extended states in the calculations of 
Galvao et al. (19) is somewhat of a puzzle because they considered a 
disordered 1-D chain. As we have discussed above, all the electronic 
states in a disordered 1-D lattice should be exponentially localized. 

If the insulator-metal transition in polyaniline is in fact tied to the 
presence of such states, it is crucial that the origin of such states be 
explained. We have recently shown that the extended states in a 
randomly protonated chain of emeraldine of arbitrary length can be 
explained by the RDM (36). We review this calculation here. The 
starting point for our analysis is the single strand of the emeraldine 
polymer shown in Fig. 3B. In the calculations of Galvao et al. (19), 
quinoid rings were randomly placed in an otherwise ordered chain 
of benzene rings connected by nitrogen. In the protonated form 
(19) of the polymer, the double-bonded nitrogens on either side of 
a quinoid ring were protonated as illustrated in Fig. 3C. Optical 
absorption data (19) and ESR data of Glarum and Marshall (21) 
strongly suggest that the protonated form of emeraldine constitutes 
a bipolaron lattice. In fact, the close agreement of the work of 
Galvao et al. (19) with the experimental data is further evidence that 
the disordered bipolaron lattice is stable and sufficient to describe 
the conducting form of the polymer. This agreement is clear 
evidence that the conducting state in polyaniline is populated by 
bipolarons. Because the present analysis does not include electron- 
electron interactions, a definitive answer cannot be given in regard 
to the spin of the charge carriers. The noninteracting picture we 
adopt is one in which a quasi-particle moves in a background of 
paired defects (bipolarons) . 

There seems to be some debate in the literature (37) as to whether 
the bipolaron lattice is disordered. On physical grounds, it is clear 
that if leucoemeraldine is oxidized 20%, one-fifth of the nitrogens 
will be positively charged. The occurrence of these charges in single 
strands of the polymer will be random if the counterions are present. 
Experimental evidence suggests that even at 50% oxidation, the 
bipolarons in emeraldine are still disordered (19). Researchers have 
made heuristic attempts based on an ordered bipolaron band to 
explain the conductivity in the polyaniline family of conducting 
polymers (26). The standard view is that at low doping levels, the 
Fermi level lies in the band gap. As the doping level increases, the 
upper and lower bipolaron bands broaden and eventually merge as 
the conductivity nears its maximum. This simple picture is not at all 
applicable when disorder is present, however, because the band 
structure is fundamentally different (19). For example, we know 
from Anderson (1) that the states in the bipolaron bands should be 
localized states that carry no current when disorder is present. We 
want to show that the disordered bipolaron model for the proto- 
nated form of emeraldine is a subset of the RDM and naturally has 
a set of conducting states coincident with the Fermi level. 
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To proceed, we consider the standard nearest neighbor, ~-elec- 
tron, tight-binding model for the quinoid defea shown in Fig. 4A 
for a typical strand of emeraldine. The atoms in the polymer chain 
are grouped into cells indexed by the label n (Fig. 44 .  The label n 
indicates the nth nitrogen. The second label, ranging from one 
through six, indicates each carbon in the quinoid or benzene ring. 
We want to show that the eigenvalue equation 
(E - cl)Cn = t2Cn,, + tZCn - for the nth nitrogen can be re- 
written entirely in terms of the nitrogen site amplitudes C, - , and 
C, + ,. The matrix element t, (or t,') transfers an electron from a 
nitrogen double-bonded (or single-bonded) to a carbon, el is the 
site energy for the T-electrons on nitrogen, and to (or t,) is the 
matrix element between two double-bonded (or single-bonded) 
carbon atoms. Hence, we will have effectively integrated out the 
quinoid (or the benzene) ring. What will be left will be the RDM. 
The eigenvalue equation for each atom obeys an equation analogous 
to Eq. 1. To proceed, we sum the eigenvalue equations for sites n,3 
and n,4 and for sites n,5 and n,6. From the two simultaneous 
equations, we obtain that 

and 

with T, = 2 ~ t , / ( ~ '  - to2) and T, = 2t,t,/(~' - to2). We now 
substitute these results into the eigenvalue equations for sites n,l 
and n,2. Similarly, from the simultaneous equations, we obtain that 
C,,, = v1c, + v2cn + and C,,, = v2c, + v1c, + ,, with 

and 

v2 = t2tlT2/[(E - t l ~ l ) ~  - ( t l ~ 2 ) ~ l  (7) 

If we now substitute these results into the eigenvalue equation for 
site n, we obtain the expression 

which involves only the nitrogen site amplitudes. In this expression, 
I/, = t2v2 and Vo = t2'v2', where the prime on P,', where the 
prime on vz1 indicates that t, has been replaced with t,'. The new 
site energy for a nitrogen associated with a quinoid defect is 
El = el + t2v, + t2'vl. The new lattice contains the same infor- 
mation as first, except that effective matrix elements I/, and Vo have 
been derived that connect nearest neighbor nitrogens. In the new 
lattice, when a quinoid defect is present, nearest neighbor nitrogens 

Fig. 4. (A) A typical quinoid defect in emeraldine. The label n denotes the 
nitrogen atoms, and the numbers from one to six label the carbons on the 
quinoid ring. The nearest neighbor transfer matrix elements are indicated by 
t l ,  to, t2, and t 2 '  ( B )  The reduced RDM of emeraldine. The effective matrix 
elements (Vl and Vo) arise and site energies (Eo and E l )  arise from 
integrating out the benzene and quinoid rings. [Reprinted from (36) with 
permission, O 1991 American Physical Society] 

Fig. 5. Reflection coe5cient 
through a protonated and unproto- 
nated quinoid defea. The reflection 
coe5cient vanishes at -0.31p, indi- 
cating that the states at that energy 
are extended. [Reprinted from (36) 
with permission, O 1991 American 
Physical Society] 

are assigned the site energy El and are connected by the effective 
matrix element I/,. Our new lattice is equivalent to the RDM with 
the site energies El appearing in pairs. All other nitrogens are 
assigned the renormalized bare energy Eo = c0 + 2t2'v, and are 
connected by the matrix element Vo (Fig. 4B). Protonation of the 
lattice simply changes the site energies El. Consequently, emeral- 
dine and protonated emeraldine can be described by a RDM with 
off-diagonal disorder. Hence, in this version of the RDM, there are 
two kinds of dimer effects, protonated and unprotonated. As a 
consequence, it is not obvious that a set of unscattered electronic 
states exists. 

We now show that this version of the RDM also exhibits a set of 
delocalized or conducting states. As we have done above, we simply 
compute the reflection and transmission coefficients through the 
protonated and unprotonated defect. We want to show that the 
reflection coefficient through both kinds of defects vanishes at an 
energy in the vicinity of the Fermi level. Consequently, the states at 
that energy are unscattered conducting states. We compute the 
reflection coefficient through a quinoid defect the way we did in the 
RDM. The result is given below: 

Note that Eq. 9 reduces to Eq. 2 in the limit that I/, = I/,. One can 
find a nontrivial solution for the vanishing of the reflection proba- 
bility by numerically solving Eq. 1. We first calculated the energy 
band of leucoemeraldine. We chose the transfer matrix elements and 
site energies on the basis of optimized polyaniline geometries of 
Tanaka et al. (34) and in accordance with the molecular orbital 
calculations of Streitweisser (38) such that the experimentally ob- 
served band gap of 1.2P (18) was obtained. The term P is the 
resonance energy for benzene, which is -2.5 eV. We then solved for 
the vanishing of Eq. 9 using the calculated energy band for 
leucoemeraldine. The reflection coefficient for a quinoid defect in 
the highest occupied leucoemeraldine band is shown in Fig. 5. 
Whether or not the quinoid defect is protonated, the reflection 
coefficient vanishes at - -0.31p (Fig. 5). Hence, the states at 
- -0.31p are completely unscattered by the quinoid defect and 
thus are conducting states. Because the reflection coefficient vanishes 
identically at - 0.3 1 p for a single defect, it will also vanish in a lattice 
containing an arbitrary concentration of randomly placed defects at 
this energy. The energy at which the reflection coefficient vanishes is 
independent of the concentration of defects (see above). Conse- 
quently, a randomly protonated emeraldine chain of arbitrary length 
should exhibit a set of conducting states in the vicinity of -0.31p. 
In the absence of any protonation, the Fermi level lies at -0.21p. 
The states at -0.21p are strongly localized because the reflection 
coefficient at that energy is unity (Fig. 5). Galvao et al. (19) showed 
that when the polymer is protonated the Fermi level moves contin- 

ARTICLES 1809 



uously from -0.21p to - -0.35p at a protonation level of 50%. At 
this level the polymer exhibits its maximum conductivity. Hence, the 
energy of the current-carrying states in the RDM of protonated 
emeraldine is in agreement with the location of the extended states 
as calculated by ~ d v a o  et al. (19). More importantly, the energy of 
the current-carrying states in the RDM of protonated polyaniline is 
in close proximity to the location of the Fermi level when the 
polymer exhibits its maximum (50% protonated) conductivity. We 
argue that the metal-insulator transition in polyaniline is an instance 
of the RDM. 

We now determine the width of the conducting states that we 
have shown to exist in single strands of polyaniline at zero temper- 
ature. We can obtain an estimate of the number of conducting states 
by expanding the reflection coefficient about the energy (Ei) at 
which Eq. 9 vanishes. To lowest order in AE = E - E,, we find that 
lRIZ = (AE)'. From the arguments put forth in the previous section, 
we find that the total fraction of states whose mean free paths exceed 
the system size scales as l f i .  Equivalently, fi of the electronic 
states are unscattered by the disorder. Hence, in a single strand of 
the polymer, the width of the conducting states in the vicinity of E, 
is the square root of the length of the polymer chain. The length of 
the chains used by Galvao et al. (19) was 200. Hence, we estimate 
that the width of the conducting states is -0.06P. Such a width of 
conducting states centered at -0.31p is certainly sufficient to 
explain the conducting states observed by Galvao et al. (19) and the 
conductivity maximum. of polyaniline at a pro'tonation level of 50%. 

An immediate consequence of the model we have presented is that 
the conduction in each strand is metallic for doping levels in the 
viciriity of 50% at zero temperature. However, experimental mea- 
surements (28) of the conductivity at finite temperatures indicate 
that at all protonation levels the conductivity has the form 
u = uoexp[-(To/T)liZ] where a, and To are temperature-indepen- 
dent constants. This behavior is more indicative of hopping con- 
ductivity than metallic transport. Experiments also indicate that To 
is roughly a quadratic function o f  the protonation level in the 
protonation range of 20 to 50%. Three basic models give rise to a 
temperature dependence of the form ~ X ~ [ - T , / T ) ' ~ ~ ]  for the con- 
ductivity: (i) activated tunneling models for granular metals (39), 
(ii) 3-D variable-range hoppingin the presence of a Coulomb gap 
(40), and (iii) 1-D variable-range hopping (41). Materials such as 
composites of nickel and SiO, form a granular structure containing 
grains of the metal separated by islands of the insulator SiO,. 
Conduction obtains as a consequence of activated tunneling be- 
tween the metallic grains. Sheng, Abeles, and Arie (39) showed that 
if the assumption is made that the product of the average separation 
between !grains and the charging energy is constant, the desired 
temperature dependence of the conductivity is obtained. Recently 
Adkins (42) has shown that this assumption is not valid for several 
granular metals and in general is an ad hoc ansatz. He concluded 
that a satisfactory theory for electron transport in granular metals is 
lacking (42). Consequently, the applicability of the granular metal 
picture to amorphous systems such as polyaniline is certainly 
suspect. The Coulomb gap model of Efros and Shklovskii (40) is 
relevant to systems in which the density of states vanishes at the 
Fermi level. However, experiments on the Pauli susceptibility (22) 
in polyaniline indicate that the density of states does not vanish at 
the Fermi level. 

The only model remaining that is consistent with the observed 
ternperam& dependence is that of variable-range hopping in a 1-D 
system. Kurkijarvi has pointed out, however, that along a single 
strand of infinite length, transport among a distribution of localized 
states will always be thermally activated (43). This result arises 
because it is impossible for a particle to circumvent an infinitely high 
barrier on a linear chain. This result is somewhat irrelevant because 

the strands are of finite length in any physical system (44). Brenig et 
al. (44) showed that in a system consisting of noninteracting chains 
of finite length, averaging over the hops of varying length along each 
chain will give rise to the desired temperature dependence 
~ X ~ [ - ( T , / T ) ' ~ ~ ] .  The immediate utility of this result (44) is not 
clear because interchain hopping ultimately facilitates transport from 
one end of the sample to the other. If hops to neighboring chains are 
included, the resultant transport process will follow the 3-D law 
u = uoexp[- (To/T)114] if the number of chains to which any chain 
is connected is comparable to the length of a single chain (41). That 
is, the system will act as if it were 3-D. If the connections to adjacent 
chains are successively severed so that a single chain is connected to 
only a few chains (relative to the average chain length), the dynamics 
should 'cross over to the result of the 1-D variable range (45). Such 
a system with a finite number of transverse connections is a 
quasi-1-D system. 

Yuval and later Thouless have shown that any system that is long 
enough will exhibit 1-D behavior (46). That is, any system that is 
finite in all directions except one will exhibit 1-D behavior. Conse- 
quently, the dynamics of any quasi-1-D system exhibiting hopping 
conduction should cross over to the activated limit as the chain 
length increases. The length L, at which this state of affairs obtains 
defines the 1-D limit. Consequently, 1-D variable range hopping 
will be observed in a quasi-1-D system only when the average chain 
length L is such that L, 6 L 6 L,, where L, is the length scale in 
the transverse direction over which a single chain is connected. 

This serious constraint on the applicability of the variable-range 
hopping model appears to have been overlooked in previous work 
(33, 45). For example, Wang et al. (33) and Nakhrnedov, Prigodin, 
and Samukhin (45) assumed that if only nearest neighbor connec- 
tions between chains were considered, the quasi-1-D variable-range 
result would follow. Such a system is, however, inherently 3-D. The 
latter authors have divided the resultant conductivity into transverse 
(u,) and longitudinal (al l)  components. Although the conductivity 
is generally anisotropic, this separation is problematic, primarily 
because the physical significance of u, and all is not immediate in 
the usual experimental situation in which leads are connected to 
both ends of the sample. The perpendicular component to the 
conductivity would have a definite physical meaning if a lead were 
applied to the tip of the first strand and to the end of the last strand 
of the lattice. Because the latter scenario is virtually impossible to 
construct experimentally, the immediate utility of the separation 
into u, and all is not clear. Nonetheless, phase segregation (18) of 
polyaniline into conducting and insulating domains suggests that 
the transverse hopping distance is short. 

In applying the variable-range hopping picture to polyaniline, we 
simply need to determine the constant To. Recall that To scales as 
the inverse of the localization length. For doping levels close to 
SO%, the states of interest are the extended states in the vicinity of 
the Fermi level. These states are responsible for the current within a 
chain and are also the relevant states when the electron hops from 
chain to chain. Consequently, the appropriate localization length 
scales as l/(AE)2. The energy difference can be expressed in terms of 
the protonation level as AE = c, - ax, where x is the concentration 
of protonated defects and c, and a are constants of proportionality. 
Experimentally, it is clear that To has an approximately quadratic 
form in the protonation range of x = 0.3 to 0.5 (1 8). At this level 
of protonation, the scaling behavior we have shown here for the 
localization length should be valid. Hence, the behavior of To as 
predicted by the RDM is consistent with the experimental data at 
moderate protonation levels. At lower protonation levels, the scaling 
behavior of the localization length we have derived is no longer valid 
(because AE is large), as evidenced by the deviation of the experi- 
mental data from a quadratic dependence at low levels of protona- 
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tion. There is some experimental evidence that the density of states 
at the Fermi level [N(EF)] is linearly proportional to the protona- 
tion level x. If this dependence is taken into consideration, we obtain 
that To = x because To = l/[(localization length)xN(E,)]. The 
available experimental data between x = 0.3 and 0.5, however, 
displays a more quadratic than linear dependence on x. 

A consequence of this model is that as the parent polymer 
leucoemeraldine is successively oxidized, the conductivity should 
increase as the Fermi level is swept through the location in the band 
where the conducting states lie and subsequently decrease as the 
Fermi level moves further into the band. This behavior was recently 
observed in experiments by Ofer, Crooks, and Wrighton (27) as the 
electrochemical potential was continuously varied over a wide range. 
The finite window of high conductivity spanned 0.6 eV. Such a 
window is narrow compared with the band width (2.6 eV) and 
hence is consistent with the narrow band of conducting states in the 
RDM. Our model is also consistent with the observed decrease in 
the conductivity of randomly substituted polyaniline derivatives 
(33). It is straightforward to show that methyl group substitutions 
on the benzene or quinoid rings, for example, change the location of 
the unscattered states relative to the Fermi level. Hence, at a certain 
protonation level, the conducting states might not be accessible. The 
states at the Ferrni level will then be localized and the conductivity 
should decrease. 

The General Random Bipolaron Lattice: 
Application to Polyparaphenylene 

There are a number of other polymers, such as polypyrolle, 
polythlophene, and polyparaphenylene that are in the same general 
class of conducting polymers as polyaniline (see above). All of these 
polymers lack a degenerate ground state, and bipolaron conduction, 
appears to play a significant role in the observed metal-insulator 
transition (25, 26). We want to show now that any random 
bipolaron lattice can be mapped onto a version of the RDM. All 
random bipolaron lattices contain randomly placed pairs of corre- 
lated spins. The spins need not occur on neighboring lattice sites. In 
general, the several lattice sites can be separated. The bipolaron in 
polyparaphenylene is shown in Fig. 6A. There is some debate about 
the exact number of benzene rings the bipolaron spans (47). The 

Fig. 6. (A) The bipolaron defect in polyparaphenylene. (B) The transformed 
lattice obtained by integrating out the benzene rings. Lattices (C) and (D) 
are obtained by a site decimation procedure that reduces the bipolaron to 
two neighboring sites with effective site energies and matrix elements. 

exact number is not crucial here. We want to show that regardless of 
the size of the bipolaron, it can be transformed into two adjacent 
lattice sites with equivalent energies. The same procedure used for 
polyaniline can be implemented here. First we reduce each benzene 
ring to two sites. The resultant lattice is shown in Fig. 6B. 
Regardless of the number of sites in each aromatic ring, the 
transformed ring will contain two sites. If the bipolaron ranges over 
M benzene rings, the reduced lattice will contain 2M + 1 sites. The 
lattice sites 2 through 2M can all be decimated by systematically 
applying Kramer's rule to the eigenvalue equations for these sites. It 
is best to start this procedure at the middle of the bipolaron and 
decimate sites M and M + 1 first. After one application of Kramer's 
rule, the new site energies and matrix elements for sites M - 1 and 
M + 1 are 

where Ai = E - E,. After three subsequent transformations, the 
bipolaron reduces to the dimer shown in Fig. 6D. This procedure 
can be applied to any bipolaron lattice to reduce the bipolaron to 
two neighboring sites with new site energies and effective matrix 
elements connecting them. In general, any random bipolaron lattice 
can be mapped onto the RDM. This mapping raises the question of 
where the unscattered states lie relative to the Fermi level. By way of 
illustration, we computed the reflection coefficient through a bipo- 
laron defect in polyparaphenylene. All parameters were chosen in 
accordance with those of Bredas et al. (47). Our preliminary results 
reveal that the reflection coefficient vanishes in the vicinity of the 
band edge, indicating the presence of conducting states at -0.62P. 
In the undoped form of the polymer, the Fermi level lies at -0.5P. 
Calculations are now under way to verify whether the Fermi level 
moves through the region of unscattered states as the polymer is 
doped. Should this behavior be observed, it is likely that the RDM 
will generally describe the metallic state in conducting polymers 
with nondegenerate ground states. 

Repulsive Binary Alloy 
Consider a binary alloy consisting of a- and b-type species. 

Assume the concentration of the b species is sufficiently small or that 
strong repulsions exist between b species such that along any axis of 
the alloy two b species do not appear in succession. We describe this 
alloy in the tight-binding approximation, in which the energy of the 
a- and b-type species is E, and E,, respectively. Let Va and Vb be the 
nearest neighbor matrix elements connecting a-a and a-b sites, 
respectively. We have established that in one dimension, regardless 
of the concentration of the b-type defects (17), the repulsive binary 
alloy also exhibits an absence of localization whenever 
Val&, - ebl 5 21~: - vb21. Superdifisive transport obtains when 
the strict inequality holds and difision when the equality is valid. 
Using arguments analogous to those used in the RDM, we find 
also that <N of the electronic states are extended when this 
condition holds. The phases of the unscattered states in this model, 
however, do not change. The amplitude changes by the ratio VJVb 
when an impurity is encountered. For example, if b-type impurities 
are located on sites - 1 and 2, the unscattered eigenstate is ...e-2ik, 
(VJV,) ek, 1, elk, (VJVb) e21k, e31k, ..-. The repulsive binary alloy 
applies to both the dilute limit of the binary alloy and physical 
systems such as Fibonacci lattices formed out of two kinds of 
materials. Let a = GaAs and b = AIAs. A Fibonacci sequence of a 
and b will be of the form a, ab, aba, abaab, . . ., where the nth entry 
is a product of the (n - 1) and (n - 2) entries. The b species appears 
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singly; hence, a Fibonacci lattice is a subset of the repulsive binary 
alloy. Such semiconductor heterostructures have been fabricated 
experimentally because of the general interest in quasi-periodic 
order in crystals. The numerous theoretical treatments (48) of 
Fibonacci lattices have not predicted the transmission resonances we 
have discovered in the repulsive binary alloy because they have 
arranged either the matrix elements or the site energies in a 
Fibonacci sequence. As is evident from the repulsive binary alloy, 
the site energies in a Fibonacci lattice will follow the Fibonacci rule, 
but the matrix elements will not. These correlations have also been 
pointed out by Kumar (49) and elsewhere (50) in the context of 
Kronig-Penney models for Fibonacci lattices. 

Final Remarks 
We have considered a simple model in which the defects, by virtue 

of the pairing constraint, have internal structure. The internal 
structure leads to the resonance effect and the narrow band of 
conducting states when the defects are randomly placed. The 
analysis we have performed applies equally to trimers, quatramers, 
and so on. In fact, the reduction of the bipolaron in polyparaphe-
nylene to a dimer-type defect demonstrates that any lattice contain­
ing randomly placed defects with internal structure can be reduced 
to the RDM. The only constraint on the internal structure is that it 
must contain a plane of symmetry, as in the case of bipolarons. As a 
new application, we have recendy investigated the relevance of the 
RDM to the metallic state in heavily doped polyacetylene. It is 
straightforward to show that a neutral or charged soHton defect 
ranging over n sites in tow^-polyacetylene can be reduced to a dimer 
defect—that is, solitons possess symmetric internal structure. Con­
sequently, a single strand of polyacetylene containing a random 
distribution of solitons is equivalent to the RDM (51). It appears 
then that the RDM is of fundamental importance to the insulator-
metal transition in conducting polymers both with and without 
degenerate ground states. 
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