
modulator. Thioredoxin also has an extracel­
lular function as a secreted form, displaying 
many of the activities of interleukin-1 (IL-1) 
(22). Alternatively, since IL-1 can induce the 
production of free radicals (27), it is possible 
that thioredoxin (acting like IL-1) and 
IFN-7 together could induce inhibitory 
concentrations of free radicals. The chal­
lenge now is to determine whether these 
effects, or others, are significant during the 
growth arrest of HeLa cells. 
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sequent to the isolation and characterization 
of ANP, two related hormones have been 
described: BNP, isolated from both brain 
and heart (2, 3), and CNP, purified from 
porcine brain (4). Like ANP, both of these 
hormones can elicit vasorelaxant, natri-
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uretic, and diuretic responses in chick and 
rat bioassay systems (2, 4). These natriuretic 
peptides share a common structural motif 
consisting of a 17-amino acid loop formed 
by an intramolecular disulfide linkage. Only 
5 of the 17 amino acids in the ring differ 
among the three peptides isolated from the 
pig, whereas the NH 2 - and COOH-termi-
nals vary in both amino acid composition 
and length (4). Among different species, the 
structures of both ANP and CNP are highly 
conserved (1, 5), whereas the amino acid 
sequence of BNP varies as much as 50% (2, 
3, 6). 

The biological activities of the natriuretic 
peptides are thought to be mediated by 
intracellular accumulation of guanosine 
3',5'-monophosphate (cGMP) through the 
activation of particulate guanylyl cyclase (1, 
7, 8). Molecular cloning studies have iden­
tified three distinct natriuretic peptide recep­
tors. ANPR-A and ANPR-B (also called 

Selective Activation of the B Natriuretic Peptide 
Receptor by C-Type Natriuretic Peptide (CNP) 
KERRY J. R O L L E R / DAVID G. LOWE, GREGORY L. BENNETT, 
NAOTO MINAMINO, KENJI KANGAWA, HISAYUKI MATSUO, 
DAVID V. GOEDDEL 

The natriuretic peptides are hormones that can stimulate natriuretic, diuretic, and 
vasorelaxant activity in vivo, presumably through the activation of two known cell 
surface receptor guanylyl cyclases (ANPR-A and ANPR-B). Although atrial natri­
uretic peptide (ANP) and, to a lesser extent, brain natriuretic peptide (BNP) are 
efficient activators of the ANPR-A guanylyl cyclase, neither hormone can significantly 
stimulate ANPR-B. A member of this hormone family, C-type natriuretic peptide 
(CNP), potently and selectively activated the human ANPR-B guanylyl cyclase. CNP 
does not increase guanosine 3',5'-monophosphate accumulation in cells expressing 
human ANPR-A. The affinity of CNP for ANPR-B is 50- or 500-fold higher than 
ANP or BNP, respectively. This ligand-receptor pair may be involved in the regulation 
of fluid homeostasis by the central nervous system. 
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Fig. 1. Whole-cell stimulation of COS-7 cells ANPR-B-expressing cells, hCNP elicited 
transiently expressing the receptor guanylyl cycla- 60 the highest guanylyl cyclase activity (56.1 + 
ses. COS-7 cells were plated in six-well dishes (2.5 .j; 
x lo5 cells per well) 18 hours before transfection 3.6 pmol of cGMP per lo6 cells), which is 
by lipofection with the appropriate receptor plas- ,U comparable to that seen when ANPR-A- 
mid DNA (ANPR-A, solid bars; ANPR-B, 40 expressing cells were stimulated with hANP. 
hatched bars; or expression vector, open bars; 1.5 Comparative dose-response experiments 
kg of DNA and 15 kg of lipofectin reagent per were performed on cells expressing 
well) as per manufacturer's instructions ( G i b c e  

- 
Bethesda Research Labs.). Forty-eight hours after % 20 ANPR-B to study the kinetics of guanylyl 
addition of DNA, cells were washed once with 8 cyclase activation (Fig. 2). Over the concen- 
DMEM + Hepes (25 mM, p H  7.2), incubated trations tested, hANP and hBNP increased 
with DMEM + Hepes (25 mM, p H  7.2) + 0 cGMP only slightly. The pBNP caused a 
isobutyl methylxanthine (0.1 mM) (DIHII) for 10 
min at 37"C, and incubated for 5 min at 37°C in dose-dependent increase in cGMP produc- 

Peptide (0.5 pM) 
DIHII with or without 0.5 KM of the appropriate tion, but very high, nonphysiological con- 
peptide. Stimulation for longer than 5 min did not increase the concentration of cGMP produced (data centrations were needed to produce this 
not shown). The incubation media was aspirated and replaced with 1 ml of 10% trichloroacetic acid, effect. In contrast, hCNp elicited a classic 
and the cells were frozen quickly on dry ice. After the samples thawed at room temperature, the cell dose-dependent increase in c ~ M ~ .  ~h~ half- 
debris was removed by centrifugation at 25002 for 10 min. Samples were extracted three times with 500 
kI of water-saturated ether and warmed to 55°C for 20 min to evaporate the residual ether. Portions maximal effective (EC5~)  was 
were acetylated and analyzed for cGMP concentration by radioimm~noassa~ according to the estimated at 100 nM; however, there was a 
manufacturer's instructions (Biomedical Technologies). Results are expressed as the mean of triplicate significant increase in cGMP over back- 
determinations -+ SEM. ground at concentrations as low as 0.5 nM 

(1.69 r 0.05 versus 1.33 2 0.03 pmol per 

125 centrations (12). The ANPR-B guanylyl cy- lo6 cells; P < 0.05). Therefore, CNP selec- 
clase, on the other hand, produces only low tively activated the guanylyl cyclase of 

$1 00 
amounts of cGMP after activation by rela- ANPR-B at physiologically relevant concen- 

- - tively high concentrations of ANP or BNP trations and with a kinetic profile typical of al 
(1 1, 12). These experiments suggest either a natural ligand. 

"0 75 
c - that ANPR-B signals through a second mes- To determine whether the activation of 
0 

50 
senger system other than cGMP or that the the guanylyl cyclase correlates with the bind- - natural ligand recognized by ANPR-B has 

% not been described. With these results in $ 25 
mind, we studied the ability of the recently 
described natriuretic peptide, human CNP 

0 (hCNP) (18), to bind to and activate the 0.8 

guanylyl cyclase of the cloned human A and 
log[Peptide] B receptors expressed in mammalian cells. 0.6 

Expression vectors in which human 
Fig. 2. Concentration-dependent stimulation of 0.4 
the ANPR-B guanylyl cyclase by natriuretic pep- ANPR-A and ANPR-B are under the 'On- 
tides. COS-7 cells were plated and transfected trol of the cytomegdovirus immediate early 

0,2 
with the ANPR-B expression plasmid as in Fig. 1. promoter (10, 11) were transfected into 
The cells were washed and incubated as above and (333-7 cells, ~ ~ ~ ~ ~ ~ ~ l l ~ l ~ ~  c ~ ~ p  content o,o stimulated with or without varying concentra- 
tions of natriuretic peptides [hCNP (.), hANP was determined after the intact cells were -14 -12 -10 -8 -6 

(O), hBNP (D), and pBNP (O)]. Intracellular incubated in the presence hCNP Or the log[Peptide] 
cGMP accumulation was determined as in Fig. 1. natriuretic peptides known to stimulate the 
Each point represents the mean of triplicate sam- ANPR-A and A N ~ R - B  gumylyl cyclases Fig. 3. Inhibition of the specific binding of 
ples assayed in duplicate (k SEM). [1251]C~P by natriuretic peptides to cells express- 

most effectively (11); that is, human ANP ing the binding domain of ANPR-B. Human 
(hANP) and porcine BNP (pBNP) (19), embryonic kidney cells stably expressing the extra- 
respectively (Fig. 1) .  In cells transfected c~llular and tmsmembrane domain of ANPR-B 

GC-A and GC-B) are approximately 1030- with a control expression vector alone, less were with phosphate-buffered 
line (PBS) + 5 mM EDTA and washed with PBS 

amino acid transmembrane guanylyl cyclases than 2 pmol of cGMP per lo6 cells was containing 0,1% bovine albumin ,d 
(9-12). The third receptor, ANPR-C, is a detectable with or without hormone stimu- 0.02% sodium azide (PBSA buffer). Duplicate 
496-amino acid transmembrane protein lation. As previously shown (1 I), hANP and samples of lo4 cells in 1 ml of PBSA were 

with a short 37-amino acid cytoplasmic tail pBNP markedly increased cGMP accumula- incubated at erature for hours 
sha!4ng with 15 pM ["I]CNP (20) alone or in (13, 14). This receptor, also called the clear- tion in ANPR-A-expressing cells (58.6 r the presence of increasing concentrations of unla- 

ance receptor (15), does not signal through 1.4 and 44.6 r 3.1 pmol per lo6 cells, beled h ~ ~ p  (.), w p  ( a ) ,  h ~ ~ p  (D), and 
activation of guanylyl cyclase, but may func- respectively) above nonstimulated concen- pBNP ( 0 ) .  Nonspecific binding was determined 
tion through intermediate G proteins to trations (1.5 r 0.1 pmol per lo6 cells). For by addition of M displacing peptide. The 

inhibit adenylyl cyclase or activate the phos- ANPR-B-expressing cells, cGMP concen- $iyp::: ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ d f i ~ ~ ~ ~ ~ ~ ~ ~ ~  
phoinositol pathway (16). ANPR-C impos- trations increased 5-fold with hANP stimu- P B ~ ~ ,  and the amount of bound 1251 deter- 
es the fewest structural constraints of all the lation and 30-fold with pBNP stimulation. mined by counting the filters in a gamma counter. 
receptors on ligands it will recognize in a The hCNP displayed a much greater selec- The data were analyzed by the LIGAND program 

binding assay (17). ANP is the most potent tivity for stimulating the guanylyl cyclase of and Rodbard (28). are ex- 
hormone for stimulation of the ANPR-A activity of these receptors. In cells expressing [ ~ ~ ~ d a ~ a ~ p $ d " , " C ~ e n ~ ~ ~ ~  (;%&:: 
guanylyl cyclase; BNP is as efficacious, but ANPR-A, hCNP stimulation did not in- by the counts per minute bound in the 
only at approximately tenfold higher con- crease intracellular cGMP. Conversely, in absence of displacing peptide (B,). 
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ing of CNP to ANPR-B, [1251]CNP (20) 
was incubated with human embryonic kid- 
ney (293) cells stably expressing the extra- 
cellular and transmembrane domains of 
ANPR-B (21) in the presence of competing 
concentrations of hANP, hBNP, pBNP, or 
hCNP (Fig. 3). The rank order of potency 
for binding to those sites labeled by 
[1251]C~P was the same as for stimulating 
the ANPR-B guanylyl cyclase; that is, hCNP 
> pBNP > hANP > hBNP. The inhibition 
constant (K,) values for these ligands were 
30 pM, 0.3 nM, 1.6 nM, and 14.7 nM, 
respectively. Therefore, in both binding and 
guanylyl cyclase activation studies, the most 
potent hormone interaction with ANPR-B 
was by hCNP. 

No specific binding of ['25~]CNP was 
seen to cells expressing either the extracellu- 
lar domain or the 111-length ANPR-A pro- 
tein (22). Also, hCNP did not significantly 
displace ['251]ANP bound to these cells 
[median inhibitory concentration (IC,,) > 
1 pM] (22). To determine the selectivity of 
hCNP binding to the ANPR-C protein, we 
measured the ability of hCNP to displace 
[1251]ANP from 293 cells stably expressing 
human ANPR-C (1 4, 22). The rank order of 
potency for the hormones used was pBNP 
> hANP r hCNP > hBNP with K, values 
of 9 7  pM, 0.12 nM, 0.14 nM, and 3.7 nM, 
respectively. Thus, in binding studies, 
ANPR-C recognized all the natriuretic pep- 
tides including CNP; however, its affinity 
for CNP was fivefold lower than that of 
ANPR-B. 

Our data elucidate the important recep- 
tor-ligand interactions within the natriuretic 
peptide and receptor families. The hormone 
specificity for activation of the guanylyl cy- 
clases of ANPR-A and ANPR-B or for 
binding to ANPR-C in humans is represent- 

ed in Fig. 4 (23). The ANPR-A guanylyl 
cyclase is activated most efficiently by ANP. 
BNP is also effective at stimulating this 
cyclase but is approximately tenfold less 
potent (12). Studies have suggested that 
although the release of these two cardiac 
hormones is subject to differential regula- 
tion (24), they have similar physiological 
activities (2, 7, 25). Therefore, their effects 
may be mediated through the same recep- 
tor; that is, ANPR-A. Alternatively, there 
may be an as yet unidentified member of the 
natriuretic peptide receptor guanylyl cyclase 
family that is specifically activated by BNP. 
ANPR-C can recognize a remarkable diver- 
sity of natriuretic- hormones and analogs 
(1 7, 22) ,  and all three of the known human 
natriuretic peptides bind the human recep- 
tor with affinities in the low nanomolar 
range. 

The experiments described here illustrate 
that the newest member of the natriuretic 
peptide family, CNP, selectively binds and 
activates the human ANPR-B protein. No 
other human natriuretic peptide was able to  
substantially stimulate the guanylyl cyclase 
of this receptor, and the binding aflinity of 
hCNP was 50- to 500-fold greater than the 
other human natriuretic peptides. Since 
CNP is significantly less potent at inducing 
natriuretic, diuretic, and hypotensive effects 
in vivo than either ANP or BNP (2, 4), it is 
possible that its primary biological activity is 
not as a classic natriuretic peptide with 
peripheral sites of action. Preliminary exper- 
iments on the distribution of CNP mRNA 
by Northern analysis (5) and ANPR-B 
mRNA by in situ hybridization (26) suggest 
that the localization of these two species is 
limited primarily to the nervous system or to 
cells derived from the neural crest. Studies of 
intracerebral injections of ANP or BNP in 

Hormones Receptors 

I I Kinase homology Guanylyl cyclase 

ANPR-A 

ANPR-C 

ANPR-B 

Extracellular TM lntracellular 

Fig. 4. Hormone specificity for the human natriuretic peptide receptors. A schematic representation of 
the ability of the human natriuretic peptides to specifically activate the guanylyl cyclase of human 
ANPR-A or ANPR-B or bind to human ANPR-C. The solid lines connect the receptors with their 
preferred ligand. The ambiguity of BNP's role in activation of ANPR-A is represented by a dashed line, 
as described in the text. TM, transmembrane region. 

the rat suggest that natriuretic peptides in 
the brain may be involved in the regulation 
of the activity of the vasopressin and angio- 
tensin hypothalamic systems to maintain 
proper body fluid homeostasis (27). CNP is 
presumed to be the natriuretic peptide with 
the highest concentration in the brain (5, 8, 
18); therefore, although extensive experi- 
ments with CNP in the brain are necessary, 
it is possible that CNP, acting through 
ANPR-B, is responsible for most of the 
central effects presently attributed to natri- 
uretic peptidesr Further studies on the phys- 
iology and binding characteristics of CNP 
and ANPR-B in the brain should help clarify 
their roles in the central nervous system. 
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Spiral Calcium Wave Propagation and Annihilation in 
Xenopus laevis Oocytes 

Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded 
in the magnitude, frequency, and spatial organization of changes in the concentration 
of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed 
by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine 
receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular 
milieu that behaves as a regenerative excitable medium. The minimal critical radius for 
propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion 
constant for the excitation signal (2.3 x lo-" square centimeters per second) were 
estimated from measurements of velocity and curvature of circular wavefronts expand- 
ing from foci. By modeling Ca2+ release with cellular automata, the absolute refractory 
period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an 
excitable medium, such as wave propagation of undiminished amplitude and annihi- 
lation of colliding wavefronts, were observed. 

M ANY G PROTEIN-LINKED RECEP- 

tors stimulate a common cell sig- 
naling pathway leading to activa- 

tion of phospholipase C (PLC), release of 
diacylglycerol and inositol l,4,5-trisphos- 
phate (IP,), and the subsequent IP3-in- 
duced release of intracellular Ca2+ (1 ). The ~, 

specificity of signal transduction by these 
receptors may be preserved by the spa- 
tiotemporal pattern of changes in the con- 
centration of intracellular free Ca2+ 
([Ca2+ ] ,) (2). Consequently, we have exam- 
ined such spatiotemporal patterns of release 
of free Ca2+ in the cytoplasm of Xenopus 
oocytes expressing muscarinic acetylcholine 
receptors (mAChRs), which are known to 
be coupled to turnover of phosphatidylino- 
sitol. The Xenopus oocyte is a valuable mod- 
el for studying Ca2+ signaling. Changes in 
[Ca2+ 1, have been followed by measuring 

the intrinsic Ca2+ -activated chloride 
(I,,,,,) currents and by imaging with Ca2+- 
sensitive dyes. Qualitatively different pat- 
terns of release of free Ca2+ have been 
observed in Xenopus oocytes, ranging from 
regenerative focal release to oscillations or 
propagating plane waves (3, 4). Several 
models have been proposed to explain the 
complex patterns of Ca2+ release. Oscilla- 
tions in [Ca2+], may result from Ca2+- 
induced Ca2+ release (CICR), while IP, 
remains constant, or from feedback mech- 
anisms on PLC activity that cause IP, 
levels to vary ( 5 ) .  Since oscillatory I,,,,, 
currents have been observed in Xenopus 
oocytes with nonhydrolyzable analogs of 
IP, (6) ,  the CICR hypothesis has recently 
gained factor. 

Oocytes were used 48 hours after injec- 
tion of mAChR transcripts (4) and were 
injected with the Ca2+ dye indicator fluo-3 
(50 nl of 1 rnM; -50 kM final concentra- 

J. Lechleiter, S. Girard, D. Clapham, Deparunent of 
tion) 30 to 120 minutes prior to each exper- 

Pharmacology, Mayo Foundation, Rochester, MN 55905. iment. Confocal imaging of a single optical 
E. Peralta, Depament  of Biochemistry and Molecular to the plasma membrane surface 
Biology, Harvard University, Cambridge, MA 02138. 

of each oocyte, was repeated at 1-s intervals. 
*To whom correspondence should be addressed. A two-electrode voltage clamp of I,,,,, was 

used in parallel with imaging to monitor 
Ca2+ release both within and distal to the 
imaging plane of the confocal microscope. 
As previously described, we found that the 
pattern of Ca2+ release induced by acetyl- 
choline (ACh) was generally a propagating 
planar wave with velocities of 10 to 30 km/s 
(4). This pattern of Ca2+ release was always 
accompanied by a rapid stimulation of 
I,,,,,. In 14 of 30 oocytes, however, a more 
complex pattern of Ca2+ release was also 
observed-the occurrence of pulsating foci 
that produced circularly propagating Ca2+ 
waves. These regenerative patterns of Ca2+ 
release were observed at low ACh concen- 
trations (10 nM) and at maximal ACh con- 
centrations (1 to 50 kM), after the initial 
planar wave of Ca2+ had traveled through 
the imaging plane. At times, these regener- 
ative waves of circular propagation would 
alter their pattern of propagation and 
change, from pulsating foci, into continu- 
ously cycling spiral waves of Ca2+ release (4 
of 14 oocytes) (Fig. 1). The oocyte shown 
was stimulated with 1 'kM ACh and exhib- 
ited the rapid I,,,,, current spike character- 
istic of mAChR responses (4). Approxi- 
mately 2 min after ACh was applied to the 
oocyte, pulsatile focal Ca2+ release was ob- 
served and several of these foci developed 
into spiral waves. This complex pattern of 
Ca2+ release would not have been discerned 
in electrophysiological recordings alone, 
since the spatial information of Ca2+ release 
is not measured by the two-electrode voltage 
clamp method. Five images, captured over a 
10-s period, followed the dominant spiral 
through one complete revolution (Fig. 1A). 
The spiral nature of the wave of Ca2+ release 
is more apparent when only the active wave- 
front is shown, as determined by sequential 
subtraction (7; Fig. 1, B and C). The initial 
wavelength, defined as the distance between 
the tangent of the spiral tip and the parallel 
tangent of the most adjacent wavefront, was 
-210 km. 

The full regenerative character and the 
three-dimensional nature of spiral wave 
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