
Models for Material Failure and Deformation 

Simple computer models have been used to investigate a 
variety of pattern formation processes associated with 
material failure and deformation. These models repro- 
duce surprisingly well the characteristic morphologies 
observed in a wide range of real systems. They provide a 
sound basis for the development of more realistic models 
that can be used to develop a better understanding of the 
mechanical properties of real materials. The present algo- 
rithms are adequate for some purposes, but substantial 
improvements are needed if simulation results are to 
make a major contribution to our theoretical understand- 
ing of the asymptotic fractal scaling and universality 
properties of patterns generated by failure and deforma- 
tion phenomena. 

M ATERIAL FAILURE AND DEFORMATION ARE OF MAJOR 

importance in almost all aspects of human endeavor. 
Consequently, they have been studied extensively for 

many years. Most failure and deformation phenomena of practical 
importance involve a variety of processes occurring on a wide range 
of time and length scales. Many of these are nonlinear processes 
occurring under nonequilibrium conditions; as such they are, in 
general, still quite poorly understood. Considerable effort has been 
devoted to the propagation of a single crack tip in a homogeneous 
medium, but real materials are inhomogeneous, crack geometries are 
often complex, and crack-crack interactions are important. In recent 
years, computer simulation has become a promising approach 
toward the development of a better understanding of cracking, 
forging, and drawing. Most of this work has been concerned with 
quite simple, even abstract, models that focus attention on those 
processes that are believed to be the most important for a particular 
system and set of conditions. The results obtained from these 
models provide a basis for understanding the behavior of real 
materials and for developing more complex and realistic models. 
However, even some of the most simple of these models are not at 
all well understood theoretically. At this stage it seems that the 
development of practical general models that can be applied to a 
wide variety of materials under a broad range of conditions is still a 
quite distant prospect. 

Despite the complexities outlined above, there is good reason for 
being optimistic. The current high level of interest in nonlinear 
phenomena and nonequilibrium pattern formation is leading to the 
development of new methods and concepts that are beginning to be 
applied to problems such as crack growth. In some cases very similar 
cracking patterns are seen in a wide range of materials over a broad 
range of length scales. "Mud-cracking" patterns can be observed in 
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systems as diverse as microscopic thin film deposits, paint films, and 
multikilometer-scale basement rocks (1). Very similar patterns are 
formed in systems covering a wide range of length scales and 
materials (ceramics, metals, polymers, composite materials, and so 
on). This similarity suggests that a case-by-case study may not be 
required and that simple models may provide useful results. A 
systematic exploration of this and other universalities is an impor- 
tant part of the current agenda (2-5). The continual rapid growth in 
the speed, availability, and flexibility of digital computers is also 
expected to contribute substantially to the growth of this area. 

One general approach to the simulation of mechanical properties 
is to represent the material by a network of structural units (bonds, 
springs, beams) whose rate of failure depends on local conditions 
(temperature, strain, radiation, chemical environment). In some 
models, formation as well as failure of the elements in the network 
is included. In most simulations the failure or deformation process 
is implemented via a Monte Carlo procedure. Other approaches 
[notably molecular dynamics (6-lo)] have also been successfully 
exploited. 

Network Models 
In a wide variety of models for failure and deformation, the 

"material" is represented by a network of mechanical elements 
(bonds, springs, beams) that have their own mechanical properties. 
These properties depend on the purpose for which the model is 
intended. In models that are used to represent in detail the behavior 
of specific materials, each element in the network may have quite 
complex, time-dependent properties. Here we are concerned pri- 
marily with "universal" phenomena that occur in a wide range of 
materials. Under these circumstances it is natural to explore simple 
generic models. In most of the models, the network elements can 
exist in two mechanical states and the kinetics of failure and 
deformation are controlled by the strain-dependent transition rates 
between these two states. In most cases one of the two states 
corresponds to complete failure (removal) of the network element. 
This process may be reversible, but in most models material failure 
is considered an irreversible process. 

In a typical Monte Carlo simulation, an element of the network is 
selected at random with a probability P(R) that depends on the local 
configuration R. After an element has been selected, it is removed 
from the network (or its properties are changed), and the network 
is allowed to partially or completely relax to a new mechanical 
equilibrium (subject to appropriate mechanical boundary condi- 
tions). The new network element bond-breaking probabilities 
(rates) are then calculated, and the process of transition between 
mechanical states and relaxation is repeated many times to simulate 
the material failure or deformation process. Most simulations have 
been carried out with complete relaxation of the network. Such 
models are clearly more appropriate for processes such as slow crack 
growth, in which complete mechanical relaxation is physically 
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realistic, than for fast processes such as brittle fracture. 
The rate of failure of many materials increases very rapidly with 

increasing stress or strain. It seems natural to suppose that this 
macroscopic behavior has a microscopic origin and that the failure 
of individual network elements also depends strongly on the local 
stress or strain. Consequently, models in which the failure or 
modification rate constant R, is related to the local force f associated 
with these elements by relations such as 

Rf  -f (1) 
or 

Rf  - exp(a!) (2) 

have been explored. However, the assumption that the rate of failure 
or modification depends only on the local stress cannot be justified 
quantitatively and may have to be modified if an accurate simulation 
of the properties of real materials is required. The form given in Eq. 
2 is supported by the absolute reaction rate theory for chemical 
processes (11-13). According to this theory, the rate constant of a 
chemical process (such as bond breaking) can be written as 

where E, is the activation energy, k ,  is the Boltzmann constant, T is 
the temperature, and b(T) is a weakly temperature-dependent 
preexponential factor. For stress-induced failure, Eq. 3 can be 
written as 

In most cases E, > > k,T and the preexponential factor b(T, f )  
can be approximated by a constant. The main effect of exerting an 
external force on the system is to reduce E, by an amount that 
depends on f (or the local bond length displacement 6). For a simple 
harmonic potential the elastic energy stored in a distorted bond is 
given by 

where k is the bond force constant. 
If it is assumed that E, for bond breaking is reduced by an amount 

proportional to E,, then a value of 2 is obtained for the exponent n 
in Eq. 2. It might also be argued that the bond has broken when 6 
has reached a critical value 6, and that the energy required to reach 
this displacement will be reduced by an amount proportional to$ 
These simple ideas are not realistic, and at this stage Eq. 2 must be 
regarded as an empirical relation. For polymers a considerable 
amount of experimental data support the idea that E, is reduced by 
an amount that is proportional to the stress ( a )  (14-17). Under 
these circumstances the bond-breaking rate constant can be ex- 
pressed by the form 

where v, is a thermal vibration frequency. For three-dimensional 
systems, the parameter p in Eq. 6 can be interpreted as an activation 
volume. For the breaking of a bond in a network, P can be 
interpreted as an activation length (PI) and a can be replaced by f 

I t  might be inferred from the above discussion that the elements 
in the network should be interpreted on a molecular level. However, 
in most cases a more macroscopic interpretation in which the 
elements of the network represent physical structures such as grains, 
dislocations, or other extended structures seems to be more appro- 
priate. In other cases the elements in the network may represent the 
material in a characteristic volume of size (length) determined by the 
fracture process itself [the size of the plastic zone, for example (18, 
1 9 ~ .  

Random fluctuations appear to be an important ingredient in 
material deformation and failure processes. However, in the Monte 

Carlo models outlined above, randomness enters the models in a 
relatively uncontrolled fashion. The degree of randomness can be 
controlled by methods such as noise reduction in which a network 
element must be selected m times before it finally fails or is modified 
(20-22). Disorder can also be introduced in a quite different way. 
The elements in the network can be considered to be "damaged" at 
rates given by Eqs. 1,2,  or 6 and to fail when the damage associated 
with the ith element reaches a threshold value (T,). Apart from the 
random distribution of threshold values that are assigned at the start 
of a simulation, models of this type with "quenched" disorder are 
completely deterministic. When the damage associated with one of 
the elements in the system reaches its T,, it is removed or modified. 
The system is then relaxed to a new mechanical equilibrium, and 
new damage rates are calculated. The "damage" associated with each 
of the bonds is then increased at the new damage rates until the next 
bond reaches its damage threshold. The simulation proceeds by a 
sequence of damage growth, network modification, and relaxation 
steps until the "material" fails completely or a preselected number of 
network elements have been modified. In these models the disorder 
can be controlled via the distribution of threshold values. In many 
cases the introduction of disorder via random bond selection or 
quenched disorder (random damage thresholds) leads to very similar 
damage patterns and kinetic behavior. This behavior is similar to 
that found for the closely related difision-limited aggregation 
(DLA) model (23). In this case simulations carried out with the use 
of deterministic models with quenched disorder (24) lead to patterns 
that are similar to those obtained with the standard DLA model. 
The DLA model corresponds to the random selection of growth 
sites with probabilities given by a scalar field + that obeys the 
Laplace equation 

with absorbing boundary conditions (+ = 0) on the surface of the 
growing pattern and a fixed value for + (+ = 1) at infinity. This 
model has been found to describe quite well both the kinetics (25) 
and the structure (26) of fluid-fluid displacement in a porous 
medium (an essentially deterministic process that takes place in a 
random medium with "quenched" disorder). Quenched disorder 
can also be introduced via a random distribution of strain, stress, or 
elastic energy thresholds. In models of this type the network element 
that most exceeds its threshold may be modified (27) or more 
complex criteria that include "memory" effects may be used (28). 

The models outlined above can be used to investigate both the 
kinetics of crack growth and the morphological aspects of cracking 
processes. For example, a time scale can be introduced into models 
in which the elements of the network are selected at random. In one 
version of these models the elements in the network are selected 
randomly with equal probabilities. After an element has been 
selected, a random number x uniformly distributed over the range 
0 < x < 1 is generated and the selected element is modified if 
x < Ri/Rm, where Ri is the removal (or modification) rate constant 
for the selected element and R,, is the maximum rate constant for 
any element in the network. Each time an element is selected 
(whether or not it is modified), the time is incremented by an 
amount 6t given by 

where N is the number of unbroken (or unaltered) network 
elements. The time scale introduced in this manner is directly 
proportional to the real (physical) time associated with the cracking 
or deformation process. 

If the bond-breaking frequencies are known (for example, if v,, 
E,, and p in Eq. 6 are known), then an absolute time scale can be 
introduced in a similar fashion. In most cases there are substantial 
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uncertainties concerning both the detailed physical description of 
material failure processes and the parameters used in the models. 
Consequently, a quantitative agreement between time scales of 
computer models and real systems either is usually fortuitous or is a 
result of tuning the model parameters. Information concerning 
relative time scales obtained from kinetic models for mechanical 
behavior is generally much less sensitive to model parameters. 

DLA and Related Models for Crack Growth 
In the DLA process (23), particles are added one at a time to a 

growing cluster or aggregate via random walk trajectories originat- 
ing from outside the region occupied by the cluster. A simple square 
lattice version of this model is illustrated in Fig. 1. This model leads 
to the formation of random fractal (29) patterns that closely 
resemble those associated with a variety of physical processes 
including fluid-fluid displacement processes (24-26), electrodeposi- 
tion, dielectric breakdown, the dissolution of porous materials, and 
some biological growth processes [some of these applications are 
reviewed in (30-32)]. Structures covering a wide range of length 
scales (Fig. 2) can be generated with improved DLA algorithms 
(33-35). The DLA model is closely related to simple models for the 
growth of cracking patterns. Processes such as dielectric breakdown 
and fluid-fluid displacement are closely related to other material 
"failure" processes such as cracking. This is particularly evident in 
the work of Van Damme (36-38) on the displacement of clay 
dispersions by air or water in a Hele-Shaw cell (two parallel sheets 
of glass with a small constant gap that contains the fluids). At low 
clay concentrations the displacement patterns closely resemble those 
associated with the DLA model (Fig. 2). As the clay concentration 
is increased, a transition from a "fluid displacement" to a "cracking 
pattern" is observed (Fig. 3). 

The close relation between DLA and material failure is also 
exhibited quite explicitly by the dielectric breakdown version of this 
model (39). In this model the Laplace equation (Eq. 7) is discretized 
to give 

and is solved numerically (with appropriate boundary conditions; 
see above) on a lattice to obtain the growth probabilities [in Eq. 9 
the discretized Laplace equation is given for a square lattice where 
+ij is the value of the scalar harmonic field associated with the lattice 

Fig. 1. An early stage In 
a square lattlce model 
slmulatlon of dlfision- 
limlted aggregation. The 
orlglnal seed or growth 
slte 1s shown In black, 
and the other sltes that 
are occupled at thls stage 
are shaded. Two typical 
trajectories startlng at 
random posltlons on the 
launching clrcle (a clrcle 
that just encloses the 
growlng cluster) are 
shown. Trajectory t i  
reaches an unoccupied 
surface slte (growth slte) 
that 1s lndlcated by- - 
dashed edges, and this 
slte IS occupled Trajecton: t, reaches the termlnatlon clrcle, whlch In thls 
case has a radlus of 3R,,, where R,, IS the maximum rac11u.s of the cluster 
Thls trajectory wlll be termmated and a new trajectory started at a random 
position on the launching clrcle S, and S,, starting posltlons, I, lnltlal 
growth ate, K, termlnal site 

Fig. 2. A cluster of lo6 r I 
generated using 

a two-dimensional off- 
lattice model for d i h -  
sion-limited aggrega- 
tion. 

* C 

6000 diameters 

site with coordinates (i,j)]. Unoccupied perimeter sites are selected 
randomly with probabilities that are given by 

and filled to represent the growth process. In Eq. 11, n is the 
number of filled sites adjacent to the unoccupied perimeter site. The 
simple homogeneous (power law) relation between the growth 
probabilities (P) and the scalar field (+) in Eqs. 10 and 11 is 
motivated primarily by theoretical considerations. A simple homo- 
geneous relation between P and $ is expected to generate patterns 
with relatively simple fractal scaling properties, whereas more 
inhomogeneous complex relations between P and + will lead to 
structures with more complex geometric scaling behavior. For the 
case q = 1, this model generates random patterns that are very 
similar to those associated with the DLA model. Because the 
harmonic field ($) must be relaxed after each growth event, this 
model cannot be used to generate very large clusters such as that 
shown in Fig. 2. 

The DLA model provides a basis for understanding a broad range 
of phenomena such as those mentioned above. Despite its apparent 
simplicity, our theoretical understanding of this model is still far 
from complete and it is now regarded as a major theoretical 
challenge. The success of the DLA model and the intense interest 
that it has generated have stimulated the development of a broad 
range of models for the formation of disorderly patterns under 
nonequilibrium conditions (31, 40, 41). In view of the results 
obtained with the dielectric breakdown version of the DLA model, 
it is natural to think of simulating mechanical breakdown processes 
by means of a similar model. In the most simple case we are 
concerned with a crack propagation process controlled by a displace- 
ment field U that obeys the Navier equation (42) 

for linear elasticity where the quantities h and p are the Lame 
coefficients (43). 

The first successhl model of this type was developed by Louis and 
Guinea (44-46). A triangular lattice is used to represent the elastic 
medium rather than a square lattice because a square network of 
nodes with nearest neighbor central force interactions would have 
no shear modulus. In these DLA-like models it is assumed that only 
those bonds on the surface of the crack (which is initiated by 
removing a bond near the center of the network) are broken as the 
crack grows. There are several different ways in which the surface 
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Fig. 3. Transition from viscous fingering to crack- 
ing patterns. These patterns were generated by 
injecting water into aqueous bentonite clay sus- 
pensions or pastes in a pseudo two-dimensional 
radial cell. The clay particle concentration (w/w) 
increases from 0.08 in the left pattern, 0.10 in the 
middle pattern, and 0.20 in the right pattern. As 
the concentration increases, the branching angle 
increases and the morphology of the pattern 
becomes more fracture-like. [Figure provided by 
H. Van Damme, CNRS, Orleans, France] 

bonds can be defined. Three of these possibilities will be referred to 
as model I, model 11, and model 111, respectively. In model I only 
those bonds joining pairs of nodes that are both on the crack 
perimeter can be broken. In model I1 any bond associated with a 
damaged node (a node with five or fewer bonds) can be broken, and 
in model I11 any of the bonds associated with any of the nodes at the 
crack perimeter can be broken. Model I1 was used in the original 
work of Louis et al. (44, 45). 

In this model the bond-breaking probabilities Pi are given by 

where 6, = ti - to is the bond stran ( t i  is the bond length and to is 
the equilibrium bond length) and N is the number of surface bonds. 
In most simulations the network is dilated isotropically (by a small 
amount to avoid unwanted nonlinearities), and the positions of the 
nodes at the edges of the network are fixed. In some cases, a constant 
force is applied to the nodes at the perimeter of the network. Figure 4 
shows the results of simulations carried out with all three models for 
the local boundary conditions at the crack surface with a growth 
probability exponent (q) of 1. The patterns generated by these models 
are quite similar to those associated with the DLA model. These 
pattems are probably asymptotically self-similar fractals, and their 
fractal scaling properties tin be measured with the methods that have 
been applied to DLA. Unfortunately, the amount of computer time 
required to grow a cracking pattern consisting of a few thousand 
broken bonds is comparable to that required to grow a DLA cluster 
with a few million sites or particles. The dependence of the radius of 

Table 1. Effective fractal dimensionalities (DeE) obtained from the DLA- 
like crack growth models. The effective fractal dimensionalities were 
obtained by least-squares fitting straight lines to the coordinates [log(Rg), 
log(s)J for the larger values of s. Because of both finite size effects and 
statistical uncertainties, the values of D p  given here may not be close to 
their asymptotic values. Particularly for model 111, the simulated clusters 
exhibit geometric scaling over only a small range of length scales. 

Growth Stress field Surface 
exponent (q) model D,E 

Dilation 
Dilation 
Dilation 
Shear 
Shear 
Shear 
Dilation 
Dilation 
Dilation 
Shear 
Shear 
Shear 

gyration (R,) of the simulated cracking patterns on the number of 
broken bonds (s) can be represented quite well by the algebraic relation 

R, - sP (14) 

for patterns containing more than a few tens of broken bonds, but 
the accessible power law regime spans less than an order of 
magnitude in length scales. The values obtained for the fractal 
dimensionality (Dp = 1/P) from Eq. 14 are given in Table 1 (47). 

Simulations have also been carried out with similar models with 
shear strain (45-49) or uniaxial extension (48, 49). With shear strain 
the cracking pattern has an x-like shape (if only bonds in tension are 
allowed to break, only one arm of the x shape grows) for model I, 
11, and I11 boundary conditions and for different orientations of the 
shear with respect to the lattice axes. Effective values for D p  
obtained via Eq. 14 are shown in Table 1 for some of these shear 
models. Hinrichsen et al. (48) have obtained very similar cracking 
patterns using essentially the same model. However, they analyzed 
their cracking patterns differently and concluded that the fractal 
dimensionality for model I is 1.28 ? 0.06 (substantially lower than 
the value shown in Table 1). They pointed out that the individual arms 
of the racking patterns generated using shear strain are very similar to the 
patterns generated using uniaxial compression (or tension). This sug- 
gests that the patterns may be self-&e (50). It seems quite possible that 
the asymptotic global fractal dimensionality (50) may be 1.0. This 
example illustrates the practical d3Kcultie.s that are encountered when 
fractal geometry is used to characterize such small structures. 

Surface Cracking Models 
A model for surface cracking (51) can be constructed from a 

triangular network of Hookean bonds with central force interac- 
tions. For this system the elastic energy is given by 

E = 112 2 kij (ty - (15) 
ij 

where ty is the distance between the ith and j th nodes and ky is the 
corresponding force constant. Here kg = k if the nodes are connect- 
ed and ky = 0 if the bond between the ith and j th nodes is broken. 
In addition, each node in the network is attached to the (rigid) 
substrate by a weak bond. The force exerted by this weak bond on 
the ith node is given by 

where ri is the position in the ith node and rio is the position of 
attachment to the substrate (its position at the start of the simula- 
tion). In this model only the high modulus bonds in the surface layer 
are allowed to break (all the nodes remain attached to the substrate). 
The bond-breaking probabilities are given by 

Pi - Ri = exp (k8?/2) (17) 
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Model I 
9 = 1 - dilation 
s = 1210 
L=160  

Model Ill 
q = I - dilation 
S = 1696 

Fig. 4. Examples of cracking patterns generated with the use of the DLA-like 
cracking model and a bond-breaking probability exponent (q) of 1. (A, B, breaking correspond to models I, 11, and III, respectively. [Adapted from (47) 
and C) Cracks generated using models in which the bonds capable of with permission of IOP Publishihg, copyright 19891 

(Eq. 2 with a value of 2 for the exponent n). The simulation 
proceeds via a sequence of bond-breaking and relaxation steps. 

Figure 5 shows some of the results obtained h m  a small-scale 
simulation carried out with the use of this model with the parameter 
k = 800, k, = 8, and an initial bond extension of 10% (e = 1.0 for 
all bonds in the surface layer at the start of the simulation and 
to = 0.909090 . . .). These are typical parameters for this model. 
Periodic boundarv conditions were used in all of the simulations. 
The green-blue-red-white color scale used in Fig. 5 indicates the 
stress (or strain) associated with each of the bonds in the surface 
layer. Figure 5A shows the system after 200 bonds out of the initial 
total of 7500 bonds (a network of 50 x 50 nodes) have been 
broken. This figure illustrates the stress concentration at the grow- 
ing crack tips;the formation of a "shear band" (upper central 
region), and relaxation of much of the initial strain near to the 
cracks. Figure 5B shows the system after 400 bonds have broken. At 
this stage-several "shear bands" have formed and a quite complex 
stress-strain field is evolving. The shear bands often appear ahead of 
growing crack tips and represent regions in which localized damage 
has occurred without complete failure of the network. Figure 5C 
shows a still later stage (600 broken bonds). At this stage a large 
hction of the initial strain energy has been released. Results have 
also been obtained from much larger scale simulations with net- 

works of 200 x 200 nodes joined by 120,000 bonds. For large 
values of k, the first cracks to be formed are quite linear; but, as the 
cracking process continues, the cracks become more and more 
irregular. 

These simulations,can easily be made time-dependent by use of 
the approach outlined above (Eq. 8). Figure 6 shows some results 
h m  these time-dependtnt simulations (for dilational strain in the 
surface layer at the sfart of the simulations). These and other 
simulations indicate the following scenario for large values of k and 
klk, >> 1. Initially isolated defects are formed, and the rate of 
bond-brealung is relatively slow. However, the stresses associated 
with bonds near these defects are larger than those farther fiom 
defects, and they have a relatively high probability of breaking. As 
the defects grow larger, these stress concentration effects become 
more important, and once a crack has developed it grows very 
quickly. The fast growth of the first few cracks reduces the stress in 
the surface film and the rate of bond-breaking becomes slower and 
slower as more of the elastic energy in the film is released. As the 
stress is progressively released, the cracks become less linear because 
of the reduced effects of stress concentration of the growing crack 
tips. These qualitative features are not very sensitive to model 
details. Very similar cracking patterns and kinetic behavior can be 
obtained with models in which the bond-breaking rates are given by 

Fig. 5. l'luee stages in a small-scale (2500-node) simulation carried out with (highest strain) color scale illustrates the dismbution of stress and strain in 
the surface cracking model. The green (lowest suain)-blue-red-white the surface layer. 
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Eq. 1 (with large values for q) or Eq. 2 with a range of values for the 
exponent n. In this model the randomness is controlled via the force 
constants k and k,. Increasing k and k, together is equivalent to 
decreasing the temperature, because reduced units (k,T = 1) are 
used. 

Very similar cracking patterns have also been obtained from a 
deterministic surface cracking model with quenched disorder. In 
these simulations the damage threshold Ti for the ith bond is given 
by 

T. = x.0 
I 1  (18) 

where xi is a random number uniformly distributed over the range 
0 < x < 1. In this model the disorder is controlled by the exponent 
0 in Eq. 18 or the force constants (temperature). This is not a very 
realistic threshold distribution, but the simulations indicate that very 
similar results can be obtained with the Monte Carlo model 
described above and with a corresponding deterministic model with 
quenched disorder. 

The relaxation algorithm used in connection with this work causes 
the stress and strain fields to approach equilibrium via a "diffusion" 
process. Consequently, the number of relaxation steps required for 
the influence of a newly created defect to propagate through the 
entire system is on the order of ~ ~ ( 1 0 ~  to lo5), where L is the size 
of the system. Because the total number of relaxation steps in a 
typical simulation also lies in the range of lo4 to lo5, it might seem 
surprising that these simulations succeed at all. However, the 
"weak" bonding between the surface layer and the substrate strongly 
localizes the effects of the crack on the stress field (the effect of the 
crack on the stress field decays exponentially with increasing distance 
from the crack). The decay length for the decay of the perturbation 

Crack 

_--- __---- 
omlo om20 0.0030 o m  o m  

1 0 0  
I I I I I I I I B 

o! ' o m 0  om20 o m  o m  om50 
t 

Fig. 6. (A) T i e  dependence of the number of broken bonds in a surface 
cracking model simulation; (B) total strain energy in the surface layer 
obtained from simulations similar to those illustrated in Fig. 5 with a value 
of 800 for k and 8 for k2. These figures indicate a slow initiation period in 
which little strain energy is released and only isolated defects are formed, 
followed by a period of rapid crack propagation in which about 30% of the 
energy is released. This rapid release of the stress in the surface layer slows 
down subsequent crack initiation and propagation events. As more cracking 
occurs, the stress becomes still smaller and further slowing down is observed. 
[Adapted from (51) with permission of Elsevier Sequoia, copyright 1987 

of an infinitely long linear crack is given by C(k/k2)'I2, where C is a 
coefficient of order unity. Without this locabation, use of overre- 
lavaton and block-relaxation (to increase the "diffusion coeffi- 
cient"), and the extra relaxation cycles in the vicinity of the last 
broken bond, the simulations described above would not succeed. 

Analog Simulations and Experiments 
During the past 20 to 30 years, the use of computer simulations 

to study pattern formation processes has grown rapidly with the 
increased power and availability of digital computers. In a computer 
simulation, we can control precisely the interactions between parti- 
cles, and their positions are known accurately at all times. However, 
even with the most advanced computers available today, most 
simulations are restricted to a comparatively small number of 
particles (typically a few hundred to a few hundred thousand) and 
relatively short times. The use of analog devices to explore the 
organization of particles under both equilibrium and nonequilib- 
rium conditions has a long history. In recent years this approach has 
fallen into disfavor because of the difficulty of constructing and 
controlling such devices in a precise manner and because of the 
dii5culty of obtaining quantitative results from them. In many 
instances, large numbers of uniformly sized and shaped particles are 
required to construct simple experimental models. The unavailabil- 

Fig. 7. Cracking inside a single grain of a sulfonated polystyrene microsphere 
monolayer. (A) The almost linear cracks that are produced at high strain in 
the earliest stages of cracking; (B) the more irregular cracking pattern that is 
generated under lower strain conditions later in the cracking process. 
[Figures provided by A. T. Skjeltorp, Institute for Energy Technology, 
Kjeller, Norway. (B) is reprinted from (57) with permission] 
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ity of such monodisperse particles in a suitable size range has proven 
to be an imporrant obstacle to many analog experiments. The recent 
availability of uniformly sized polystyrene microspheres with diam- 
eters in the range 1 to 10 pm (52,53) has led to the construction of 
experimental models for a variety of equilibrium and nonequilib- 
rium procases (54-56). Microspheres in this size range can be used 
to construct models conmining large numbers (>lo7) of particles, 
and the resulting structures can be studied by optical microscopy. 

Cracking processes similar to those described in the previous 
section have been simulated by using an analog model consisting of 
a monolayer of sulfonated polystyrene microspheres with a diameter 
of 3.4 pm (21%) (57). The initial monolayer is formed between 
two parallel glass sheets separated by a small number of slightly 
larger microspheres. The initial monolayer consists of large, almost 
perfectly regular regions separated by grain boundaries. The micro- 
spheres were dispersed in water to produce the monolayer, and a 
strained film was produced by allowing the monolayer to slowly dry. 
During the drying process, the sphere diameter is reduced to 2.7 

pm. At first, cracking occurs along the grain boundaries; but, 
because of the interactions between the microspheres and the glass 
surfaces, the individual grains are still under substantial strain after 
the grain boundaries have failed. At the &st stages of failure within 
the individual grains, small (localized) defects are formed at a 
relatively slow rate. This stage is followed by the rapid growth of 
more or less linear cracks (Fig. 7A). In the later stages, the crack 
growth process becomes slower and the cracks become less and less 
linear as the stress in the monolayer is released by the cracking 
process (Fig. 7B). Figure 7 shows cracking patterns generated 
within an individual grain. 

Models for Polymer Failure and Deformation 
The models described above were motivated primarily by a desire 

to obtain a better understanding of pattern formation processes 
(crack growth) under nonequilibrium conditions. Another impor- 
tant motivation for such models is to develop a better understanding 
of the mechanical propaties of real materiais. Models developed fo; 
this purpose are in most cases (necessarily) more complex than those 
described above. The use of mechanical network models to describe 
the properties of polymer systems has a relatively long history, and 
applications in this direction will be used here to illustrate applica- 
tions in materials science. 

A serious attempt has been made to compare the simulation 
results with experiments on corresponding polymer systems. This is 
illustrated in Fig. 8 for a model that simulates failure and deforma- 
tion in an entangled polymer network on the assumption that chain 
slippage through entanglements and the effect of weak van der 
Waals interactions on polymer motion play the dominant role in 
tensile deformation (58). In this madel both the rate of failure of van 
der Waals "bonds" and the rate of chain slippage are given by Eq. 6 
with different values for E, and p. For the chain slippage process, the 
parameter a in Eq. 6 represents the stress difference between two 
parts of a chain separated by an entanglement point. 

At the start of a simulation, the system consists of a two- 
dimensional "diamond" lamce of nodes representing the entangle- 
ment points between pairs of polymer molecules. The lamce is then 
decorated randomly with polymer molecules that intersect only at 
the nodes (entanglement points) so that there is an entanglement 
point associated with every node (58, 59). The stress a in the 
pomons of the polymer chains separating entanglement points is 
given by the classical theory of rubber elasticity (60) 

Here n is the number of statistical chain segments of length t 
between a pair of entanglement points separated by a distance r and 
3-' is the inverse Langevin function {%(x) = [coth(x) - llx]). The 
parameter ol is given by (60) 

Fig. 8. A comparison of simulated and experimental morphologies for the 
deformation and failure of an entangled polymer. (A) The simulated 
morphologies for four diffzrent values of the entanglement parameter 
$ = 1900/M, ( 4  = 0.004, 0.02, 0.1, and 1.0 from left to right) for 
simulations carried out using parametem corresponding to polyethylene. The 
corresponding "sample" widths were 3.2,1.6,0.7, and 0.2 km, respeciively. 
For those samples that have not failed completely, the draw ratio (A) is 2.7. 
(B) Micrographs of drawn samples of polyethylene 6h.s of M,., = 1.5 x 1@ 
and M,, - 2 x 10' crystallized from solutions in decalin and from the melt. 
These samples were drawn to a macroscopic draw ratio of approximately 3 at 
l W C .  The initial polymer volume fractions (4) were 0.005,0.02,0.1, and 
1.0 from left to right. [Figures provided by Y. Termonia, E. I. du Pont de 
Nemours and Company, and reprinted from (58) with permission of the 
American Chemical Society, copyright 19881 
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where N is the number of chain strands per unit volume. 
Like the other models discussed here, the simulation consists of a 

sequence of bond-breaking and relaxation steps. At frequent inter- 
vals the network is also strained along they axis. In this model only 
displacements in the y direction are calculated explicitly. The 
coordinates in the x direction are assumed to be reduced uniformly 
by where A is the draw ratio and periodic boundary condi- 
tions are used in the x direction. Perhaps the most drastic assump- 
tion made in this model is that, once van der Wads bonds have been 
broken, they are not allowed to reform. A discussion of the selection 
of parameters (activation energies, activation volumes, and so on) 
and their justification is beyond the scope of this general survey. 
However, two important parameters are the molecular weight M, 
between entanglement points and the polymer molecular weight 
(M). Figure 8A shows the results of simulations carried out for a 
monodisperse high molecular weight material (corresponding to 
M = 475,000 for polyethylene) with several different values ofM,. 
This quantity is expressed in terms of the ratio + given by 

where 1900 is the value for M, in a polyethylene melt. For very 
small values of + (M = M,), stress concentration resulting from 
failure of the van der Wads bonds is not distributed by chain 
entanglements. Consequently, failure is highly localized and occurs 
at quite small strains. Figure 8B shows the results of experimental 
studies of the drawing of polyethylene films. The films were 
prepared by solidification from the melt (M, =. 1900) and from 
decalin solutions for molecular weights of M, = 2 x lo5 and 
M, = 1.5 x lo6, respectively, where M, is the number-average 
molecular weight and M, is the weight-average molecular weight. 
The qualitative agreement between Fig. 8, A and B, is quite striking. 
A more quantitative comparison between these simulations and 
experiments is described in (58). 

Very large amounts of computer time on large machines (main- 
frame computers and supercomputers) were required to obtain the 
results discussed in this review. Even for the most simple cracking 
models it is difficult to obtain quantitative results without significant 
uncertainties resulting from both statistical and finite size effects. It 
is unlikely that the computer resources available for this type of work 
will improve sufficiently during the next 5 to 10 years to substan- 
tially improve this situation. Most of the simulations described 
above were carried out with a combination of overrelaxation and 
block relaxation. In some cases, techniques such as conjugate 
gradient (61) methods and Fourier acceleration (62) may offer 
substantial improvements. In practice, however, these approaches 
do not appear to result in significant improvements for most models. 
There is a clear need for improved algorithms that will allow us to 
grow larger structures more quickly without compromising the 
accuracy of the simulations. The largest cracking patterns that have 
been grown with current algorithms contain just a few thousand 
broken bonds. This contrasts with the simulations of DLA patterns 
for which clusters containing more than lo7 sites have been 
generated in two dimensions. In addition, almost no approxima- 
tions were made in the DLA simulations. 

At present, there are very few results from three-dimensional 
simulations [apart from the rather small-scale simulations carried out 
more than 15 years ago by Dobrodumov and El'yashevich (63)l. It 
should not be exceptionally more difficult to carry out three- 

dimensional than two-dimensional simulations, and it is surprising 
that more work has not been done in this direction. In all of the 
models that have been discussed here, the material is represented by 
a network of nodes and bonds. These basic elements in the models 
do not necessarily represent structural units in real systems. 

The simple models described here do not represent at all well the 
rich phenomenology found in most real fracture processes. They do, 
however, provide a firm foundation for the development of more 
realistic models, and this is an active area of research at the present 
time. For example, the models of Termonia and co-workers for 
polymer systems (58, 59, 64-66) include effects such as bond 
formation as well as bond breaking, finite molecular weight effects, 
entanglements, and orientation effects. These are fully time-depen- 
dent models that can be used to investigate the effects of strain rates 
and load cycling on mechanical systems. The temperature depen- 
dence of failure processes can also be explored with these models. 
Efforts in this direction will probably grow rapidly during the next 
few years. It would not unduly complicate these models to add 
processes such as heat generation and transport, the diffusion of low 
molecular weight substances, and damage by light and other radia- 
tion to these models. 

The "universal" scaling behavior found by de Arcangelis et al. (4) 
is also an important advance. It seems probable that additional work 
will be carried out to delineate the range of this universality. If 
similar scaling behavior is found for more realistic models, this will 
stimulate a search for scaling and universality in experimental 
systems (such experiments would be worthwhile in any event). The 
search for universality in fracture will be slowed by the lack of 
efficient algorithms. This will become an even more severe problem 
as more complex and more realistic models are explored in this way. 
Even with the most simple models it is difficult to obtain unarnbig- 
uous results. 
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Pattern Formation During 
Animal Development 

At the beginning of this century, embryologists defined 
the central problems of developmental biology that re- 
main today. These questions include how differentiated 
cells arise and form tissues and organs and how pattern is 
generated. In short, how does an egg give rise to an adult? 
In recent years, the application of molecular biology to 
embryological problems has led to significant advances 
and recast old vroblems in molecular and cellular terms. 

I 

Although not necessarily comprehensive, this idiosyncrat- 
ic review is intended to highlight selected findings and - - 
indicate where there are important gaps in our kno61edge 
for those less than familiar with developmental biology. 

I T's NOT THE INGREDIENTS, IT'S HOW THEY'RE MIXED AND 

matched. A surprising and encouraging finding in recent years 
has been the recurring "discovery" of certain gene products in 

various developmental systems. Open a journal and one is likely to 
read that any particular gene involved in directing a given mouse cell 
to adopt a particular fate, after being cloned and sequenced, turns 
out to be related to a gene performing a similar, but not identical, 
function in worms, flies, or even yeast. For example, peptide growth 
factors, first studied for their ability to regulate cell division, now 
turn up in innumerable instances as signals that can tell a cell 
whether to become a muscle or skin cell (1). Similarly, fly genes 
involved in neurogenesis and worm genes involved in inducing 
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vulval and gonadal lineages have both been found to encode a 
membrane protein with a region of amino acids related to epidermal 
growth factor, a gene product previously identified for its role in 
vertebrate epidermal differentiation (2, 3). Other examples include 
structural motifs, such as homeobox, zinc finger, helix-loop-helix, or 
pou domains, found in common among proteins coordinating the 
transcription of a set of genes and thereby directing a developmental 
program (4). These observations suggest that a few types of genes 
are used similarly by diverse organisms to specify cell fates during 
development. While differences in developmental programs between 
species obviously exist, these are most apparent when a developmen- 
tal process is examined at the level of tissues and organs and not at 
the molecular level. It is perhaps self-evident that a present-day 
challenge for developmental biologists is to explain how relatively 
few types of genes (transcription factors, peptide growth factors, 
extracellular matrix components, cytoskeletal proteins, and so on) 
and mechanisms for specifying cell fates (cell-cell interactions or 
cytoplasmic localization among others) are used to produce such 
different animals. With this problem in mind, let us examine some 
recent findings in studies on pattern formation. 

Regulative or Mosaic Embryos 
Observations on marine invertebrates and results of experiments 

in which parts of embryos were cut out and studied in isolation first 
led embryologists to divide organisms into two classes: regulative 
and mosaic. In regulative embryos, parts of the embryo can be 
removed and the remaining cells compensate for the loss to form a 
normally patterned animal. Two telling examples are presented by 
sea urchins and salamanders. Each blastomere of a cleaving sea 
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