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The Shapes and Sizes of Closed, Pressurized 
Random Walks 

Two-dimensional cell-like membranes acted on by osmotic pressure differentials are 
represented by closed, unrestricted random walks. The treatment omits excluded- 
volume effects, and the pressure that is imposed thus favors an oriented area, so that 
the shriveled configuration of a vesicle with excess external pressure is inaccessible in 
this model. Nevertheless, the approach has the decided advantage of yielding analytic 
expressions in a complete statistical analysis. Results are presented for the average 
square of the radius of gyration, the asphericity, and the probability distribution of the 
principal components of the radius of gyration tensor. The analysis is done in both the 
constant-pressure and constant-area ensembles. 

T WO-DIMENSIONAL VESICLES, AS 

modeled by Leibler and colleagues 
(1 ) , consist of closed, self-avoiding 

chains that encircle a two-dimensional vol- 
ume. If one introduces a pressure differential 
between the enclosed volume and the region 
surrounding the vesicle, one has a model for 
cell-like structures subject to osmotic forces. 
Numerical studies reveal the existence of 
three different regimes of vesicle conforma- 
tions and a catastrophic transition as the 
difference between the internal and the ex- 
ternal pressure is varied (2, 3). When this 
difference is sufficiently large and negative, 
the vesicles become severely deflated. The 
walls of the shriveled vesicles resemble tree- 
like structures. In fact, the walls appear to be 
governed by the statistics of branched, ex- 
cluded-volume polymers. When the pressure 
differential is close to zero, the vesicles are 
flaccid. The scaling laws governing the wall 
conformations are those of simple, closed, 
self-avoiding walks. As the pressure differ- 
ential is increased to a sizable positive value, 
the vesicles inflate and increasingly resemble 
two-dimensional inflated balloons. At a crit- 
ical value of the pressure differential, the 
vesicles share the fate of the overinflated 
balloon and explode, unless the walls are 
made of extremely rigid segments. These 
studies (1-3) also have investigated the 
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shape distributions and scaling properties of 
vesicles and their walls in these three re- 
gimes. 

We now report the results of calculations 
of a number of properties of two-dimen- 
sional vesicles with non-self-avoiding walls. 
We have discovered that removing the ex- 
cluded-area restriction transforms the pres- 
surized vesicle system from a model whose 
specific properties can only be obtained nu- 
merically to one that is completely solvable. 
We have obtained explicit expressions for 
various important properties, including the 
full combined distribution function for the 
principal radii of gyration of vesicles under 
the influence of excess internal pressure. We 
also have obtained results for vesicle sizes 
and shapes in the conjugate constant-area 
ensemble. 

We investigated the scaling properties of 
the two-dimensional vesicle with non-self- 
avoiding walls and found that the scaling 
forms proposed by Leibler et al. (1) hold in 
the corresponding regimes of our simpler 
model. Although allowing vesicle walls to 
intersect ignores a fundamental physical re- 
striction on the allowed conformations of 
real membranes, we hold that the extreme 
tractability of this model more than offsets 
the disadvantages resulting from the tenu- 
ousness of its connection to real, three- 
dimensional vesicles. In addition, we antici- 
pate that the results reported here will be the 
zeroth-order results on which one can hope 
to improve with the use of the powerful new 
techniques that have been applied to various 
two-dimensional systems. 

The vesicles we studied have walls consist- 
ing of N linear links, or displacements, qi (1  
5 i 5 N). The walls are closed, so that Zqi 
= 0. The links are, in the absence of a 
pressure differential, governed by a simple 
Gaussian distribution in that the probability 
that the link q, has a length between 7 and 
q + dq is proportional to e ~ p ( - ~ ~ ) d ~  The 
influence of the pressure differential p is felt 
through the following additional contribu- 
tion to the probability distribution: 

where A is the oriented area of the closed 
wall; this is to say that A is given by the 
integral i$ (y  dx - x dy) taken along the 
wall in the direction of increasing index i. 
Notice that if the vesicle is flipped over the 
area defined in this way changes sign. A 
vesicle with a higher pressure inside than 
outside will tend to inflate (in a particular 
sense). A vesicle with a negative pressure 
differential will inflate in the opposite sense. 
There is no deflated phase. Furthermore, 
"figure eight" and more complicated config- 
urations in which the vesicle walls cross will 
occur. Thus in this model a pressure differ- 
ential has the effect of discouraging "wrong" 
sense configurations. 

The distribution function governing indi- 
vidual link lengths is also taken to be Gaus- 
sian. In this respect, the statistics of the 
bounding surface are those of a closed, 

Fig. 1 .  Probability distribution scaling function, 
~ ( R ~ N - ~ " ,  x2') (see Eq. ll), plotted against R2 
for (curve A) p  p,, (curve B )  p  = pJ2, and 
(curve C) p  = 0 . 9 9 9 ~ ~ .  The vertical scale is 
enhanced by a factor of 200 in the case of curve C. 
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random-flight chain. The key to the solution 
of the vesicle problem is the recognition that 
the pressure differential as specified by Eq. 1 
leaves the Gaussian form unaltered. This 
result follows because of the bilinear form of 
the overall distribution 

where q(i) isa step function [cp(i) = 1 when 
i r 0 and -1 when i < 01 and A is the 
average length of a link in the absence of 
pressure. This Gaussian form is easily diag- 
onalized on choosing a new basis set for the 
qi variables. We write 

and 
7 

where k = 2rrk'/N, k' being an integer. 
Because the wall around the vesicle is closed, 
both components of the displacements are 
constrained to add up to zero, and thus A, 
=A; = 0. In terms of the amplitudes on the 
right side of Eqs. 3 and 4;the probability 
distribution is given by 
P(A, A' ,  B, B') = 

B~A; - B, 
- p x  k k ' (5)  

The shapes assumed by the vesicle will be 
described in terms of the eigenvalues of the 
2 x 2 gyration tensor T (4, 5 ) .  The radius of 
gyration tensor, which quantifies the dis- 
tances that an object extends in various 
directions about its center of mass, is per- 
haps most familiar in the context of rigid 
body rotation. It is central to the calculation 
of the moments of inertia of a nonspherical 
object. In terms ofA, and B, variables it can 
be shown that, in the limit of large N (6 ) ,  

We can now proceed to calculate various 
key quantities. In the remainder of this 
discussion we quote some of the results that 
have been obtained up to now. A more 
complete discussion of this work will be 
presented (6). From the above equations, 
we have been able to obtain analytlc expres- 
sions for the average radius of gyration and 
the asphericity parameter of vesicles, the 
distribution function of its mean radius of 
gyration, and a closed-form expression for 
the full distribution of the principal radii of 
gyration of the vesicle with excess internal 
pressure. 

Because the last result contains all the 
other information listed above, it is present- 
ed first. In two dimensions, an exact formula 
for the distribution of the principal radii of 
gyration is 

- (T, - T,)~ - 4 ~ & ]  

P(A,Af ,  B, B') d[A] . . . d[B1] (9) 

where the integral is over all the Fourier 
components. By using Fourier representa- 
tions of the Dirac 6 functions, the integra- 
tion can be carried out, reducing P(A,, A,; 
p)  to quadrature (7). An explicit expression 
for p(R2), the full distribution of the mean 
radius of gyration A, + A, = R2, is easily 
obtained from the above result, yielding 

where N is the number of wall segments of 
the vesicle and x is the ratio p/p,, p, being 
the critical pressure differential at which the 
vesicle bursts. This pressure has the value 
4rr/NA2. In light of the way in which N 
enters into Eq. 10, it is a straightforward 
matter to verify that P(R2) has the scaling 
form 

This is entirely consistent with the proposals 
of Leibler and colleagues (1). Figure 1 is a 
plot of P ( R ~ N - ~ " ,  x2") for three different 
values of x .  The vertical scale has been 
greatly enhanced for the case x = 0.999. 

Simple closed-form results for the size 
and, indirectly, the shape of the vesicles 
under consideration can now be obtained. 
For <R2>, the expectation value of the 
mean square radius of gyration, we have, in 

Flg. 2. <R2> plotted against A (or ul>) for 
(curve A) constant-area ensemble and (curve B) 
constant-pressure ensemble. The slopes of both 
curves approach l / ~  asymptotically. 

the constant pressure ensemble, 

where, again, x = p/p,. It is also possible to 
obtain a result for <R2> in the constant- 
area ensemble. To do this, we use the Fou- 
rier transform of the Dirac 6 function and 
take advantage of the fact that the pressure 
can be given an imaginary value in Eqs. 1 ,2 ,  
and 5. The end result of the calculations is 
the following expression for < R2 > : 

It is a straightforward matter to verify that, 
as the area in Eq. 13 goes to infinity, <R2> 
approaches A/T. Infinite area vesicles are 
dominantly circular. This limit for the shape 
of the infinite vesicle also should be ap- 
proached in the constant-pressure ensemble 
as x-t 1 or p-.pCp. A separate calculation 
in that ensemble yields the exact relation 

so that the expected limiting shape is indeed 
approached when the vesicle is on the verge 
of exploding. It is important to emphasize 
that the constant-area ensemble is not equiv- 
alent to the constant-pressure ensemble in 
the thermodynamic sense. This is evident if 
one compares the plots of <R2> against A 
in the constant-area ensemble with the plot 
of <R2> against < A >  in the constant- 
pressure ensemble (Fig. 2). Although both 
plots are asymptotically linear with a slope 
of 1 / ~ ,  as the area and mean radius of 
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gyration approach infinity, they are by no 
means identical at moderate values of those 
quantities. Both plots exhibit scaling behav- 
ior in that both <R2> and A (or < A > )  
scale with N2". 

Finally, we turn to the asphericity param- 
eter A, (8, 9), which provides a direct 
measure of the deviation from a sphere of 
the vesicles' shapes. In terms of the eigen- 
values of T, A, = (A,  - A,)~/(A, + A,)'. In 

Although the results presented here are 
new and interesting in their own right, they 
become particularly pertinent when used as 
the starting point for an excluded-volume 
calculation, a problem that has proven to be 
analytically intractable. The approach out- 
lined here is useful for studying the dynamic 
behavior of vesicles under pressure (6). 

the constant-pressure ensemble, after a rath- 
er tedious calculation, we find 
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A Virus-Encoded ccSuperantigen" in a Retrovirus- 
Induced Immunodeficiency Syndrome of Mice 
AMBROS W. HUGIN, MELANIE S. VACCHIO, HERBERT C. MORSE 111* 

The development of an immunodeficiency syndrome of mice caused by a replication- 
defective murine leukemia virus (MuLV) is paradoxically associated with a rapid 
activation and proliferation of CD4+ T cells that are dependent on the presence of B 
cells. The responses of normal spleen cells to B cell lines that express the defective virus 
indicated that these lines express a cell surface determinant that shares "superanti- 
genic" properties with some microbial antigens and Mls-like self antigens. This antigen 
elicited a potent proliferative response that was dependent on the presence of CD4+ T 
cells and was associated with selective expansion of cells bearing VB5. This response 
was markedly inhibited by a monoclonal antibody specific for the MuLVgag-encoded 
p30 antigen. 

NFECTION OF CERTArN STRAINS OF 

mice with a mixture of replication-com- 
petent and replication-defective MuLV 

induces the disorder murine acquired imrnu- 
nodeficiency syndrome (MAIDS) (1-6), 
which is characterized by polyclonal activa- 

A. W. Hiigin and H .  C. Morse 111, Laboratory of 
Immunopathology, National Institute of Allergy and 
Infectious Diseases, NIH, Bethesda, MD 20892. 
M. S. Vacchio, Experimental Immunology Branch, Na- 
tional Cancer Instinlte, NIH, Bethesda, M D  20892. 

tion and proliferation of T and B cells (I) ,  
severe immunodeficiency (I) ,  aberrant reg- 
ulation of cytokines (1, 3), enhanced suscep- 
tibilitv to infection (4). and late B cell 

\ ,, 

lineage lymphomas in some animals (5). The 
defective virus in this mixture is required for 
development of disease (6) and can induce 
the syndrome if administered without helper 
MuLV (7). 

Previous studies showed that complex in- 
teractions between T and B cells were re- 
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ize mice with MAIDS. T cells of the CD4+ 
subset are required for induction of B cell 
activation, differentiation to immunoglob- 
ulin (Ig) secretion, and impaired responses 
to mitogenic and antigenic stimuli as well as 
for functional abnormalities of CD8+ T cells 
(8). Conversely, mature B cells are required 
in vivo for induction of CD4+ and CD8+ T 
cell dysfunction (9). 

We suggested previously that this inter- 
locking activation of different components 
of the immune system may be due to stim- 
ulation of T cells by determinants expressed 
on the surface of B cells that have features of 
"superantigens" with the Pr6Fag of the de- 
fective virus as one candidate (9). Superan- 
tigens of microbial origin (10-12) (such as 
staphylococcal toxins and Mycoplasma ar- 
thriditis mitogen) or self origin (10, 13-15) 
(Mls-like products) have the ability to stim- 
ulate large numbers of T cells by virtue of 
their capacity to engage T cell receptors 
(TCRs) bearing particular variable region 
sequences of the TCR 0 chain (Vp), almost 
regardless of the contributions of other por- 
tions of the or a chain to the structure of 
the TCR (10-16). The activity of these 
antigens is also dependent on the simulta- 
neous expression of class 11 proteins on 
antigen presenting cells (APC) (1 0-1 6). 

To evaluate this model, we took advan- 
tage of cultured cell lines derived from B cell 
lineage lymphomas that developed late in 
the course of MAIDS. Two lines, B6-1153 
and B6-1710, were recovered from tumors 
of B6 mice and B6xCBA/N-2252 from an 
infected (B6 x CBA/N)F, mouse (5). All 
three lines have acquired multiple copies of 
the defective virus, but differ in the extent to 
which these genomes are expressed (1 7). For 
the lines studied most intensively, B6-1710 
expressed gag polyproteins encoded by de- 
fective and nondefective viruses at concen- 
trations readily detectable with monoclonal 
antibodies to p12 (anti-pl2) and p30 (anti- 
p30) in flow cytometry analyses (Fig. lA, 
inset), whereas B6-1153 expressed very lit- 
tle, if any (Fig. lB, inset); B6xCBA/N-2252 
was quite similar to B6-1710 for expression 
ofgag-encoded antigens (1 8). All three lines 
expressed major histocompatibility complex 
(MHC) class 11 proteins comparably and at 
amounts higher than on most normal B cells 
(18). 
\ 3 

After irradiation and cocultivation with 
normal B6 spleen cells, B6-1710 stimulated 
a vigorous proliferative response in a cell 
dose-dependent fashion (Fig. 1A) and at 
concentrations equivalent to those obtained 
with mitogenic lectins. Similar results were 
obtained when irradiated B6xCBM-2252 
cells were used to stimulate normal F, 
spleen cells (18). In contrast, the low p12- 
and p30-expressing line, B6-1153, induced 
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