
(18). All these structures consist of long, amphi- 
pathic a helices that pack at a 20" angle, thus 
sharing many structural requirements with 
coiled-coil helices. 

The search revealed several transcriptional 
activators that do not contain a basic DNA 
binding region or a leucine zipper but ap- 
pear to have a zipperlike coiled-coil region. 
These include the homeobox-containing 
protein Ubx, the zinc finger protein Rptl, 
and the prokaryotic transcriptional activator 
FixJ (Fig. 2). Ubx and Rpt l  have a topology 
similar to leucine zipper proteins, with the 
DNA binding domain followed at its 
COOH-terminus bv the predicted coiled coil, 
whereas in FixJ I& coicd coil precedes the 
DNA binding COOH-terminal domain (19). 

In several- proteins (Fig. 2), predicted 
coiled-coil segments lie in areas that are 
thought to play a functionally important 
role. For instance, in Eschevichia coli alanyl 
tRNA synthetase, a predicted coiled coil lies 
in a segment that has been identified by 
deletion analysis as being responsible for 
oligomerization (20); in bacterial chemore- 
ceptors, two predicted coiled-coil regions 
coincide with the methylated domains that 
have been implicated in sensory adaptation 
(21); and, in bacterial flagellins, the predict- 
ed coiled-coil domains are at the NH,- and 
COOH-termini of the proteins in regions 
that are thought to mediate the polymeriza- 
tion of flagellin into the flagellar filament 
(22). The score profiles presented in Fig. 2 
indicate that zipperlike coiled coils occur in 
proteins that mediate many different types 
of biological processes. 
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Self-Assembled Organic Monolayers: Model Systems 
for Studying Adsorption of Proteins at Surfaces 

Self-assembled monolayers (SAMs) of w-functionalized long-chain alkanethiolates on 
gold films are excellent model systems with which to study the interactions of proteins 
with organic surfaces. Monolayers containing mixtures of hydrophobic (methyl- 
terminated) and hydrophilic [hydroxyl-, maltose-, and hexa(ethy1ene glycol)-termi- 
nated] alkanethiols can be tailored to select specific degrees of adsorption: the amount 
of protein adsorbed varies monotonically with the composition of the monolayer. The 
hexa(ethy1ene glycol)-terminated SAMs are the most effective in resisting protein 
adsorption. The ability to create interfaces with similar structures and well-defined 
compositions should make it possible to test hypotheses concerning protein adsorption. 

u NDERSTANDING THE MECHANISM 

of protein adsorption at surfaces 
(1, 2) is an important element of 

research in protein chromatography (3) ,  
clinical diagnostics ( 4 ) ,  biomedical materials 

Depament of Chemistry, Harvard University, Cam- 
bridge, MA 02138. 

*To whom correspondence should be addressed. 

(5 ) ,  and cellular adhesion (6) .  No system is 
available that permits the structure and 
properties of the interface to be controlled in 
detail sufficient for the investigation of hy- 
potheses concerning protein adsorption at 
the molecular level. We report a study of 
protein adsorption at interfaces between 
SAMs and aqueous buffer solutions. The 
results indicate that the organic interfaces 
prepared by the self-assembly of long-chain 
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alkanethiols onto gold are suitable model - 
systems for the study of protein adsorption 
at interfaces. 

We prepared the SAMs by the chernisorp- 
tion of alkanethiols from 0.25 mM solutions 
in ethanol or methanol onto thin (200 k 20 
nrn) gold films supported on silicon wafers 
(7). In SAM5 derived from o-substituted al- 
kane-l-thiols [R(CH2),SH, n r 10, where 
R is a small functional group], the molecules 
pack densely on the gold surface in a predom- 
inantly tram-extended conformation, with the 
axes of the polymethylene chains at an average 
cant of -30" from the surface normal (8). The 
internal domains of these monolayers are pseu- 
do-crystalline; the chain termini are less or- 
dered (9). One can control the interfacial prop- 
erties of these monolayers by changing the &I 
group, R. SAMs comprising mixtures of two 
or more components can be prepared by ad- 
sorption fi-om solutions containing mixtures of 
these components: the components of such 
"mixed SAMs" are not segregated into macro- 

Fig. 1. Schematic representation of the structures 
of mixed monolayers of HO(CH,),,SH and 
CH3(CH,) ,,SH (top), of Glc+(l,4) - Glc- 
p(1)-O(CH,),,SH and CH,(CH,),SH (mid- 
dle), and of HO(CH2CH,0),(CH,)l ,SH and 
CH,(CH,),,SH (bottom). The ethylene glycol 
chains in the lower structure are flexible but 
probably prefer a helical conformation when in 
contact with water (32). The areas of the hatched 
regions are roughly proportional to the cross- 
sectional areas of the polar tail groups. The scale 
bar is approximate and applies to all three illus- 
trations. 

scopic islands (10). This combination of a 
uniform substrate and the ability to control the 
composition-and to some degree the sauc- 
me-f the interface at the molecular scale 
have made SAMs excellent systems with which 
to study the physical-organic chemistry of or- 
ganic interfaces. 

We used five alkanethiols, R(CH2),,SH: 
R = HOCH,-, 1 (10); R = Glc-a(l,4)- 
Glc-P(1)-0-, Glc = glucose, 2 (11); R = 
HO(CH,CH,O),CH,, 3 (12); R = H-, 4 
(13); and R = CH,-, 5 (10). The SAMs de- 
rived from 1, 2, and 3 model three materials 
that resist the adsorption of proteins: hydrox- 
ylated polymers such as poly(hydroxyethy1 
methacrylate) (14), agarose (15), and polymers 
containing poly(ethy1ene oxide) (16), respec- 
tively. For each model system, we prepared a 
series of mixed SAMs (10) from a hydrophilic 
alkanethiol(17) ( l ,2 ,  or 3)  and a hydrophobic 

alkanethiol (5 with 1 and 3; 4 with 2). The 
structures of these mixed SAMs are shown 
schematically in Fig. 1. We calculated the mole 
fraction of hydrophilic ahethiolate in each 
mixed SAM, X, by normalizing the intensity of 
the O(h)  x-ray photoelectron peak obtained 
from the mixed SAM to that of a SAM con- 
taining only the hydrophilic component and by 
assuming that this normalized intensity is di- 
rectly proportional to the number of oxygen 
atoms in the SAM. In the case of SAMs formed 
from mixtures of 3 and 5, the intensity of the 
O ( h )  peak is linearly proportional to the ellip- 
sometric thickness of the SAM (12); this ob- 
servation is strong evidence that our assump- 
tion is valid for the other two cases. 

We examined the adsorption of five well- 
characterized proteins, ribonuclease A 
(RNase A), pyruvate kinase, fibrinogen, ly- 
sozyme, and chymotrypsinogen (18), on 

I . , .  I . , . , .  I I . . . . , . . . . , . . . . ,  

10 

-.HO(EG)&Hz ---- 
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Fig. 2. Adsorption of proteins to mixed SAMs varies monotonically with the composition of the SAM. 
The thickness, d, of the adsorbed film of RNase A (top), pyruvate kinase (middle), and fibrinogen 
(bottom) on mixed SAMs containing HO(CH,) , ,SH and CH3(CH,) ,,SH (diamonds, 
R = HOCH,), Glc+(l,4)-Gl~-p(l)-0(CH~)~~SH and CH3(CH,),SH (circles, R = Glc,O, 
Glc = glucose), or HO(CH,CH,O),(CH,),,SH and CH,(CH,),,SH (squares, R = HO(EG),CH,, 
EG = ethylene glycol, -OCH,CH,-) is plotted as a function of the composition (left) and wettability 
(right) of the SAM. The filled and hollow symbols represent data derived from two independent 
experiments. The values of d were determined by ellipsometry and represent the average of three 
measurements made at different positions on a single sample. The standard deviations of the observed 
values of d are no larger than the symbols representing the data. The values of X, the mole fraction of 
R(CH,),,S on the surface, were measured before protein adsorption. Each value is the intensity of the 
O(1s) x-ray photoelectron peak of the SAM, normalized to X ~ $ ~ 2 1 1 0 s  = 1 for a SAM containing only 
R(CH,),,S. The values of 0, are the maximum advancing contact a n g k  of water (10, 30) on the SAM 
before protein adsorption. The data are offset vertically for clarity; the dashed lines show the location 
of d = 0 A (no adsorbed protein) for each series of mixed SAMs. The solid curves organize the data 
visually but do not represent an attempt to model the data. 
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these mixed SAMs (19). The results for 
RNase, fibrinogen, and pyruvate kinase are 
summarized in Fig. 2 (20). We measured the 
thickness, <i, of the adsorbed protein film on 
each SAM by ellipsometry, treating the film 
as a homogeneous layer of uniform thick­
ness with a refractive index of 1.45 (21). 
Any difference between the real refractive 
index of the adsorbed protein and 1.45 
results in a systematic error in the calculated 
thickness but does not change the relative 
values or the conclusions. The calculated 
values of thickness are accurate to within 
«25% (22). 

The data in Fig. 2 point to several con­
clusions. (i) The system comprising proteins 
adsorbed on SAMs of alkanethiolates on 
gold generates reproducible data concerning 
the extent of protein adsorption. The stan­
dard deviations of measurements of d taken 
on several independently prepared samples 
are within the range of 1 to 4 A, near the 1 
to 2 A limit of ellipsometry. The N(l?) 
photoelectron signals from adsorbed films of 
chymotrypsinogen correlate well with the 
values of d determined by ellipsometry (23). 
This observation suggests that variability in 
the refractive indices of the adsorbed pro­
teins, which would cause nonuniform errors 
in the calculation oft/, are not important in 
this system, (ii) SAMs containing high con­
centrations of 3 prevent adsorption of the 
five proteins examined, including fibrino­
gen. SAMs containing high concentrations 
of 2 nearly eliminate the adsorption of fi­
brinogen and pyruvate kinase and prevent 
adsorption of the other proteins examined. 
(iii) The observed value of the thickness of 
the adsorbed protein layer on the hydropho­
bic, methyl-terminated surface (4 or 5; 
X = 0 in Fig. 2) corresponds approximately 
to that expected for a monolayer of native 
protein (24-27). Consistent with others' ob­
servations (28), multilayers of protein ap­
pear not to form, (iv) There is only a general 
correlation between the interfacial free ener­
gy of the SAM [as measured by cos 0a, the 
cosine of the maximum advancing contact 
angle of water on the SAM (29)] and d. 
Although within a set of SAMs derived from 
the same components more hydrophobic 
surfaces adsorb greater quantities of protein, 
the thickness of the adsorbed protein film at 
any given interfacial free energy differs for 
each hydrophilic component. For example, 
when 0a = 34°, proteins do not adsorb to 
SAMs containing H O ( C H 2 C H 2 0 ) 6 -
groups but do adsorb to SAMs containing 
Glc-a( l ,4)-Glc-0(l)-O- or H O C H 2 -
groups. The same effect is observed when 
the values of d for different proteins on 
SAMs of equal receding contact angle, 6r, 
are compared. 

From this limited set of data, it is prema-
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ture to infer mechanisms of adsorption of 
proteins at interfaces. The observation that 
adsorption increases as hydrophobicity in­
creases (for a given set of components) is 
expected and consistent with the idea that 
hydrophobic interactions are important in 
protein adsorption. The observation that 
H O ( C H 2 C H 2 0 ) 6 - groups are especially 
effective in preventing protein adsorption 
suggests that steric stabilization—a phe­
nomenon commonly used to explain the 
stability of colloidal suspensions in the pres­
ence of polymers (30)—is important in pre­
venting protein adsorption (31). The ex­
tent to which entropic repulsion (30) 
contributes to the steric stabilization is not 
clear and may vary with x- the steric re­
quirements of packing in the SAM should 
reduce the conformational entropy of the 
H O ( C H 2 C H 2 0 ) 6 - groups as their con­
centration in the SAM increases. We be­
lieve that SAMs are the best defined sys­
tems now available for examining the 
interactions of proteins and surfaces and 
that they will provide the means to test 
many of the current hypotheses regarding 
the mechanisms of these interactions. 
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Arginine-Mediated RNA Recognition: 
The Arginine Fork 

Short peptides that contain the basic region of the HW-1 Tat protein bind specifically 
to a bulged region in TAR RNA. A peptide that contained nine arginines (&) also 
bound specifically to TAR, and a mutant Tat protein that contained & was fully active 
for transactivation. In contrast, a peptide that contained nine lysines (K,) bound TAR 
poorly and the corresponding protein gave only marginal activity. By starting with the 
K, mutant and replacing lysine residues with arginines, a single arginine was identified 
that is required for specific binding and transactivation. Ethylation interference 
experiments suggest that this arginine contacts two adjacent phosphates at the RNA 
bulge. Model building suggests that the arginine q nibogens and the E nitrogen can 
form specific networks of hydrogen bonds with adjacent pairs of phosphates and that 
these arrangements are likely to occur near RNA loops and bulges and not within 
double-stranded A-form RNA. Thus, arginine side chains may be commonly used to 
recognize specific RNA structures. 

NA-PROTEIN INTERACTIONS ARE 

important for many regulatory pro- 
.cesses, but little is known about the 

details of sequence-specific recognition. 
From what is known, it appears that both 
RNA structure and nucleotide sequence 
function in recognition. The crystal struc- 
ture of the glu&inyl tRNA synthetase- 
tRNA complex (1) has shown that specific 
contacts are made between amino acid side 
chains and bases in non-base paired regions 
of the RNA. while studies of the R17 coat 
protein (2) have suggested that the overall 
three-dimensional RNA conformation con- 
tributes substantially to recognition. Re- 
cently, an arginine-rich RNA-binding motif 
has been identified in several RNA-binding 
proteins (3) ,  including the human immuno- 
deficiency virus (HIV) Tat protein. Peptides 
that contain this region of Tat bind specifi- 
cally to an RNA stem-loop structure named 
TAR (4, 5), which is located in the HIV 
long terminal repeat, and RNA binding is 
essential for Tat-dependent transcriptional 
activation (5). The overall charge density of 
the Tat peptides is important for binding, 
however, the amino acid sequence require- 
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ments are flexible; the sequence can be 
scrambled and still bind specifically to TAR 
(5). 

The basic RNA-binding region of Tat, 
RKKRRQRRR (residues 49 to 57), is nine 
amino acids long and contains a glutamine 
at position 54 that is not essential for bind- 
ing or activity (5). Because it is known that 
a high positive charge density is important 
for RNA binding, we synthesized (6) two 
peptides, R,, which contains a stretch of 
nine adjacent arginines (with a tyrosine at 
the NH,-terminus and an alanine at the 
COOH-terminus), and K,, which contains 
a stretch of nine lysines (and a surrounding 
tyrosine and alanine), and measured their 
binding to TAR RNA (7). The R, peptide 
bound to TAR RNA with the same finity 
as the wild-type Tat peptide and with ten- 
fold higher &nity than K, (Fig. 1). The 
specificity of R, binding to TAR was iden- 
tical to the wild-type peptide, whereas K, 
binding was nonspecific (7). Because RNA 
binding of Tat peptides correlates with Tat's 
function as a trascriptional activator ( 4 ,  
we asked whether R, or K, could function 
in the context of the intact protein. The 
nine- amino acid basic region of Tat was 
replaced by R, or K, in a Tat expression 
vector, and activation of HIV-1 transcrip- 
tion by the chimeric Tat proteins was tested 
in transient transfection assays (8). The &- 
containing protein gave wild-type transacti- 
vation activity and was 100-fold more active 
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