
Chemical and Biological Microstructures as 
Probed by Dynamic Processes 

The dynamic process of electronic energy transfer is 
shown to be an important tool for probing the micro- 
structure of molecular systems, particularly those in 
which donors and acceptors occupy specifically labeled 
sites of spatially confining host matrices. Special attention 
is given to analyzing the temporal behavior of the direct 
energy transfer reaction for systems in which the dipolar 
coupling is between a donor and randomly distributed 
acceptors. This dynamic process is dependent on two 
competing lengths when the donor and acceptor distribu- 
tion is determined by the microstructure of the confining 
system: Rp, the dominant length characterizing the size of 
the conkement, and R,, which scales the strength of the 
dipolar coupling. When energy transfer processes are 
viewed in the context of these two competing lengths, a 
picture emerges of the microstructure of the confinement 
that is consistent with and corroborated by other struc- 
tural probes. 

T HE SEMINAL WORK OF FORSTER ON NONRADIATIVE DIRECT 

electronic energy transfer (DET) between donor and accep- 
tor molecules in condensed phases (1) has attracted the 

interest of researchers for more than four decades. Condensed 
matter physicists, chemists, and life scientists have investigated 
different aspects of the DET process for donor and acceptor 
molecules embedded in a broad variety of host materials ranging 
from liquids and solids to polymers and biochemical systems ( 2 4 ) .  
The approach taken in these studies was to follow the quenching 
reaction of optically excited donors in the presence of ground-state 
acceptors, and it was sometimes possible to estimate the distances 
between specific sites on macromolecules when the sites were labeled 
with donor-acceptor pairs (5). 

By the 1960s, DET was clearly established as a technique for 
studying the structure of molecular systems on scales 1 1 0 0  A. 
Forster's proposed mechanism for DET between a donor-acceptor 
pair led Stryer to the concept of the "spectroscopic ruler," an idea 
that has proven important in establishing molecular distances in 
complex biological systems (5, 6). The use of DET as a structural 
tool was derived by experimental and theoretical work in biological 
systems. The work focused mainly on understanding steady-state 
experiments. Steady-state DET experiments were used in determin- 
ing intermolecular distances important in various peptides (5), 
multilayers of fatty acids (7), and antigen-antibody complexes ( 8 ) ,  
and allowed researchers to determine the distributions of receptors 

on cell surfaces (9) and to establish surface density in membranes 
(10).  

Recently there has been a resurgence in interest in the thermody- 
namic and dynamic properties of molecular systems with spatial 
restrictions. The types of model spatial restrictions used include 
zeolites, polymer membranes, porous glasses, and various molecular 
self-assemblies (1 1-15). One key aspect of understanding the behav- 
ior of molecular systems in confinements is establishing how the 
local structure of the confinement influences, or is coupled to, the 
thermodynamic and dynamic features of the system being studied. 
Therefore, making this connection between the static structure of 
the confinement and properties of the confined molecular system has 
highlighted the importance of knowing more about the geometrical 
features of the confinement. This is something that is frequently 
unclear or unknown, particularly for disordered systems such as 
polymers and glasses. This need to examine the microstructure has 
prompted investigators to apply a broad range of structural charac- 
terization techniques. The different characterization techniques are 
reviewed in a recent article (16); however, here we focus on DET 
and how the time-dependent rather than the steady-state character- 
istics of this quenching reaction can be used to study the structural 
features of spatial confinements. We present a new approach to 
understanding how the temporal features of DET are determined by 
the microstructure of the local environment in which the donor and 
acceptors are distributed. We believe that our approach to analyzing 
the dynamics of the DET process broadens the scope of the 
applicability of the concept of the spectroscopic ruler and that the 
temporal analysis technique, which we demonstrate using model 
porous glasses, can be generally applied to other systems. 

DET as a Spectroscopic Ruler 
The DET mechanism, as first introduced by Forster, is a dipole- 

dipoledominated reaction in which an electronic excitation, initial- 
ly localized on a donor (D*), is resonantly transferred to an acceptor 
(A) located at distance R. This is a one-step process, with a rate 
W(R), which we term direct energy transfer to distinguish it from 
the indirect process in which donor-to-donor transfer takes place 
before the quenching by an acceptor, 

Forster's original theory has been extended to include general 
multipolar interactions as well as exchange interactions (17), which 
will not be discussed here. The donor-to-acceptor multipolar trans- 
fer rate is then 
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the donor-acceptor spectral overlap integral and provides an esti- successfully used in studies of a variety of biological macromolecules 
mate of the length scde for DET; &d S 6 the mulupolar exponent: 
S = 6 for dipole-dipole, S = 8 for quadrupole-quadruple interac- 
tion, and so forth. For the sake of simplicity we do not consider here 
anisotrovic contribution to W(R). The observables in DET studies 

\ ,  

are (i) the excited donor time-dependent survival probability @(t) in 
the presence of acceptors and (ii) the steady-state radiative efficiency 
q. These are related through 

1 "  
1 =;I #t)dt (3) 

0 

A number of scenarios for DET can be addressed, each of which 
has an experimental realization and can be used to probe different 
aspects of spatial arrangements of the donor and acceptor molecules: 
(i) a single donor-acceptor pair, which measures a given intersite 
distance; (ii) a distribution of donor-acceptor pairs, which probes 
the intersite distribution usually related to a distribution in a 
macromolecule's conformations; and (iii) a donor transferring en- 
ergy to a random distribution of acceptors (a minority of donors and 
a majority of acceptors). This scenario will be shown to be applicable 
to our studies of spatially confined systems. 

For a single donor-acceptor pair, for which there is only one 
relaxation channel for the excited donor, the survival probability is 
given by 

@(t )  = exp[- W(R)t - t / ~ ]  (4) 

and therefore the radiative efficiency is 

In the dipole-dipole case, S = 6 and q = R ~ [ R , ~  + R ~ ] -  l .  Equation 
5 provides the basis for deducing the distance R between a donor 
and an acceptor by means of efficiency measurements (R, can be 
determined independently) and has been the main idea behind 
applying DET as a spectroscopic ruler. Figure 1A presents schemat- 
ically the labeling of sites on a macromolecule in order to obtain the 
end-to-end distance. Both the donor and the acceptor are assumed 
to be static on the time scale of the experiment. Equation 5 was 

Fig. 1. Schematic pre- 
sentation of different do- 
nor acceptor dismbu- 
tions: (A) a single pair; 
(B) a dismbution of 
pairs; (C) a donor and 
randomly distributed ac- 
ceptors. 

with different donor-acceptor pairs &d different R, values (5-7) and 
as a standard textbook technique for studying the structure of 
biosystems (18). 

Two quantities, the scaling behavior of W(R) with R, W(R) - 
R - ~  in Eq. 1, and the inherent length R,, which defines the range 
for DET, make DET suitable as a ruler in structural studies. The 
critical radius R, and the scaling nature of W(R) play major roles in 
the time-dependent survival probabilities in studies of both homo- 
geneous and restricted geometries (1 1). 

In those situations where DET measurements probe more than a 
single donor-acceptor distance, it is necessary tointroduce a distri- 
bution function f(R); f(R)dR expresses the fraction of donor- 
acceptor pairs whose separation lies between R and R + dR. Such 
dismbutions occur, forinstance, when sites are labeled on macro- 
molecules with a range of possible conformations (4, 6) as shown 
schematically in Fig. 1B. The survival probability is no longer a 
single exponential but rather 

which leads to 

The determination off (R), which contains the relevant structural 
information, from a single steady-state measurement is, of course, 
not possible. It was suggested (19) that, by using a series of different 
donor-acceptor pairs with different R, values, one could reconstruct 

f(R) from the radiative efficiency. This procedure is tedious and 
somewhat limited by the narrow range of available R, values 
(usually between 15 and 60 a). 

Another possibility for deducing f(R) is from time-dependent 
studies on a donor-acceptor pair with a fixed Ro. Here one takes 
advantage of the fact that the temporal measurements of @(t) display 
a broad dynamical range, contrary to a single value provided by q. 
Models for f(R) can be then tested according to Eq. 6. Steinberg et 
al. have given a summary of the different approaches (6). 

A different relaxation scheme, which is frequently encountered, is 
that of a donor being quenched by many randomly distributed 
acceptors. Each donor can simultaneously relax through many 
competing channels, as shown in Fig. lC, a process that leads to a 
nonexponential decay pattern @(t). Unlike the previous schemes in 
which donor-acceptor pairs are considered, in this case for each 
donor there corresponds a hierarchy of donor-to-acceptor distances 
(20). Therefore, when calculating @(t), averaging over all possible 
acceptor locations is needed with the corresponding probabilities. 
This averaging makes the DET sense essentially the whole structure 
over which the acceptors are distributed. The structural details 
should therefore be reflected in the temporal behavior of @(t). The 
basic theoretical derivations of DET to randomly distributed accep- 
tors are reviewed elsewhere (11, 17). 

It was shown by Forster (1) that in a three-dimensional system, 
for dipole-dipole interaction between the donor and the randomly 
distributed acceptors, the survival probability is 

@(t) = exp -ppo - [ Y" r (  1/2It 1 0 1  (8) 

which has the functional form of a "stretched exponential," where p, 
is the density of acceptor sites and p is the fraction of those sites 
occupied and assumed to be p < < 1; T(X) is the complete gamma 
function. The prefactor ppo(4T~03/3) is the number of acceptors in 
a sphere of radius R,. Equation 8 has been generalized to all 

29 MARCH 1991 ARTICLES 1575 



Euclidean dimensions and to other multipolar interactions (17), 

where d = 1,2,3, and Vd is the unit sphere in different dimensions: 
V3 = 47r/3, V2 = T, and Vl = 2. The dimensionality enters into the 
decay form @(t) both through the exponent d/S and through the 
prefactor ppovd~,d.  The latter gives the number of acceptors in a 
d-dimensional sphere of radius R, and therefore scales differently 
with R, for different dimensions. The strong dependencies in Eq. 9 
on dimensionality make this DET scheme useful for structural 
studies. 

The three-dimensional Forster decay form, Eq. 8, was experimen- 
tally confirmed in a large number of systems for dipolar interactions 
(3,21). Decays in two dimension, corresponding to d = 2 and S = 
6 in Eq. 9, were observed experimentally on surfaces and in 
molecular films (22). The change in the exponent of @(t) from 112 
to 113 as the dimensionality is reduced is easily detectable. Fitting 
the donor's survival probability to Eq. 9 allows the dimensionality in 
which the DET takes place to be probed, if the multipolar exponent 
S is known. 

The decay curves characteristic of DET from an excited ddnor to 
randomly distributed acceptors, when multipolar interactions are 
considered, are stretched exponentials (omitting the natural decay), 

where the exponent a and the prefactor A directly depend on 
dimensionality. When the DET is extended to restricted geometries, 
the decay curves maintain their stretched-exponential form and the 
values of a and A are determined by the structural features of the 
confinements. The stretched-exponential nature of @(t) originates 
from the hierarchy of donor-acceptor distances and from the scaling 
behavior of W(R) (20). As will be discussed in the next section, Eq. 
10 is very useful in analyzing the spatial distributions of the 

Fig. 2. Examples of spatial confinements: (A) a cylinder; (B) a sphere with 
the corresponding exponents of the short and long time decays according m 
Eq. 10. 
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acceptors in DET measurements. Stretched exponentials have been 
shown to be a general form of relaxation patterns in a variety of 
fields (23), especially in dielectric relaxation studies in glassy systems, 
where these decay forms are known as the Williams-Watts decays 
(20,23). Much effort has been expended to understand the origin of 
stretched exponentials and their mathematical properties (20, 23, 
24). 

Restricted Geometries 
In homogeneous systems the role of R, is obvious. However, in 

the case of DET from a donor to randomly distributed acceptors in 
restricted geometries a second length enters, which characterizes the 
spatial restrictions. The model-restricted geometries we discuss are 
fractal structures, cylinders, and spheres. Although fractals introduce 
the concept of self-similarity, cylinders and spheres mimic the 
geometrical properties of pores and molecular assemblies. 

In order to apply DET to these model systems, we must modify 
Eqs. 8 and 9 by defining a site density function p(R), which 
describes the spatial arrangement of the acceptors around the donor. 
p(R) is essentially the two-point correlation function on a structure. 

The survival probability in the presence of acceptors is now (1 1, 
25, 26) 

A detailed discussion of Eq. 11 is given by Klafter and Blumen (25, 
26) and by Bauman and Fayer (27). In the limit of an infinite system 
with a random acceptor distribution, p(R) = p, and one recovers 
decays described by Eqs. 8 and 9. 

Fractal structures are examples of restricted geometries. They are 
usually disordered, tenuous but self-similar (such as percolation 
clusters) (23, 25, 28, 29). The self-similar nature of these structures 
means that there is no typical length that characterizes them and so, 
when DET is considered, R, remains the dominating length. The 
site density function for fractals is (30) 

where a is the fractal dimension (1 5 a 5 3), d is the Euclidean 
embedding space, and F is an unknown shape factor. The survival of 
a donor on a fractal is therefore (25, 30) 

again a stretched-exponential but with an exponent a/S that allows 
exponents between d = 1 and d = 3 in Eq. 9. The prefactorpp,,F~2 
is equal to the number of acceptors with a radius R, in a dimensions. 
Equation 13 is a generalization of the decays in regular dimensions 
and has been widely applied to analyze DET results in situations 
where Eq. 9 did not seem to apply (I  I). It has been used to interpret 
DET experiments on porous Vycor glass (14), on silica gels (30,31), 
on zeolites (32), and on Langmuir-Blodgett films (13). It should be 
noted, however, that fitting decay curves to the stretched exponen- 
tial in Eq. 13 may not confirm or even imply that the underlying 
structure is really a fractal. Behavior similar to that described by Eq. 
13 with nonintegral values of a can also occur as a result of crossover 
processes between dimension (33). Nevertheless, Eq. 13 is useful in 
interpreting DET in restricted geometries especially when corrobo- 
rated by other characterization techniques. 

More conventional shapes that serve as useful models for restrict- 
ed geometries are cylinders and spheres. These geometric systems 
are characterized by their radius Rp. When DET experiments are 
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performed on these geometries, it is the relation between Ro and R, 
that determines the decay patterns of @(t). Cylindrical pores have 
been used to model local pore characteristics. Many properties of 
porous materials are being studied in the framework of a cylindrical 
pore, for example, adsorption, wetting, and diffusion. Spheres are 
usually chosen to approximate miceUe or microemulsion shapes. In 
order to be able to utilize DET as a tool for structural studies of 
these geometries, it is essential that one understand the dependence 
of the energy transfer reaction on the donor-acceptor distributions 
on or within these geometries. Figure 2, A and B, shows schemat- 
ically donor and acceptor distributions on cylindrical and spherical 
shapes. 

We first address the case of a cylinder of radius R, with a donor 
and randomly distributed acceptors on its surface. Calculating the 
corresponding site density function and using Eq. 11, one finds (30, 
33) that the survival probability can be numerically evaluated. 
Analytical expressions are easily derived for the short and long time 
behavior of @(t). The crossover time is estimated from the ratio of 
the two relevant length scales R, and R,: 

for t < T(~R,/R,)~.  The short time decay displays a two-dimensional 
behavior according to both the exponent 2/S and the prefactor 
p P o ~ ~ 0 2  (see Eq. 9). The donor senses only acceptors on the surface 
in its immediate vicinity. For long times t > T ( ~ R ~ / R , ) ~ ,  

This corresponds to a one-dimensional relaxation according to the 
exponent 11s. The prefactor 4 ~ p p , , R P ,  equals, for R, < R,, the 
number of acceptors on the cylinder surface within radius R,. The 
donor's decay crosses over from a two-dimensional to a one- 
dimensional form at a crossover time t,,,,, - (2Rp/Ro)S. This is a 
direct result of the finiteness of the systems and a fingerprint of a 
length, R,, that competes with R,. Both the short-time and the 
long-time decays are stretched exponentials for which the exponent 
and prefactor reflect the dimension and molecular arrangement of 
the system. 

If the acceptors are now distributed within the cylinder with the 
donor stiU on the surface ( 3 4 ) ,  then for short times t < T(R,/R,)~, 

L 1 

a three-dimensional decay to acceptor in the volume close to the 
donor, but, as the prefactor indicates, the number of acceptors 
participating corresponds only to half a sphere of radius R,. For 
long times, t > T(R,/R,)~, 

characteristic of one dimension. The prefactor in Eq. 17, 
~ T ~ ~ , , R , ~ R ~ ,  is the number of acceptors in a cylinder volume of 
radius R, and length determined by the critical radius R,. Here, too, 
a crossover between stretched-exponential forms of the decay is 
predicted, but between three-dimensional and one-dimensional. 

What emerges from this analysis is that DET is capable of sensing 
local dimensionalities as weU as crossovers between them. This 
contributes to a more complete picture of the investigated structures. 
Both the exponents and the scaling of the prefactors with R, and R, 
contain desirable information that may lead to an understanding of the 
morphologies of confinements. When local structures are known, the 
dependence of the prefactor on R, can provide insight about the 
distribution of the acceptors (see Eqs. 14  to 17  for comparison 
between surface and bulk locations). Crossover times, if measurable, 
can give clues about the typical size of the restriction, R,. 

Fig. 3. Experimentally 
measured survival prob- 3 . , . . . . .  . 
abilities of (A) isolated ' ' i0 3; 
rhodamine 6G (donor) ,$ 
confined to the interface 6 
of Si-500 showing an ex- 
~onential re~axati;on cor- o s 10 15 20 25 30 

responding to its radia- 
tive lifetime; (B) same 
system in the presence of 
malachite green (accep- 
tors) showing a 
stretched exponential re- 
laxation described by 
Eq. 19. [Adapted from 
(30) with permission of 
the American Institute 
of Physics, copyright 
19881 

0 5 10 15 20 25 30 

Time (ns) 

One arrives at the same conclusions when DET is performed on 
a sphere of radius R,. If we assume that the donor and acceptors are 
distributed on the surface of the sphere (30), then for short times, t 
< T(~R,/R,)~,  we recover the same results as for the cylinder, Eq. 
14. For long times we obtain 

a simple exponential decay. The temporal behavior of @(t) exhibits 
a crossover that ieflects the finiteness of the system. The same 
approach, based on establishing the site density function p(R), can 
of course be used for other shapes. 

The proposed procedure for analyzing experimental decays is to 
fit relaxation data to Eq. 10, with the two fitting parameters a and 
A. The exponent a is given the meaning of a/S, with a as an 
"effective dimension," and A is proportional to the number of 
acceptors within a radius R, on the structure (and therefore should 
depend also on R,). A model can then be proposed for the 
underlying geometry that is consistent with values of both param- 
eters. If the apparent dimension a obtained is not an integer, then 
the concept of a crossover can be used in the analysis. A modified 
form of Eq. 10 can be applied to fit experimental decays (30, 31): 

N,(mollg X N, (mollg X 

Fig. 4. (A) Experimental evolution of A, and a, with the acceptor surface 
concentration N,, for 5-500; the line S is the theoretical calculation of A, 
based on Eq. 21. (B) The same for Si-40; the line V is the theoretical 
calculation of A?. [Adapted from (30) with permission of the American 
Institute of Physics, copyright 19881 
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where E is the density of silica (E = 2.189 g/cm3). Knowledge of the 
surface areas is essential in order to define the molecular concentra- 

A straightforward connection between the static microstructure of 
the confinement and DET dynamics is achieved when a site density 
function p(R) can be independently derived. Then, based on Eq. 11, 
dynamics and statics are directly related. Such an approach is 
important in establishing the method of using DET to get structural 
information. In a detailed study on porous Vycor glass, DET 
measurements and ultrathin transmission-electron-microscopy anal- 
ysis of p(R) were simultaneously carried out (35). The combined 
studies confirm the power of DET. 

DET, using the scheme of a donor transferring energy to ran- 
domly distributed acceptors, provides insight into the microstruc- 
ture of complex restricted geometries. The approach relies on 
stretched-exponential decays and crossover between them and the 
interplay between two competing lengths: R,, inherent to the spatial 
restriction, and R,, introduced by the DET method. When DET is 
applied to study local morphologies, corroboration with other 
characterization techniques is very useful, as will be described in the 
next section. 

DET in Porous Solids and Polymer Networks 
Time-dependent DET studies have been applied in a broad 

number of systems for the purpose of unveiling their local morphol- 
ogies. These systems include porous glasses, vesicles, zeolites, poly- 
mers, and Langmuir-Blodgett h s  (1 1-16, 27, 36, 37). Here we 
review the applications to porous glasses and to networks of 
interpenetrating polymers, model systems with features general 
enough to benefit investigators in other fields. 

The porous glasses investigated were a series of silica gels known as 
Si-40, Si-60, Si-100, and Si-500. A detailed desaiption of these silicas 
is given in (16, 30,38). Generally they can all be viewed as a uniform 
-gation of basic building blocks with radii of the same order as 
their mean pore sizes R,. Their surface areas are therefore estimated as 

tions of the donors and acceptors that enter into DET consider- 
ations. The R, values are 18 A (Si-40), 35 A (Si-60), 60 A (Si-loo), 
and 200 A (Si-500). 

The successful application of DET to probe the morphology of 
porous silicas has three experiinental prerequisites: (i) The fluores- 
cence decay of the adsorbed isolated donor must be monoexponen- 
tial and its lifetime well defined. (ii) The critical radius R, of the 
adsorbed donor-acceptor pair must be measured independently. 
This permits an estimation to be made of the maximum distances 
probed by DET. R, is a critical input for understanding what one 
can really learn from DET. (iii) The adsorption isotherms of the 
donor and the acceptors must be measured. From these isotherms 
one can establish the range of acceptor concentrations that can be 
used without encountering the problems of aggregation. 

Small-angle x-ray and neutron scattering results of the silica gels 
show that their interfaces are smooth on scales 210  A (16, 38). 
These scattering results, however, do not always provide a complete 
picture of the local structure. In the DET experiments we used 
rhodamine 6G (R6G) as a donor and malachite green (MG) as the 
acceptors. Their R, on silicas was determined to be R, = 57 A. In 
this system the distance sensed by DET is somewhat larger than R, 
and is determined by the experimental conditions and the acceptor 
concentration; we call this distance R,, (30). The higher the 
concentration, the smaller is R,, and the more local is the probed 
scale. We have estimated R,, - 1.5 R, to be around 83 A in the 
concentration range studied. This R,, then corresponds to t, 
(-20 ns in the& experiments). The dynamical behavior of the 
donor's decay should depend on the relation between R,, and the 
typical lengths characterizing the silicas structure, R,. Figure 3 
presents the survival probabilities, @(t), of the donor (R6G) on 
Si-500. An exponential decay is observed in the absence of acceptors 
(T = 3.54 ns), which turns into a nonexponential decay when 
acceptors are present. Such decays have be& followed for a whole 
range of acceptor concentrations. The proposed models in the 
previous sections clearly predict a linear dependence on the acceptor 
concentrations of the prefactor, while R, and R, should change for 
different geometries (each silica gel). Equation 19 has been used to 
analyze the temporal patterns of the silicas. We focus here on the 
large R, (Si-500) and the small R, (Si-40) limits. For Si-500, Eq. 19 
yield a - 2, which describes a two-dimensional DET. The relative 
sizes of R,, (or R,) and R, in Si-500 are such as R, > > R,,, 
which, according to the model studies, should give rise to the 
short-time behavior, Eq. 14. The crossover time t,,, greatly exceeds 
t,,, which means that in Si-500 for any pore model only the local 
surface is "seen." The prefactor in Eq. 19 should be accordingly 

which is the two-dimensional prefactor; g,, is introduced into the 
data analysis to account for the anisotropy in W(R) (which we 
ignored for simplicity) (g,, = 1.08); pp, = NJS, where N, is the 
number of acceptors per gram of the silica. From Eq. 19 pp, = 
N,&d3 and so 

Figure 4A shows the dependence of a and of A, on the N, values. 
The a - 2 values are confirmed and the agreement with Eq. 22 is 
very good. 

In the case of Si-40, fits to Eq. 19 lead to a - 3, which 
corresponds to a three-dimensional decay. Here R,, > Rp and so 
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a crossover can be observed. Figure 4B shows ;i and A, as a function time domain, is a powerful probe of the microstructure of many 
of N, for Si-40. As modeled by a pore surface that is space-filling types of restricted geometries. 
[see equation 41 in (30)], the donor is able to sense acceptors on 
nearby pores, probing essentially interpore DET. This explains the REFERENCES AND NOTES 
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