
Geometry, Topology, and Universality of Random 
Surfaces 

Previous simulations of a self-avoiding, closed random surface with restricted topology 
(without handles) on a three-dimensional lattice have shown that its behavior on long 
length scales is consistent with that of a branched-polymer. I t  is shown analytically that 
such a surface with an unrestricted number of handles has a qualitatively different 
geometry and therefore is in a different universality class. The effect of a net external 
pressure is to  suppress the handles and collapse the surface into a branched polymer- 
like configuration. Topology is thus shown to be a key factor in determining the 
universality class of the system. 

R ANDOM SURFACES PLAY AN IMPOR- 

tant role in diverse areas such as 
biology (red blood cells, the lungs), 

(1) material science (crystal growth, micro- 
emulsions, aerogels) (I) ,  and high energy 
physics (quark confinement, string theories) 
(2). For instance, a three-dimensional vesicle 
can be modeled as a self-avoiding, closed 
random surface with otherwise arbitrary to- 
pology (an unrestricted number of handles) 
enclosing a connected volume (3). The to- 
pology of a surface may be characterized in 
terms of the Euler characteristic x = 1 / 2 ~  J 
ds K where the integral is over the surface 
and K is the Gaussian curvature (3). x is 
related to the number of handles H by x = 

2 - 2H and is a topological invariant under 
deformation of the surface (Fig. 1). The 
geometry of a vesicle may be described by 
two exponents d, and d, defined by S - Rds 
and V - Rdv where S, V, and R are the 
surface area, the volume enclosed by the 
vesicle, and the radius of gyration (the aver- 
age extension) of the vesicle surface, respec- 
tively. 

The universality hypothesis is a corner- 
stone in classifying the critical behavior of 
diverse systems. It states that a few key 
attributes such as the spatial dimensionality 
and the symmetry of the ordering uniquely 
determine the exponents characterizing the 
system. For example, seemingly diverse sys- 
tems such as a fluid at its critical point, a 

three-dimensional Ising ferromagnet at its 
Curie point, a binary alloy that is about to 
order, and a binary fluid mixture that is 
about to undergo phase separation all have 
the same critical exponents characterizing 
their long length scale behavior and are in 
the same universality class. We show here, 
that the topology of the surface is such an 
attribute. 

We consider a discretized version of the 
model on a cubic lattice. The surfaces are 
constructed by taking elementary plaquettes 
(squares) and gluing them together such 
that each edge is shared by exactly two 
plaquettes. In this case x = c; - c + c A, 
where cb, ci, and cl, are the number of 
vertices, edges, and faces on the vesicle 
surface, respectively. The area S = cl, and 
the enclosed volume V is the number of 
cubes inside the closed surface. The lattice 
constant is taken to be a unit length. Recent 
Monte Carlo simulations (4, 5) with a H = 
0 constraint have indicated that d, = d, = 2 
? 0.08. These exponents and the entropy 
exponent characterizing the number of sur- 
faces of a given area are in excellent agree- 
ment with the corresponding exponents of 
branched polymers (6). This result suggests 
an entropic mechanism that favors tube-like 
and ramified objects made up of elementary 
cubes (Fig. 2).  Further evidence that the H 
= 0 model is in the branched polymer 
universality class is provided by analytic and 
numerical work (7)--on turning off the self 

> ,  u 

avoidance condition, the geometry of the 
J. R. Banavar and A. Maritan, Depament of Physics and vesicle is found to be identical to that of the Materials Research Laboratory, The Pennsylvania State 
University, University Park, PA 16802. free branched polymer. It is commonly be- 
A. Stella, Dipartimento di Fisica, Universita di Bologna, lieved and probably correct that models with 
I40126 Bologna, Italy, and Centro Interuniversitario 
Struttura della Materia, Universita di Padova, Padova a H 5 H, constraint (H, is an arbitrary 
35131, Italy. ~ositive number) are also in the same uni- 

*On leave of absence from Dipartimento di Fisica dell' versality In this report, we demon- 
Universiti di Bari and Sezione INFN di Bari, Bari, Italy. strate the striking role played by topology in 

Fig. 1. (A) Schematic sketch of a sphere with two 
handles. Note that an elastic deformation of the 
surface leaves the number of handles unchanged. 
(6) A donut is equivalent to a sphere with one 
handle. 

determining the universality class. In partic- 
ular, we show analytically that the model 
with unrestricted H is in a different univer- 
sality class than the constrained H model. 

In the grand canonical ensemble, the gen- 
erating function is given by 

where the sum is over the set of three- 
dimensional vesicles with the constraint that 
a given plaquette belongs to the surface. K is 
the fugacity associated with the surface area 
and p denotes the pressure difference be- 
tween the inside and outside of the vesicle in 
units of k,T. The sum in Eq. 1 is divergent 
for any K > 0 for p > 0 since a subset of the 

Fig. 2. Schematic sketch of a tubular configura- 
tion. The inset shows the microscopic details of 
cubes glued together such that each edge is shared 
by at most three cubes. 
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Fig. 3. Schematic phase diagram in the K - p 
plane. The * indicates fixed points, the arrows the 
renormalization group flows and the critical line 
separates regions where the generating function 
G(K, j) is finite and infinity. 

vesicles have V a S3I2. Thus we restrict 
ourselves to the deflated regime, that is j 5 0 
where a non-zero critical hgacity K&) exists 
separating finite and infinite values of G (Fig. 
3). We now show that the singularity struc- 
ture for Eq. 1 is identical to that of a gauge 
model defined by a reduced Hamiltonian 

where P and C denotes a plaquette and 
cube, respectively and dP and aC their 
boundaries, s, is an n component vector on 
the bonds having modulus 6z and up = 
r 1 is an Ising variable residing on a plaque- 
tte. The Hamiltonian Eq. 2 is invariant 
under local gauge transformation s, + E, s,, 
up + IIb,,, &,up with the bond variable E, 

= * 1. We will focus on the n - 0 limit. As 
u  + m ,  the second term is maximized by the 
choice up = 1 modulo a gauge transforma- 
tion. In this limit Eq. 2 reduces to a model 
for a closed, self-avoiding surface with an 
unrestricted number of handles and is a 
generalization of the well-known de Gennes 
self-avoiding walk model (8). This limit has 
been analyzed in detail by Maritan and Stella 
(9). They find that the radius of gyration R 
and the correlation length 5 have the same 
singular behavior, where 5 is defined in 
terms of the plaquette-plaquette correlation 
function. They also show that the partition 
function Z &d the generating function G 
are related by 

a I n Z ( K ,  u  = m) 
lim K - 

n - o  aK n N  

where N is the total number of sites of the 
lattice. It is straightforward to extend their 
analysis to arbitrary, positive, u by using 
earlier results of Wegner (10) and Kadanoff 
(1 1). Specifically, the partition function is 

evaluated by first tracing over the s,'s and 
then over the up's. The former leads to 
closed surfaces denoted by r except that 
there is an additional contribution II up. Par 
We find that 

a ~n Z(K, U )  
lim K - . ,o aK nN 

= 3 K' + G(K; j = In tanh u )  (4) 

The equivalence between Eq. 1 and Eq. 2 
allows us to study the vesicle problem by 
analyzing the gauge model. 

We envisage carrying out a decimation of 
the gauge variables and an unspecified 
renormalization group scheme on the spin 
variables. The renormalization group analy- 
sis of Eq. 2 simplifies dramatically for the u 
renormalization, because there is no K con- 
tribution in the n + 0 limit. Indeed, the K 
contribution involves closed surfaces of s, 
and is of order n. The u  renorrnalization can 
therefore be carried out exactly by consider- 
ing just the second term on the rhs of Eq. 2. 
Extending the analysis of Kadanoff (1 1) to 
three dimensions, we find that decimating 
with a scale factor b, 

Figure 3 shows a phase diagram with the 
renormalization group flows. There are two 
fixed points of p, p = 0, and p = - m . The 
renormalization group flows are toward the 
p = - m  fixed point as long as the external 
pressure exceeds the internal pressure. This 
corresponds to the magnitude of this pres- 
sure difference growing as the vesicle is 
considered at larger length scales. With Eq. 
5, a crossover scaling analysis for the radius 
of gyration of the surface R yields for an 
arbitrary scale factor b, R(6K, p) = 

~ R ( ~ ~ s G K ,  b3 j )  where 6K = K - Kc@ = 0). 
Setting 6K = 0, R(0, p) = bR(0, b36) - 
- 
p-lI3. Sincep is conjugate to the volume of 
the vesicle (inversely proportional to the 
volume of the vesicle), at the unstable fixed 
point p = 0 the volume V scales as R~ 
indicating that d, = 3. This result (while 
intuitively pleasing) is at odds with the d, = 
2 result found for vesicles with a restricted 
number of handles (4, 5 ) .  Thus the univer- 
sality class of vesicles depends on the topo- 
logical characteristics. 

It is important to note that different ex- 
ponents would be obtained depending on 
whether the vesicles are studied in a micro- 
canonical ensemble holding the surface area 
or the volume enclosed constant. The for- 
mer case should yield d, = 3, whereas the 
latter would be characterized by d, = 2 
whenp = 0. The simulations (4, 5) yielding 
d, = 2 correspond to the former situation 
but with no handles. 

We alert the reader that our analysis has 
been carried out in the n + 0 limit rather 
than first treating arbitrary n and then letting 
n + 0. It turns out that all approximate 
renormalization group schemes involving a 
finite number of couplings validate the cor- 
rectness of this approach. Further evidence 
for its validity is provided by a recent anal- 
ysis (12) that used a similar approach of the 
behavior of two-dimensional vesicles in the 
deflated regime, for which excellent agree- 
ment has been found with the previous work 
of Fisher and co-workers (13). 

At j = 0, the elucidation of d, remains a 
challenge. The condition d, = 3 would 
correspond to a space-filling surface while d, 
= 2 could represent a flat surface. Earlier 
approximate work based on the Flory ap- 
proach (14) and the intersection of a self- 
avoiding surface with a plane (15) have lead 
to estimates of d, = 713. 

We now turn to some exact inequalities 
which provide physical insight into the role 
played by topology on the vesicle geometry. 
These inequalities may be derived by using 
the earlier definition of x = c 4 - c + c and 
- c, + c, - c, + c, = x/2, where c3 (= V), 
c,, c,, and c, are the total number of cubes, 
plaquettes, edges, and vertices in the vesicle. 
Combining these two equalities, after some 
manipulations, we find c, = c2'/4 + ( H  - 
1)/2 + cli - c,' where the superscript i refers 
to an internal (not on the surface) edge or 
vertex. Since c,' 2 cot, 

with the equality holding only when c,' = c,' 
= 0, that is, for branched or tubular config- 
urations constructed by gluing cubes to- 
gether such that each edge is shared by at 
most three cubes (Fig. 2). Since the 
branched polymer configurations (BP) are a 
subset of all allowed configurations and p I 
0, from Eqs. 6 and 1 we find 

3 

Thus Kc$) - e d 4  as p - 4. In this limit, 
(V) - (S)/4 indicating that the branched 
polymer configurations are dominant in the 
deflated regime. Further, the number of 
handles H are coupled top .  As p - 4 ,  for 
K < Kc@) assuming that there is only one 
transition, we can show exactly that 

A plausible scenario emerges from the 
above results: the entropy gained by the 

SCIENCE, VOL. 252 



presence of handles is more significant when 
dv = 3 compared to dv = 2. The effect of a 
deflating pressure is to collapse the vesicle, 
thereby reducing d, from 3 to 2. In this 
deflated regime, it does not pay to continue 
having the handles. The minimization of the 
volume accompanied by the divergence of 
the average surface area as one approaches 
the critical line favors the breaking up of 
handles into simpler topologies. In the re- 
stricted topology case, the handles are ex- 
cluded or constrained. I t  is intriguing that 
this restriction plays a role similar to that of 
a deflating pressure leading to the collapsed 
limit. Our results suggest that even for a 
fluid membrane, in the absence of a pressure 
imbalance, the universality class map depend 
on whether there are restrictions on the 
number of handles or not. 

Why should vesicles with unrestricted 
handles be fatter (d, = 3) than those with 
restrictions? A possible mechanism for gain- 
ing entropy compared to the tubular config- 
uration of Fig. 2 could be to have a prolif- 
eration of fat donut-like handles with very 
small holes (the baker's nightmare), the 
small holes can then be placed in many 
locations leading to a large entropy. 

The difference between surfaces with re- 
stricted and unrestricted handles is further 
underscored by the fact that in the absence 
of self-avoidance and any interaction, the 
former remains well defined whereas the 
latter is characterized by an entropy that is 
not extensive (16) and is therefore ill-defined 
as a statistical mechanics model. The self- 
av~idance interaction is usually irrelevant 
above the upper critical dimension. In the 
case of unrestricted handles, this probably is 
not the case since the model needs a regula- 
tor to be well defined. 
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Ultradeep ( > 300 Kilometers) Ultramafic Xenoliths: 
Petrological Evidence from the Transition Zone 

The seismologically delineated transition zone, at depths between 400 and 670 
kilometers, is a fundamental discontinuity in the earth that separates the upper mantle 
from the lower mantle. Xenoliths from within o r  close to  the transition zone are 
dominated by pyropic garnet and associated pyroxene o r  mineralogically heteroge- 
neous garnet lherzolite. These xenoliths show evidence for the high-pressure (90 t o  
120 kilobars) transformation of pyroxene t o  a solid solution of pyroxene in garnet 
(majorite) and silicon in octahedral coordination; low-pressure (less than 8 0  kilobars) 
exsolution of clinopyroxene or orthopyroxene from the original majorite is preserved. 
Although mineral modes and rock proportions below the transition zone and the 
relative amount of eclogite present cannot be accurately assessed from the xenoliths, it  
is likely that both majorite and p-spinel help produce the observed seismic gradient of 
the transition zone. 

w HETHER THE DISCONTINUITY AT 

a depth of 400 km reflects an 
isochemical phase change from 

olivine to P-spinel (model 1) or a chemical 
change related to pyroxene dissolution in 
garnet (model 2) is controversial; a related 
issue is whether the mantle is homogeneous 
(1) or is stratified as a result of the transfor- 
mation of peridotite at a depth of 400 km 
into piclogite [olivine eclogite (2, 3), model 
21. Because of the lack of natural samples, 
mineral assemblages and the mantle compo- 
sition between depths of 200 km and the 
transition zone at 400 to 670 krn have 
previously been indirectly inferred either 
from comparisons of elastic moduli of sili- 
cates and oxides with predictions from seis- 
mic velocity data or from results of high- 
pressure experimental investigations (4-7). 
Recently, however, deep mantle xenoliths 
have been identified from the vicinity of this 
discontinuity ( 8 ) .  These rocks were trans- 
ported to the crust by an eruptive kimberlite 
at Jagersfontein, located close to the south- 
east edge of the IZaapvaal craton in South 
Africa. In this report we describe two addi- 
tional samples from this pipe that help to 
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characterize the relation between pyroxene 
and garnet and the compositional variation 
of this part of the mantle. 

The mantle xenoliths that we described 
earlier from this kimberlite contain a close 
association of ultramafic pyrope-rich garnet 
[69 to 73% pyrope (on a mole basis), 15 to 
20% almandine, and 11 to 12% grossular] 
substituted by Cr (up to 2% by weight 
Cr,O,) and ternary clinopyroxene (20% 
jadeite, 74% diopside, and 6% enstatite). The 
clinopyroxene forms either oriented < 11 1 > 
rods in the garnet host or is present as discrete 
crystals attached to garnet in a cuspate and 
sealed grain-boundary contact. Both textural 
types of pyroxene exsolved from garnet as a 
result of pressure release at a depth of 100 to 
150 krn from the original depth of 300 to 
400 krn. When the clinopyroxene component 
is recombined with the host garnets' compo- 
sition, a garnet with excess Si is produced; the 
Si/N atomic ratio of these garnets is similar to 
that of garnets in diamond inclusions from 
the Jagersfontein ( 9 )  and Monastary (10) 
diamond mines in South Africa and Sao Luiz 
in Brazil (1 1). This excess Si is in octahedral 
coordination (SiV'), is associated with an 
AIV1 deficit (unbalanced by Cr and Ti), and is 
typical of the chemical signature of a pyrox- 
ene component dissolved in the garnet struc- 
ture (12). 

We have processed 324 samples (mostly in 
the range 0.5 to 3 cm in diameter) from 
Jagersfontein, of which about 10% contain 
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