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Identification of a Peptide Specific for Aplysia Sensory
Neurons by PCR-Based Differential Screening

JEAN-FRANQOIS BRUNET, ELI SHAPIRO, SHARON A. FOSTER,

Eric R. KANDEL, YUICHI Imo

In order to identify genes specific for the sensory neurons of Aplysia, a miniaturized
differential screening method based on the polymerase chain reaction and applicable to
small amounts of tissue was used. One messenger RNA was isolated that is expressed

in every mechan

sensory cluster of the Aplysia central nervous system. This

messenger RNA encodes a peptide that seems to function as an inhibitory cotransmit-
ter. The peptide sclectively inhibits certain postsynaptic cells but not others and
thereby allows the sensory neurons to achieve target-specific synaptic actions.

ACH OF THE TWO SYMMETRICAL
Epleural ganglia of Aplysia californica

contains a homogeneous cluster of
about 200 medium-sized neurons, which are
primary mechanoreceptors and which have
receptive fields that include the tail, the foot,
the parapodium, and the body walls of the
animal (7). These cells make up the afferent
pathway of the monosynaptic component of
the tail withdrawal reflex, which, like the gill
and siphon withdrawal reflex (2), shows
both short-term and long-term behavioral
plasticity (3). The two homogeneous clus-
ters have been useful for the biochemical
study of presynaptic changes underlying
short-term and long-term facilitation of the
sensory to motor cell synapse (4). To ex-
plore further the characteristics of this syn-
apse, we have sought to identify molecules
specific to the sensory neurons. As a first
step, we looked for transcripts differentially
expressed between the pleural sensory cells
and another identified neuron R2, the exci-
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tatory motor neuron to the mucous cells in
the foot (5). Toward this end we devised a
method for differential screening of cDNA
libraries which matches the best docu-
mented sensitivity of conventional methods,
yet requires only a small amount of tissue
such as single neurons or clusters of cells.

We amplified whole populatons of
cDNA in vitro by using the polymerase
chain reaction (PCR) methodology (6). The
first strand of cDNA was synthesized from
total RNA by priming with an oligo dT-
containing primer-adapter (T primer). After
removal of the T primer, a tail of dC was
added and the second strand synthesis was
primed with an oligo dG—containing prim-
er-adapter (G primer). This second strand,
now flanked with two distinct and known
sequences, was amplified by PCR with the T
and G primers (7). A whole population of
heterogeneous sequences can thus be co-
amplified. This in vitro amplified cDNA is
inserted into a vector to generate a library
(8). In addition, the in vitro amplified
cDNA can also be labeled and used as a total
cDNA probe (9). Thus, we could overcome
the limitation of starting material for both
library and probe.

We used this technique to isolate genes
differentially expressed between pleural sen-
sory neuron clusters (positive) and the mo-
tor neuron R2 (negative). In the first round
of differential screening, we selected nine
clones (SCR2-A to SCR2-I) that hybridized
with the sensory neuron cluster probe but
not with the R2 probe. Cross-hybridization
revealed that they were all copies from a
single mRNA species, hereafter designated
PSC1 (pleural sensory cluster 1). We next
performed a Northern blot on RNA derived
from two pleural sensory clusters (10) and
obtained a band of 0.7 kb using SCR2-I as
a probe. No detectable signal was apparent
on an equivalent amount of RNA derived
from R2, thus verifying the differental
expression of PSC1 (Fig. 1). When we used
SCR2-I as a probe on two other indepen-
dently generated libraries, we assessed the
frequency of this clone at about 1 to 3% of
the library. Moreover, this method allowed
us to detect much rarer messages at an
abundance of 0.03%, which is 100-fold
below that of PSC1.

Fig. 1. Differential expression

of PSC-1 in sensory cells and § 3
the motoneuron R2. (Upper

panel) The insert from clone

SCR2-I was used as a probe on .
1.5 ug each of total RNA from "
R2 (R2), sensory clusters (SC),

and the central nervous system

(CNS). The hybridization was

in 5% standard saline citrate ! 4
(SSC), 50% formamide 5x e
Denhardt solution, 0.1% SDS, and salmon sperm
DNA (100 pg/ml). The blot was washed for 20
min each in 2x SSC plus 0.1% SDS and 0.2x
SSC plus 0.1% SDS. It was exposed for 12 hours
at —70°C with an intensifying screen. (Lower
panel) Same blot as in the upper panel rehybrid-
ized with cDNA encoding F4, a ubiquitous poly-
adenylated ribosomal RNA. Exposed for 3 hours.

CNS
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To assess the overall distribution of PSC1

antisense probe from the SCR2-37 plasmid  ganglion of the Aplysia central nervous sys-
throughout the central nervous system of (another PSCI clone) and used it for in situ

tem. The antisense probe labeled not only

Aplysia, we synthesized a 33S-labeled RNA  hybridization (11) on serial sections of each  the pleural sensory cluster but also nine

Fig. 2. (A) Distribution of PSC] transcript in the central nervous system of
Aplysia. An antisense riboprobe was synthesized from clone SCR2-37 in the
presence of [**S]JUTP and hybridized to 10-um-thick sections of Aplysia
central nervous system ganglia. (A,) Buccal ganglia. (A;) Cercbral ganglion.
(A3) Left and right pleural and pedal ganglion. (A,) Abdominal ganglion;
the right part of the ganglion is on the left. The clustering of the putative RF
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cells is revealed by serial sections of the ganglion (not shown). (B)
Distribution of PSC1 immunoreactivity by immunofluorescence in two
adjacent sections of the pleural and pedal ganglion, which show pleural

cluster cells and bundles of their processes leading to the
ganglion. (B;) Rabbit antiserum to synthetic peptide P1 at 1000-fold
dilution. (B,) Preimmune serum at 1000-fold dilution.

REPORTS 857



clusters of cells (Fig. 2A). These cells corre-
sponded in size and location to all the
mechanosensitive sensory neuron clusters
previously identified physiologically in the
Aplysia central nervous system: the two
buccal clusters receiving information from
the feeding organs (12), the two cerebral
clusters (J and K) innervating the skin of the
head (13); the two pleural sensory clusters
innervating the tail, body wall, and parapo-
dia (1); and the abdominal RE, LE, and RF
clusters innervating the mantle shelf, siphon,
and gill (14). Rostral to the RE and RF
clusters, a few extra cells of identical size to
the clustered ones were found to hybridize
with an equal intensity (14). No other cells
gave a signal above background, nor did the
sense probe. The identity of the pleural
sensory cells was checked by first dissecting
the easily recognizable and homogeneous
cluster from a ganglion and submitting it
separately to in situ hybridization: each cell
hybridized strongly, whereas none did in the
rest of the pleural-pedal complex. Thus,
PSC1 mRNA seems to be specific to the
mechanosensory neurons of the central ner-
vous system.

The transcripts were not restricted to the
cell body but were distributed along the
length of the axon (Fig. 2A;).

Within the sensory neurons, the sequence

of SCR2-37 (15) was 588 nucleotides long
and contained a hydrophobic NH,-terminal
region that was 32 residues long and that
could correspond to a leader peptide. There
was a potential N-linked glycosylation site at
position 31. There wcrc several arginjnc
residues (Arg*'-Arg*?, Arg*®, Arg*’,
Arg*®) and a Lys56-Arg57 pair prcccdcd by a
glycine. These features, often found in
propeptides, usually lead to cleavage by
trypsin-like endopeptidases, removal of the
COOH-terminal basic residue by a carboxy-
peptidase B-like activity, and amidation at
the glycine residue.

Using the inferred amino acid sequence of
the open reading frame, we generated an
antibody against a peptide (P1) extending
from Phe** to Phe®*-amide. There was
immunoreactivity to P1 in all sensory clus-
ters, in agreement with the result of in situ
hybridization (16). Immunoreactivity was
observed not only in the cell bodies and the
processes, but also at the varicosities charac-
teristic of the presynaptic terminals of the
sensory neurons (Fig. 2B).

To identify the structure of the product of
the PSC1 mRNA, we purified the endoge-
nous peptide by immunoprecipitation with
the antiserum to P1 and then by reversed-
phase high-pressure liquid chromatography
(HPLC) (17). The single major peak yielded
a mixture of two peptide sequences with a
common COOH-terminal, compatible with
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an equimolar mixture of peptide A
(A**RYRVGYMF®*-NH,) and peptide B
(T**RSKNNVPRRFPRARYRVGYMF5%-
NH,) (18). It is likely that the canonic
sequence Gly®S-Lys®®-Arg®” serves as a
COOH-terminal cleavage site for both pep-
tides. Synthetic versions of these two ami-
dated peptides comigrated with the endog-
enous ones. We verified that peptide A was
not a degradation product generated during
the purification process (19).

We next tested whether peptide A had
pharmacological activity in the pedal ganglia
(20). Although the peptide did not produce
effects on most follower cells, it reliably
produced inhibition on some (Fig. 3A). A
large follower neuron in the pedal ganglion
responded to a single action potential in a
pleural sensory neuron with a biphasic syn-
aptic potential, excitation followed by inhi-
bition (Fig. 3A,). This cell also responded
to application of peptide A with hyperpolar-
ization (Fig. 3A,). Similar biphasic respons-
es were seen in some follower cells to the LE
sensory neurons in the abdominal ganglion.
In four experiments, such cells were also
tested with the peptide and responded with
hyperpolarization. In cells that responded to
the peptide, a synaptic hyperpolarization
was often only seen after stimulation with

Fig. 3. Electrophysiological o
responses to the stimulation 1
of sensory neurons and the
application of peptide A. FN
Experiments were  per-
formed as in (20). (A,) Re-
sponse of a follower neuron
(FN) to application of pep-
tide A. Voltage recording in
NSW plus 60 mM Ca** 2

from a pleural sensory cell EN -5

and an identified follower
cell in the pedal ganglion
located on the pedal pleural
commissure. The
neuron hyperpolarizes after
application of peptide A (3
wl of 100 uM peptide A in
puffer pipette, applied with
a 3-s pressure puff (peptide). C
Similar results were ob-
served in three experiments.
(A;) Response of the same
cell as in (A;) to sensory
neuron stimulation in NSW.
The cell responds to a single
spike in pleural sensory neu-
ron (SN) with a biphasic

Pepﬁde—u—J
10s

follower SN I

J40 mV
100 ms

trains of action potentials and not with
single spikes (Fig. 3B). By contrast, the
identified motor neuron L7 and a number of
unidentified followers only had excitatory
synaptic responses. These cells failed to re-
spond to the peptide.

Thus, this peptide, which we call sen-
sorin-A, produces actions that are consistent
with it being an inhibitory co-transmitter
(21) that acts in conjunction with the fast
excitatory transmitter released by sensory
neurons. Whereas the fast excitatory trans-
mitter affects all follower cells, the peptide
inhibits only some, and it is in those follow-
er cells that sensory neurons produce inhi-
bition (Fig. 3C). Although we have not yet
established that sensorin-A is released from
the sensory neuron, our data suggest that
the sensory neuron can have different effects
on different follower neurons by means of
sensorin-A release, presumably because only
certain follower cells have an adequate den-
sity of receptors for the inhibitory peptide
(Fig. 3C).

The technique we used to clone PSC1
extends the applicability of differential
screening approaches to regions of the ner-
vous system, where only a small amount of
starting material is available. This method
allowed us to clone a fairly abundant

B
FN2 \__-,.—l\-i-;,‘w

SN—l,———v 20 mV

400 ms

2 M\m
FN1 |10 mV
N2 v"lh"bkw" I10 mV

F
SN‘-W“"M‘*——'—_PO mv
2s

10 mV

10 mV

response (EN). Application of peptide to this cell also causcd it to hyperpolarize. (B) Response of cells
in the abdominal ganglion to stimulation of LE sensory neurons. (B;) An LE sensory neuron was
stimulated intracellularly to produce one spike (SN) (the spike amplitude was clipped by the frequency
response of the chart recorder). One follower cell, the ink motor cell L14 (FN1), responds with a pure
excitatory potential, while a second follower cell (unidentified) (FN2) responds with a biphasic
excitatory-inhibitory response. (2) The same sensory neuron as in (B, ) stimulated to fire a train of action
potentials (10 Hz for 1 s). L14 displays a small slow inhibitory response (FN1), whereas the other
follower cell displays a larger hyperpolarization (EN2). (C) Diagram of one possible mechanism of
follower cell response specificity. Peptide A may be released as a cotransmitter from all branches of
stimulated sensory neurons (SN). The effectiveness of the peptide in producing synaptic inhibition is
regulated by the density of receptors to the peptide on specific follower neurons.
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mRNA, PSCI, that is a specific marker of
mechanoreceptors in Aplysia. This message
codes for a peptide, sensorin-A, that seems
to function as an inhibitory co-transmitter
on a subpopulation of follower cells. In
addition to its physiological role, this spe-
cific and abundant RNA and its peptide
should also prove useful for tracing the
origins and developmental fate of various
classes of sensory neurons
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