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Identification of Widespread Pollution in the Southern 
Hemisphere Deduced from Satellite Analyses 

Vertical profiles of ozone obtained &om ozonesondes in Brazzaville, Congo (QS, 
15"E), and Ascension Island (g0S, 15"W) show that large quantities of tropospheric 
ozdne are present over southern Africa and the adjacent eastern tropical South Atlantic 
Ocean. The origin of this pollution is widespread biomass burning in Africa. These 
measurements support satellite-derived tropospheric ozone data that demonstrate that 
ozone originating &om this region is transported throughout most of the Southern 
Hemisphere. Seasonally high levels of carbon monoxide and methane observed at 
middle- and high-latitude stations in Africa, Australia, and Antarctica likely reflect the 
effects of this distant biomass burning. These data suggest that even the most remote 
regions on this planet may be significantly more polluted than previously believed. 

'IDESPREAD AIR POLLUTION HAS troposphere (1) define distinct plumes ema- 
generally been regarded as an an- nating from North America, Asia, and Eu- 
thropogenic phenomenon identi- rope. When these data are compared with 

fiable with industrialized nations, primarily available ozonesonde measurements at sites 
in the Northern Hemisphere. Recent satel- with enough data to derive a climatology of 
lite measurements of ozone (0,) in the free tropospheric O,, the differences in 

agreement between the sateflite analysis and 
the ozonesonde measurements are ~enerallv 

V 
J. Fishman, Atmospheric Sciences Division (Mail Stop than 15% (1).  ~h~ measure: 401A), National Aeronautics and Space Administration, 
Lanalev Research Center, Hamuton. VA 23665. ments also indicate that a large amount of 

. - - - - - - - . 
B. Cros and D. Nganga, Laboratoire de Physique de Africa and that this source is most pro- 
I'Atmosphere, Universite Maien Ngouabi, Brazzaville, nounced during the dry from A~~~~~ 
Republic of Congo. 

to October. In addition, elevated concentra- 
*To whom correspondence should be addressed. tions of carbon monoxide (CO) and meth- 

21 JUNE 1991 REPORTS 1693 



ane (CH,) have been observed on a seasonal 
basis in the Southern Hemisphere. Bosh 
QtandCOaretracegase~thatwauldbe 
prrstnt in the atmosphere even without 
sources h m  anthropogenic activity. Be- 
cause ind-tion is less in the Southern 
Hemisphere than in the Northan Hcmi- 
sphere;it has gmcra~.  been assumed that 
the concentrations of both of thesc trace 
gascs in the remote regions of this hemi- 
sphere are not grrady influenced by pollu- 
tion. But the source of the seasonality of 
thesctracegascshasbeendcar.Inthis 
report, we compare the data fiom satellite 
and in situ meammxmts to investigate the 
origin of thesc trace gases, and we suggest 
that pollution originating from biomass 
burning in tropical and subtropical southern 
Afiica has a pronounced iducnce on the 
seasonal cycles of CO and CH, that haw 
been obsimd thmghout the Soudran 
Hanisphac. 
More than 32,000 concurrent satellite 

measurements have been madc from the 
Total Ozone Mapping Spectrometer 
(TOMS) and the Stramspheric Amos01 Gas 
Fhpimem (SAGE) between 1979 and 
1989 (Fig. 1) (2). Tropospheric 0, levels 
canbeobtainedbyrmbtractiogtheamount 
ofO, inthestratosphac,daivcdfnrmthe 
SAGE measurements, from the concurrent 

4 (- 
Fig. 2. Ozonesondcs fiom Brazzaville (solid he) 
dAsccnsionlslvld(dashcdhe)fbr6and7 
August 1990, ~~~peclivtly. 

measurement of total 0, measured by 
TOMS at the same location. The dBkrrncc 
is appmxbmdy 10% ofthe total signal and 
is refend to as the tropospheric residual 
(1)- 

The tropospheric data show a wcll-dc- 
h d & ~ m i n o ~ o f p t e r t h a n 4 5  
D o h  units [ l  D o h  unit (D.U.) = 
2.69 x 1016 molcculcs of 0, per square 
centimeter] O E t h e W e s t ~ o f s o u ~  
Af&a during September and Oaober. To 
investigate the origin of these dcvated 0, 
concentrations, we used ozonesondes (3) at 
Brazzaville, Congo (4"S, 15%), and at As- 

July-Augur 

East 

l s 1 4 ~ m S & m 4 6 5 Q  
Oobson u n b  

Fb. 1. Dfibution of t h ~  Oa residual derived fiom d?ea bttwan 1979 and 1989 tbr 
~ t h l y ~ o d s .  
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Fi@. 3. Thc seasonal cydcs of CO at Capc Point, 
Atiica (O), d Capc Grim, A d  (A), and 
the intcgraml amount of 0, at thc same two 
locations (e d A). Data dcrived &om the 
satellie technique used to construct Fig. 1. 

d o n  Island (8OS, 15%') to obtain more 
accurate 0, masurements (Fig. 2). P d  
prrssurcs of 0, greater than 50 nbar were 
fbuod between 1.5 and4.3 kminthe Braz- 
zaville sounding. The 0, concentration 
peaks at 66 nbar at an altitude of 2.2 km. 
The tropospheric 0, distribution was gcn- 
erally similar at both localities, but the con- 
centrations in the polluted layer at Ascen- 
sion Island, where the highest tropospheric 
0, partial presswe was 56 nbar at 3.5 km, 
were typically 15 to 20% lcss than the 
concentrations in Brazzaville. These protiles 
substantiate our condusion h m  satellite 
data that widespread air pollution is the 
reason h r  the enhancanent observed over 
thewtsttmpartofsouthernAfiica.During 
the 1990 dry season, the average integrated 
amount of 0, in the troposphere was 45 
D.U., and the l e d  at Brazzaville was -8 
D.U. higha than at Ascension Island. 

The distribution of 0, in the lower tro- 
posphere at Ascension Island supports the 
prank that the 0, produced over southern 
Afiica is transported by low-lcvel castdies 
totheeasmnSouthAtlanticOcean.Some 
ofthe03inthcboundarylayermakcsits 
way into the mid& and upper troposphere, 
where the winds in the tropics and in the 
subtropics are gcnady westerlies (4). Be 
cause 0, is long-lived in the flee tropo- 
sphere, it can be transported long distances. 
The satellite data fbr July-August and Octo- 
ber-September (Fig. 1) show the long-range 
transport of this 0,. The prrvailing meteor- 
ology during November and December sug- 
gest~that0~frombothsouthernAfiicaand 
soudreastem Brazil should feed into the 
region of elevated 0, (>40 D.U.) over the 
South Atlantic Ocean near 25" to 30"s. 

Ebmination of the annual cycles of CO 
andCI&atfburlocationsintheSouthern 
Hemisphere [Cape Point, South Atiica 
(34OS, 18%), Cape Grim, Australia (41°S, 
145%'), Mawson, Antarctica (68"S,63%), 
and the South Pole] shows that the concen- 
trations of thesc trace gases also exhibit a 
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Fig. 4. The seasonal wcles of surface tropospheric 
0; for Cape Point (34"s) (a) and ~ a p e ' ~ r i m  
(41"s) (0). 

distinct maximum during September and 
October (5, 6). Comparison of the seasonal 
cycles of CO and integrated O, in the 
troposphere at Cape Grim and Cape Point 
(Fig. 3) shows that both were enhanced 
during austral spring, September to Novem- 
ber. The CO data are monthly averages; the 
0, data have been averaged over 45-day 
periods for 10" latitude by 20" longitude 
boxes centered on Cape Grim and Cape 
Point. The orbit of the satellites that carry 
the SAGE instruments is such that the same 
approximate location is sampled at intervals 
of -40 days. Therefore, meaningful month- 
ly averages cannot be obtained for every 
month. 

The detrended CH, seasonal cycle at 
Cape Point and Cape Grim (7) is virtually 
identical to the seasonal cycle of CO; both 
have an amplitude of -30 ppb by volume 
(ppbv); the highest concentrations were in 
September to October and the lowest con- 
centrations were in February. In contrast, in 
the Northern Hemisphere, the seasonal cy- 
cles of CH, and CO are quite different (8). 
Because the atmospheric lifetime of CH, is 
on the order of a decade, its seasonal cycle 
most likely reflects the seasonal variation of 
its sources rather than the seasonality of its 
removal mechanism, which is reaction with 
the hydroxyl (OH) radical. The primary 
sources of CH, are biomass burning, rice 
paddies and marshes, and enteric fermenta- 
hon from ruminants (9) .  Each of these ~, 

sources is estimated to release on the order 
of 1 x lo1, g of CH, per year. Only 
biomass burning is significantly concentrat- 
ed in southern low latitudes. 

In contrast to the cycle of CH,, the 
seasonal cycle of CO at these two sites 
partially reflects the seasonal nature of its 
removal by the OH radical. The atmospher- 
ic residence time of CO is 1 to 2 months, 
and the lowest O H  concentrations at south- 
ern mid-latitudes are June and July. There- 
fore, the highest CO concentrations at 
southern mid-latitudes should occur in July 
or August, rather than October as observed. 
Results from a three-dimensional photo- 
chemical transport model (10) show that 
biomass burning, rather than the seasonal 

variation of the OH radical at southern 
mid-latitudes, is the primary reason why the 
maximum observed-at Cape Point and at 
Cape Grim occurs in October. Without sea- 
sonal input from biomass burning, the mod- 
el yields a seasonal CO cycle that peaks in 
August and an average CO concentration in 
the Southern Hemisphere of only -35 
ppbv, lower by nearly; factor of 2 than the 
observations (Fig. 3). The amplitude of the 
CO seasonal cycle without biomass burning 
is only -11 ppbv instead of the observed 
-30 ppbv. 

Satellite measurements of CO from two 
Space Shuttle fights in November 1981 and 
October 1984 (11) codrrned that lirge 
amounts of CO were coming from Africa as 
a result of widespread biomass burning. 
Subsequent analysis (4) of these data 
showed that CO over the eastern Indian 
Ocean was transported more than 7500 km 
to the southeast (almost to Australia). We 
propose that such long-range transport is 
not dn occasional occurrence, but a common 
one that leads to the widespread dissemina- 
tion of CO, CH,, and tropospheric O, from 
biomass burning. The seasonal cycle of ele- 
mental carbon (C) at Cape Grim also max- 
imizes in October and supports this premise 
(12). 

At both Cape Point and Cape Grim (Fig. 
4), the highest concentration of surface 0, 
(13) is fo&d in July and the lowest concen- 
tration in January. This pattern is si@- 
candy different from the seasonal cycles of 
CO A d  CH, at the surface and the seasonal 
cycle of the satellite-derived tropospheric 
0,. To explain this apparent discrepancy, 
we compared the satellite-derived tropo- 
spheric 0, data with the seasonal cycle of 
0, (at 500 mbar) derived from an analysis 
of 752 ozonesondes at Aspendale, Australia 
(3S0S, 145"E), between 1965 and 1982 
(Fig. 5) (14). The satellite observations are 
in good agreement with the free tropospher- 
ic 0, measurements. Earlier workers had 
assumed that middle tropospheric O, 
reached its highest concentrations in austral 
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Fig. 5. The seasonal cycles of 0, at 500 mbar (A) 
derived from ozonesonde data at Aspendale, Aus- 
tralia, between 1967 and 1982, and the tropo- 
spheric residual (from satellite data) (A) and 
surface 0, measurements (0 )  at Cape Grim, 
Australia. Surface and 500-mbar data reported in 
parts per billion by volume, satellite data in D.U. 

spring, because this was when stratosphere- 
troposphere exchange was most intense 
(1 5). The spatial continuity provided by the 
satellite analysis, on the other hand, clearly 
shows that the excess 0, at southern middle 
latitudes at this time of the year is transport- 
ed from lower latitudes, not higher latitudes, 
and is thus from biomass burning, not the 
stratosphere. 

We propose that the observed Werences 
between the seasonal behavior of surface O, 
and the other trace species are related to the 
relatively short atmospheric residence time 
of surface 0, compared to those of these 
other gases. The dominant sink for both CO 
and CH, is reaction with OH. If we assume 
that these two trace gases originate in the 
southern tropical and subtropical regions of 
the Southern Hemisphere, then the atmo- 
spheric residence time of these trace gases 
can be obtained if the O H  concentration is 
known. Using the model-derived OH distri- 
bution computed in (1 O), we determined the 
atmospheric lifetime of CO to be approxi- 
mately 30 days in the boundary layer and 40 
days in the middle troposphere at these 
latitudes. For CH,, the atmospheric lifetime 
is approximately 3 years in the boundary 
layer and 8 years in the middle troposphere. 
These lifetimes are sufficiently long that CO 
and CH, produced in these regions can be 
transported substantial distances. 

Ozone, however, is a different story. The 
primary photochemical sink for tropospher- 
ic 0, is the reaction of metastable atomic 
oxygen, O(~D) ,  one of the products of O, 
photolysis, with water vapor. Thus, the life- 
time of tropospheric 0, is most dependent 
on the distribution of water vapor and the 
amount of ultraviolet radiation available. In 
the tropical boundary layer, both of these 
are abundant, and we compute (16) a life- 
time of only 2 to 5 days in the tropical 
planetary boundary layer. In the middle 
troposphere, however, we compute an at- 
mospheric lifetime of approximately 90 
days. Thus, the 0, that is so abundant in the 
lower atmosphere over Brazzaville and As- 
cension Island (Fig. 2) does not persist long 
enough to be transported long distances. If, 
however, the 0, can get out of the planetary 
boundary layer, the lifetime is sufficiently 
long that it can be transported significant 
distances. The seasonal cycle of O, at the 
surface may thus be controlled directly by 
the strength of the sink at these latitudes. 

The data do not rule out other factors that 
contribute to the seasonal variability of the 
trace gas measurements summarized in this 
report. The agreement between the seasonal 
cycles of the satellite-derived tropospheric 
0, data and the surface CO and CH, mea- 
surements is not perfect, and other sources, 
sinks, and transport mechanisms are likely 
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responsible for these observed differences in 
seasonal cycles. Nonetheless, we believe that 
the enhancement of trace gas concentrations 
in the Southern Hemisphere that is due to 
emissions from biomass burning in Africa 
and, to a lesser extent, South America, is the 
mechanism that determines much of the 
seasonality of these trace species. 
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Identity Elements for Specific Aminoacylation of Yeast 
tRNAAsp by Cognate Aspartyl-tRNA Synthetase 

The nucleotides crucial for the specific aminoacylation of yeast tRNAAsp by its cognate 
synthetase have been identified. Steady-state aminoacylation kinetics of unmodified 
tRNA transcripts indicate that G34, U35, C36, and G73 are important determinants 
of tRNAA"p identity. Mutations at these positions result in a large decrease (19- to 
530-fold) of the kinetic specificity constant (ratio of the catalytic rate constant kc,, and 
the Michaelis constant K,) for aspartylation relative to wild-type tRNAAsp. Mutation 
to GI0425 within the D-stem reduced kc,JK, eightfold. This fifth mutation 
probably indirectly affects the presentation of the highly conserved G10 nucleotide to 
the synthetase. A yeast tRNAPhe was converted into an efficient substrate for 
aspartyl-tRNA synthetase through introduction of the five identity elements. The 
identity nucleotides are located in regions of tight interaction between tRNA and 
synthetase as shown in the crystal structure of the complex and suggest sites of 
base-specific contacts. 

T HE CORRECT AMINOACYLATION OF nant nucleotides important for aminoacyla- 
tRNAs by their cognate synthetase is tion by yeast AspRS. 
crucial for accurate transmission of The aminoacylation kinetics of mutant 

genetic information and is determined by 
certain structural features of the tRNA, 
which in certain systems include nucleotides 
in the anticodon loop, acceptor stem, and 
D-loop (1). Regions of contact between 
yeast tRNAA"p and yeast aspartyl-tRNA 
synthetase (AspRS) have been previously 
characterized with chemical and enzymatic 
footprinting methods (2, 3). A high-resolu- 
tion x-ray structure of this complex (4) has 
confirmed that the anticodon loop and stem 
as well as portions of the acceptor stem 
are sites of interaction with AspRS. We 
describe steady-state aminoacylation kinetics 
for a series of mutant transcripts of yeast 
tRNAA"P in order to delineate the determi- 
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tRNAs were compared to that of the un- 
modified transcript of yeast tRNAA"p in 
which Ul-A72 base pair was changed to 
GI-C72 (Fig 1A); both transcripts have 
equivalent kinetic parameters for aspaltyla- 
tion as the M y  modified molecule (5 ) .  Since 
the transcript of Escheruhia coli tRNAA"p is 
an equivalent substrate for aspartylation by 
yeast AspRS as the yeast transcript (Table 
l ) ,  a number of nucleotide positions could 
be eliminated as potential identity elements 
(Fig. 1B). Moreover, single-swanded nucle- 
otides protected in footprinting experiments 
(2, 3), G-U base pairs (6),  and nucleotides 
identified by computer sequence analysis (7) 
as specific for tRNAA"P were tested explicit- 
ly. For simplicity, the effects of mutations 
(Fig. 1C) on the steady-state aminoacylation 
kinetics (Table 1) are described below in 
terms of the four structural domains of the 
tRNA molecule. 
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