
Folding and Unbinding Transitions in 
Tethered Membranes 

Molecular dynamics simulations of tethered membranes indicate that an attraction 
between the monomers leads to a well-defined sequence of folding transitions with 
decreasing temperature. With insights gained firom Landau theory and simulations of 
biiembranes, the fblding transitions are found to be intimately linked to the 
unbiiding of membranes. Fite-size effects, mainly due to the loss of entropy firom 
edge fluctuations, play an important role in hindering fblding transitions. 

T ETHERED MEMBRANES (I), WHICH 
are simple generalizations of linear 
polymers to two-dimensionally con- 

nected networks, have been the subject of 
much recent interest (2). Unlike polymers 
(3), tethered surfaces have a flat phase with 
long-range orientational order (4, 5). The 
presence of such a phase has several interest- 
ing consequences (2, 4-6), one of which is 
the novel folding transitions discussed here. 
In a poor solvent [as defined in (3)], there is 
an effective attraction between monomers of 
the network that increases with decreasing 
temperature. For polymers this leads to a 
transition between low-density (crumpled) 
and high-density (compact) phases at a so- 
called 0 point (3). In contrast, the transition 
between flat and compact states of a mem- 
brane proceeds through a sequence of fold- 
ing transitions. We argue that these transi- 
tions are intimately linked to the unbinding 
of membranes (7), the unbinding tempera- 
ture beiig the limiting value of all folding 
temperatures for injinitely big surfaces. Fi- 
nite-size effects, which are due to crease 
energies and, more important, to loss of 
entropy of edge fluctuations, play a crucial 
role in the behavior of finite-size mem- 
branes. 

There are two dear motives for perform- 
ing simulations of tethered surfaces with an 
attractive interaction in addition to the usual 
hard-core repulsion. First, although theoret- 
ical studies (8, 9) based on continuum mod- 
els predict a transition between flat and 
crumpled membranes, most simulations of 
self-avoiding surfaces have observed only 
the flat phase (10). An attractive potential 
may partly overcome the entropic rigidity 
that is due to self-avoidance and lead to a 
crumpled phase. Second, the difliculty in 
obtaining compact surfaces by applying ex- 
ternal pressures (11) or by regular foldings 
(1) suggests that it may be impossible to 
obtain a compact phase in a simulation. In 
fact, the simulations do find a compact state 
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(12) in which the membrane mass M scales 
as M - L~ - R ~ ,  where L is the linear 
dimension and R is the radius of gyration. 
Recent experiments on graphite oxide mem- 
branes also indicate a compact phase in a 
poor solvent (13). Improving the quality of 
the solvent appears to result in crumpled 
membranes. 

Molecular dynamics simulations were per- 
formed on the model of tethered mem- 
branes used by Abraham and Nelson (12). 
The nearest neighbor atoms are tethered 
into a triangular array with a potential in- 
cluding a strong repulsive component at 
short and long distances. Non-nearest 
neighbor partides interact through a Len- 
nard-Jones potential and are terminated at 
separations greater than 2 . 5 ~  ( a  is the inter- 
atomic separation at which the potential 
vanishes). At high t emperam the poten- 
tial is irrelevant, and the membrane is flat as 
a result of entropic rigidity (12). The width 
H of the interface, however, scales with 
its linear size (4-6,12, 14) as H - LC, where 
5 - 0.65. At low temperatures the mem- 
brane collapses into a compact phase char- 
acterized by a typical radius R that grows 'as 
R - L ~ ' ~ .  

What happens at intermediate tempera- 

Fig. 1. Con6guration.s of the mem- 
brane at tempera- T = 3.2,3.0, 
2.6, and 1.4 corresponding to Aat, 
singly folded, doubly folded, and 
collapsed statcs, respectively. The 
perspectives are along the axis of 
the moment of inema tensor. 
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Fig. 2. The three moments of inertia as a function 
of temperature. The open symbols are for cooling 
from the flar phase, and the dosed symbols are for 
heating from the collapsed state. 

tures is best undersrood by examining Fig. 1, 
which depicts a hexagonal surface with L = 
75 partides along the diagonal. On cooling, 
the membrane folds on itself once at a tem- 
perature T,(75) = 3.15 2 0.05 (all temper- 
atures are measured in units of the depth of 
the attractive Lennard-Jones potential). A 
crease neatly divides the membrane in half. 
The folded structure has roughly the same 
width as the unfolded one, so that the in- 
plane density is twice as big. On further 
cooling there is a second foldmg transition at 
T2(75) = 2.75 + 0.05. There are now two 
orthogonal creases that divide the membrane 
into four roughly equal p folded together. 
The densitv continues to increase on decreas- 
ing temkture,  but it is ditlicult to identify 
any more distinct folding temperatures. 

One can obtain an idea of the sharvness of 
these transitions by examining Fig. i, which 
depicts the three moments of inertia as a 
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function of temperature. On the first fold 
there is a reduction in the second moment of 
inertia roughly by a factor of 4, which is 
consistent with a single fold. The smallest 
moment of inertia does not change, suggest-
ing that the thickness of the membrane does 
not change appreciably on folding. There is 
a somewhat smaller drop in the largest mo-
ment at the second folding transition. These 
transitions are also obtained by heating from 
the compact phase (12) at T = 1.4 (whereR 
-L"~), as indicated by the filled-in symbols 
in Fig. 2. The reversible nature of the fold-
ing transition rules out the possibility that 
these are metastable configurations. By con-
trast, if we cool from the T = 2.5 double-
fold state, the compact phase is not obtained 
(Fig. 2); that is, reversibility is not realized 
between the compact and double-fold states. 
Hence, although we are confident about the 
occurrence of the two folding transitions, it 
is impossible for us to establish the lowest 
free energy state at low temperatures ( T  < 
2.5). 

We can understand the above results in 
the context of a Landau theory of tethered 
surfaces (9, 15).This approach is in analogy 
with continuum statistical field theories of 
elasticity or magnetism. An effective free 
energy is constructed for r(x,, x,), which is 
a coarse-grain version of the coordinates 
r , ,  of the atoms in the network. On the 
basis of symmetry considerations, the lowest 
order terms in a gradient-density expansion 
for the Hamiltonian PX are (9, 15) 

where air = arlax, and summation conven-
tion over ( i ,j) = (1,2) is assumed. The 
parameters t ,  u, v, K, b, and c depend on 
temperature and the microscopic potential 
in a complicated fashion. The local terms 
represent the nonlinear elasticity of the 
membrane, and the nonlocal terms are due 
to long-range interactions such as self-avoid-
ance. If fluctuations are ignored, a mean-
field estimate of the free energy F for a 
uniform density n (-L'/R~) and tangent 
vector ~ R ~ ( - R / L )is 

= min { [ Im2 + 2(u + 2 ~ ) ~ ~ 
~2 2 I 
In the spirit of the Landau theory of mag-
netism, the signs of the lowest order terms 
(that is, t and b) determine the phase of the 
membrane. For positive t and b, rn = n = 0 
at the minimum, signaling the crumpled 
phase; in fact, a more precise treatment 
shows that as R and L go to infinity rn and n 
do not go to 0 independently but rather so 
as to reproduce the Flory estimate (1) R -
L4I5. For t < 0 and b > 0, the order 
parameter rn is nonzero, indicating the flat 
phase (9) (R - mL). If b < 0 and t > 0, rn 
is 0, and the density n becomes finite (L'/R~ 
- n). This is the compact phase, and b = 0 
is the analog of the 0 point for polymers 
(15). Finally, for negative t and b, both m 
and n tend to be nonzero. If the enerw cost",
of creases is ignored, this can be achieved by 
regularly folding the membrane into a com-
pact structure. The resulting phase diagram 
is sketched in Fig. 3. [A previous study of 
this Landau theory (15) left out the possi-
bility of a folded state and indicated a direct 
transition between the flat and compact 
phases in the (t, b) < 0 quadrant.] The 
simulation results indicate that on decreas-
ing temperature the membrane proceeds 
along the trajectory indicated in Fig. 3. If there 
is also a crumpled phase, as suggested by 
experiments (13), it should be possible to de-
vise a potential such that the flat-to-compact 
trajectory proceeds via the crumpled phase.- -

Finiteis& effects play an important role 
in polymers and membranes and are integral 
to understanding the folded state. Although 
the surface tends to fold back and forth-as 

Compact Crumpled 

Fig. 3. Schematic phase diagram from a Landau 
theory. The arrows on the dotted line indicate the 
possible trajectory observed in simulations on 
cooling. 

r f Periodic bimembrane 
Nx,Ny=20x17 sheets

* Nx,Ny=30x25 sheets 
A Nx.Ny=40x34 sheets 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Temperature, T 

Fig. 4. The binding energy of bimembranes with 
periodic boundary conditions. The open symbols 
represent the unbinding temperature for each of 
the three membranes. 

much as possible, it must do so without 
tearing apart; the difficulty of finding the 
optimal folding soon becomes evident if one 
experiments with a sheet of paper. Nonethe-
less there are such foldings (16), and pre-
sumably a sufficiently big membrane will 
approximate them to some extent. At small 
sizes, the competition between the free-
energy gain from folding (-b~'/2) and the 
energy loss due to creasing (-E .L) becomes 
important. For small b < 0, a finite mem-
brane stays flat and folds only when b is 
sufficientli negative to compensate for the 
crease energy [at bl(L) - -E,/L]. The singly 
folded membrane is then stable as a result of 
the energy cost of creating a second crease, 
and b has to be reduced further to achieve a 
second folding transition at b,(L) (we shall 
see later that on including fluctuations the 
creasing energy is much less important). 
Therefore, at finite L there will be a se-
quence of folding transitions that converge 
on each other as L + m . This is supported by 
simulations on membranes with L = 49, for 
which T1(49) = 2.90 ? 0.05 and T2(49) = 
2.15 ? 0.05. At lower temperatures it be-
comes difficult to distinguish between a col-
lapsed state and a folded state with a finite 
number of folds. More extensive simulations 
are necessary to establish definitely the occur-
rence of a collapsed state (12) from the dou-
ble-fold or multifold regime. We shall instead 
focus on the critical behavior and finite-size 
scaling in the vicinity of the first folding 
transition. 

The unfolding of singly folded mem-
branes bears close resemblance to the un-
binding transition of two distinct surfaces 
(7); this is most easily seen if the membrane 
is cut at the crease. Unbinding and related 
wetting transitions (17) are characterized by 
two length scales. One is the average sepa-
ration 5, between the membranes, and the 
other is the in-plane size tI1of characteristic 
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fluctuations (blobs of separated mem- binds at T = 3.4 k 0.1, which is closer to ing transitions. Finite-size effects will be- 
branes). The two length scales are related by the folding temperature than the unbinding come progressively more important and in- 
the membrane roughness exponent; that is, temperature of bimembranes with periodic volved, however, and a theory starting from 
5,
 - ti. Recent renormalization group boundary conditions. The crease energy the binding transition will quickly lose pre- 
(RG) studies (7) suggest that the unbinding cannot be invoked in this case, and another dictive power. 
of membranes is a continuous transition, tI1 mechanism must be at work. From exami- In summary, we have shown that attrac- 

5, and diverge at the unbinding transition nation of configurations of membranes, tion between flat membranes can lead to 
5, T*, for example, - (T*  - T)"' diverges such as those in Fig. 1, it becomes clear that folding and unbinding transitions that are 

the free edge of a membrane has quite intimately linked. The binding free energy with an exponent 4.Scaling arguments in- 
dicate that the binding free energy vanishes strong fluctuations. These fluctuations are appears to vanish as b(T)- ( T *  - T1 
at the transition because b(T) - ((' - (T* 
-T)'$,where T = 211. The RG estimate (7) 
is T&- 2.7. 

Because this free-energy gain provides the 
driving force for the folding transition, it is 
important to examine its behavior. Hence 
w e  performed molecular dynamics simula- 
tions of the unbinding of two membranes. 
To minimize finite-size effects periodic 
boundary conditions were imposed, and to 
ensure that such boundary conditions do 
not squeeze or stretch the membrane the 
comp;tational box was allowed to vary by 
means of a constant-pressure molecular dy- 
namics technique until zero pressure was 
achieved. Then the computational box size 
was fixed. We found that 20 x 1 7  bimem- 
branes unbind at Tu(20) = 4.0 and that 30 
x 25 bimembranes unbind at Tu(30) = 4.3, 
whereas the 40 x 34 unbinding temperature 
Tu(40) = 4.5. The size dependence of the 
unbinding temperature was expected be- 
cause finite membranes will unbind once the 
characteristic size of the disjointed blobs is 
on the order of the membrane size. 

To obtain the scaling behavior, we mea- 
sured the binding energy of bimembranes. 
The results are plotted in Fig. 4 and fitted to 
a power law such that ~ ( q  = ab/aT -
-(T* - T)'$-'. We see that bimembranes 
of different size have the same binding en- 
ergy until there is a drop to 0 at the unbind- 
ing temperature. From the fits we estimate 
that T *  = 5.7 and T$ = 3.34 5 0.16. There 
is some quantitative discrepancy with the 
RG results. but more careful work is re- 
quired to establish unambiguously the valid- 
ity and universality (7) of the scaling behav- 
ior at this unbinding transition. 

One interesting aspect of these results is 
that, although the folding transitions are 
closely spaced around T - 3, the unbinding 
transitionh with period boundary conditions 
for similarly sized bimembranes occur at 
about a 30% higher temperature. For very 
large sizes the two transitions are expected 
to occur at the same point. This is partly 
because the binding free energy grows slow- 
ly with decreasing temperature [-(T* -
T ) ~ . ~ ~ ] ,and hence a low temperature is 
required to overcome the crease energy. We 
also examined the unbinding transition of a 
bimembrane of side 49 with free boundary 
conditions, however, and found that it un- 
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suppressed in the case of periodic boundary 
conditions and are also reduced when the 
membrane is folded. 

We can estimate the free-energy cost as- 
sociated with the loss of edge fluctuations. 
When one of the edge particles is pinned, it 
loses an entropy of roughly In H, where H is 
the typical width over which an unpinned 
particle fluctuates. Because the number of 
edge sites is proportional to L, the total 
entropy loss is proportional to L (In H) .  
From the result H - or membranes (12, 
14), we conclude that a free-energy term 
from edge effects grows as cL(ln L); that is, 
the growth is superlinear. Such superlinear 
growth is highly unusual because finite-size 
effects usually lead to linear corrections. 
Such logarithmic finite-size corrections are 
familiar in nucleation theory (18) and are 
clearly also important in fluctuating mem- 
branes. 

Putting these elements together, we con- 
clude that for T < T *  the free energy Af of 
a singly folded state for a membrane of size 
L, with respect to the flat state, scales as 

where a is a constant of order of unity (for 
the unbinding transition with open edges, 
the crease energy will be absent). For suffi- 
ciently big membranes the energy loss of 
creasing is actually irrelevant compared to 
the entropy loss of edge fluctuations. This is 
in part responsible for the closeness in the 
temperatures of folding and unbinding with 
open boundaries. The folding transition oc- 
curs when Af, = 0, and hence 

The folding transitions for T,(75) - 3.2 
and T1(49) - 2.9 are roughly consistent 
with the above formula, although because 
these temperatures are two times smaller 
than T *  the scaling law cannot be precise. It 
is also because of these relatively low tem- 
peratures that the folds shown in Fig. 1are 
so localized and straight. Presumably, close 
to T *  an artificially imposed crease will be 
rounded into a cylinder to minimize the cost 
in bending energy. Similar scaling forms are 
expected for the second and successive fold- 

for infinite-sized membranes, whereas in fi- 
nite membranes the free-energy loss due to 
edge fluctuations [-L(ln L)]  is also impor- 
tant. If solutions of tethered membranes can 
be prepared, such reversible transitions may 
lead to many novel applications. In dense 
solutions the membranes will stack together 
at T*, forming a highly anisotropic solid 
(19), and in dilute solutions the membranes 
will fold on themselves at a temperature 
lower than T*.  These low-temperature 
states can provide a means of transporting 
small particles: Material trapped in the folds 
or in the stack can be safely moved with the 
surfaces and then released by going back to 
the original flat and unbound state. Theo- 
retically, one can even design the shapes and 
morphologies of the low-temperature states 
by selectively introducing elements with at- 
tractive interactions. Abraham has con-
ceived of a model membrane in which the 
attractive interaction is restricted to particles 
on the rim of the membrane (20). At suffi- 
ciently low temperature, molecular dynamic 
simulations show that the membrane folds 
and "zips" closed around the rim, resulting 
in a closed surface that is inflated as a result 
of self-avoidance among the interior mem- 
brane particles. 
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The Shapes and Sizes of Closed, Pressurized 
Random Walks 

Two-dimensional cell-like membranes acted on by osmotic pressure differentials are 
represented by closed, unrestricted random walks. The treatment omits excluded- 
volume effects, and the pressure that is imposed thus favors an oriented area, so that 
the shriveled configuration of a vesicle with excess external pressure is inaccessible in 
this model. Nevertheless, the approach has the decided advantage of yielding analytic 
expressions in a complete statistical analysis. Results are presented for the average 
square of the radius of gyration, the asphericity, and the probability distribution of the 
principal components of the radius of gyration tensor. The analysis is done in both the 
constant-pressure and constant-area ensembles. 

TWO-DIMENSIONAL VESICLES, AS 

modeled by Leibler and colleagues 
(1), consist of closed, self-avoiding 

chains that encircle a two-dimensional vol- 
ume. If one introduces a pressure differential 
between the enclosed volume and the region 
surrounding the vesicle, one has a model for 
cell-like structures subject to osmotic forces. 
Numerical studies reveal the existence of 
three different regimes of vesicle conforma- 
tions and a catastrophic transition as the 
difference between the internal and the ex- 
ternal pressure is varied (2, 3). When this 
difference is sufficiently large and negative, 
the vesicles become severely deflated. The 
walls of the shriveled vesicles resemble tree- 
like structures. In fact, the walls appear to be 
governed by the statistics of branched, ex- 
cluded-volume polymers. When the pressure 
differential is close to zero, the vesicles are 
flaccid. The scaling laws governing the wall 
conformations are those of simple, closed, 
self-avoiding walks. As the pressure differ- 
ential is increased to a sizable positive value, 
the vesicles inflate and increasingly resemble 
two-dimensional inflated balloons. At a crit- 
ical value of the pressure differential, the 
vesicles share the fate of the overinflated 
balloon and explode, unless the walls are 
made of extremely rigid segments. These 
studies (1-3) also have investigated the 
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shape distributions and scaling properties of 
vesicles and their walls in these three re-
gimes. 

We now report the results of calculations 
of a number of properties of two-dimen- 
sional vesicles with non-self-avoiding walls. 
We have discovered that removing the ex- 
cluded-area restriction transforms the pres- 
surized vesicle system from a model whose 
specific properties can only be obtained nu- 
merically to one that is completely solvable. 
We have obtained explicit expressions for 
various important properties, including the 
full combined distribution function for the 
principal radii of gyration of vesicles under 
the influence of excess internal pressure. We 
also have obtained results for vesicle sizes 
and shapes in the conjugate constant-area 
ensemble. 

We investigated the scaling properties of 
the two-dimensional vesicle with non-self- 
avoiding walls and found that the scaling 
forms proposed by Leibler et al. (1) hold in 
the corresponding regimes of our simpler 
model. Although allowing vesicle walls to 
intersect ignores a fundamental physical re- 
striction on the allowed conformations of 
real membranes, we hold that the extreme 
tractability of this model more than offsets 
the disadvantages resulting from the tenu- 
ousness of its connection to real, three-
dimensional vesicles. In addition, we antici- 
pate that the results reported here will be the 
zeroth-order results on which one can hope 
to improve with the use of the powerful new 
techniques that have been applied to various 
two-dimensional systems. 

The vesicles we studied have walls consist- 
ing of N linear links, or displacements, qi(1  
5 i 5 N). The walls are closed, so that Zqi 
= 0. The links are, in the absence of a 
pressure differential, governed by a simple 
Gaussian distribution in that the probability 
that the link q,has a length between 7 and 
q + dq is proportional to e ~ p ( - ~ ~ ) d ~  The 
influence of the pressure differential p is felt 
through the following additional contribu- 
tion to the probability distribution: 

where A is the oriented area of the closed 
wall; this is to say that A is given by the 
integral i$ (y  dx - x dy) taken along the 
wall in the direction of increasing index i. 
Notice that if the vesicle is flipped over the 
area defined in this way changes sign. A 
vesicle with a higher pressure inside than 
outside will tend to inflate (in a particular 
sense). A vesicle with a negative pressure 
differential will inflate in the opposite sense. 
There is no deflated phase. Furthermore, 
"figure eight" and more complicated config- 
urations in which the vesicle walls cross will 
occur. Thus in this model a pressure differ- 
ential has the effect of discouraging "wrong" 
sense configurations. 

The distribution function governing indi- 
vidual link lengths is also taken to be Gaus- 
sian. In this respect, the statistics of the 
bounding surface are those of a closed, 

Fig. 1 .  Probability distribution scaling function, 
~ ( R ~ N - ~ " ,x2') (see Eq. ll),plotted against R2 
for (curve A) p p,, (curve B )  p = pJ2, and 
(curve C) p = The vertical scale is 0 . 9 9 9 ~ ~ .  
enhanced by a factor of 200 in the case of curve C. 
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