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Multiple Representations of Pain in 
Human Cerebral Cortex 

The representation of pain in the cerebral cortex is less well understood than that of 
any other sensory system. However, with the use of magnetic resonance imaging and 
positron emission tomography in humans, it has now been demonstrated that painful 
heat causes significant activation of the contralateral anterior cingulate, secondary 
somatosensory, and primary somatosensory cortices. This contrasts with the predom- 
inant activation of primary somatosensory cortex caused by vibrotactile stimuli in 
similar experiments. Furthermore, the unilateral cingulate activation indicates that this 
forebrain area, thought to regulate emotions, contains an unexpectedly specific 
representation of pain. 

D ESPITE THE POWERFUL NATURE OF 

pain as a sensation, there is little 
consensus regarding the involve- 

ment of the cerebral cortex in pain process- 
ing. Early this century, Head and Holmes 
(1) observed individuals with war injuries 
and concluded that the cerebral cortex 
played only a minimal role in pain percep- 
tion. Penfield and Boldrey (2) reached a 
similar conclusion when they found that 
patients rarely reported a sensation of pain 

on electrical stimulation of their exposed 
cerebral cortex during surgery to remove 
epileptic seizure foci. Thus, a commonly 
held view in clinical neurology is that "stim- 
ulation of . . . any . . . cortical areas in a 
normal, alert human being does not produce 
pain" (3). 

Other data indicate that several areas of 
the cerebral cortex may process nociceptive 
information. Some patients with epileptic 
foci involving the primary or secondary so- 
matosensoql areas of the parietal lobe (SI 

J. D. Talbot, M. C. Bushnell, G. H. Duncan, Laboratoire and SII, reshective~~) experience pain during 
de neurophysiologie compottementale, FacultC de mCde- 
cine dentaire, UniversitC de Montrtal, Montreal, Que- seizures (4). In addition, lesions of these 
bec, Canada H3C 3J7. areas in humans can sometimes lead to re- 
S. Marrett, A. C. Evans, E. Meyer, Positron Imaging duced pain perception (5 ) .  single neurons in Laboratories, McConnelI Brain Imaging Cater ,  Mon- 
treal Neurological Institute, Montreal, Quebec, Canada both SI and SII of the parietal cortex of 
H3A 2B4. awake monkey respond to nociceptive stim- 
*To whom correspondence should be addressed. uli ( 6 ) ;  however, these findings are so rare 

that the functional significance of parietal 
nociceptors is still in question. 

Frontal cortex has also been implicated in 
pain processing. In cat and in humans, nox- 
ious electrical stimuli induce an increase in 
cerebral blood flow to the frontal lobes (7). 
In rat there are neurons in the prefrontal 
cortex that respond to noxious skin stimula- 
tion ( 8 ) .  In addition, in patients resection of 
the anterior cingulate cortex can reduce the 
distress associated with chronic intractable 
pain (9). Nevertheless, the unreliable nature 
of this surgical procedure in relieving pain 
(10) and the absence of precise anatomical 
data from humans, uncompromised by dis- 
ease or lesions, underscore our lack of 
knowledge concerning the normal function 
of specific cortical regions in pain process- 
ing. 

We have now investigated the involve- 
ment of specific cortical areas in the percep- 
tion of pain in awake, healthy, human vol- 
unteers. To functionally isolate the 
perception of pain from all other sensory 
and behavioral variables, we used subtrac- 
tive positron emission tomography (PET). 
This technique can identify subtle differ- 
ences in the activation of specific brain sites 
relative to sensory and evaluative processes 
(1 1, 12). In addition, we have applied meth- 
ods (13, 14) that combine into stereotaxic 
images the functional information derived 

Before During After 

Fig. 1. (A) The perceived intensity of the thermal 
stimuli. Intensity ratings (mean * SD) given by 
the eight subjects immediately after the PET scans 
in which the thermal stimuli were 41" to 42°C 
(Warm) or 47" to 49°C (Heat Pain). The ratings 
were different between the two conditions (paired 
t test, t = 12.7, P <0.0001). (B) Mean pulse rate 
(*SD) of the eight subjects during 2-min epochs 
before, during, and after the termination of the 
PET scans during the Warm (0) and Heat Pain 
(0) conditions. A repeated-measures multivariate 
analysis of variance revealed no significant 
changes in pulse rate over time [F(2) = 0.05, P = 

0.951 nor between the Warm and Heat Pain 
conditions [F ( l )  = 0.73, P = 0.381. 
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from PET with the anatomical information 
from magnetic resonance imaging (MRI), a 
procedure that allows direct identification of 
soft-tissue structures used in stereotaxic av- 
eraging and thus increases the precision of 
functional localizations. 

Eight right-handed male subjects (25 to 
31 years of age) underwent six to seven 60-s 
PET scans (15) within a single experimental 
session. During four of these scans, subjects 
received cutaneous heat stimuli; these data 
are described here. In each of the four scans, 
a series of 12 5-s heat pulses were delivered 
by a contact thermode (1 un in diameter) to 
six spots on the subject's right volar forearm 
(16): During two scans, the stimuli consist- 
ed of a double heat pulse described as pain- 
11 but tolerable (48" to 49"C), or "Heat 
Painn; stimuli presented during the other 
two scans were described as clearly warm 
but not painful (41" to 42"C), or "Warm" 
(17). After each scan, subjects rated the 

intensity of the stimuli using a modified 
magnitude estimation scale (1 8) in which 50 
w& defined as just barely painful. Pulse rate 
was monitored before, during, and after 
each scan. Heat Pain and Warm conditions 
were presented in a pseudorandom manner 
with a period of at least 10 min between 
successive scans. So that anxiety associated 
with the painful stimuli would be minimized 
(and so that each subject's threshold for 
pain, pain tolerance, and withdrawal reflex 
could be determined), all subjects participat- 
ed in a practice session several days before 
the PET scan experiments. 

After completing the PET sessions, each 
subject underwent a high-resolution MRI 
head scan, which was subsequently used to 
align data sets stereotactically for within- 
and between-subject averaging of functional 
data (19). Localized changes in normalized 
cerebral blood flow (CBF) between the 
Heat Pain and Warm conditions were tested 
for significance with an automatic peak- 
detection algorithm and then displayed as a 
t-statistic image merged with the MRI and 
averaged across all subjects (20). Peaks with 
t values greater than 3.5 (Z > 2.17; P 
< 0.03) are reported as significant. 

All subjects- rated the-noxious heat as 
dearly painful and the warm stimuli as be- 
low pain threshold (Fig. 1A). Nevertheless, 
subjects' pulse rates were within normal 
range and not significantly higher than dur- 
ing the warm stimulation (Fig. lB), indicat- 
ing that the stimuli did not produce signif- 
icant anxiety or stress (20). 

The painful stimulus produced four sig- 
nificant peaks of activity in the cerebral 
cortex (Table 1 and Fig. 2). In Fig. 2, the 
averaged MRI-PET volume was sliced hor- 
izontally at coordinates corresponding to 
local maxima of the significant peaks. The 

Fig. 2. Cortical activation induced by a painful 
stimulus. Heat Pain minus Warm conditions, 
averaged from eight subjects (two scans per con- 
dition per subject), visualized with merged PET- 
MRI horizontal slices at superior-inferior coordi- 
nates (A) +60, (B) +39, (C) +33, and (D) +29. 
The degree to which individual sulci are distin- 
guished in the average MRI indicates the accuracy 
achieved in matching functional and anatomical 
data from the eight subjects. The range oft values 
for PET data is coded by color (blue, r = 3.2; 
red-white transition, r = 6.0). Significant pain- 
related foci are restricted to the cortex contralat- 
eral to the stimulated arm: SI [(A), peak 31, 
anterior cingulate [(B), peak 4 and (C), peak 11, 
and SII [(D), peak 21. Nonsignificant trends for 
possible bilateral activation of SII are seen in (C) 
and (D). (D) illustrates the strong contralateral 
activation of SII, deep in the lateral sulus, as well 
as remnants of activation associated with the 
inferior extent of the anterior cingulate gyrus near 
the midline. The bridging between these two 
areas probably represents the limitations of the 
imaging system in spatially resolving these two 
strong foci. 

most prominent focus of pain-related activa- 
tion (Table 1, peak 1, and Fig. 2C) approx- 
imated the border between the cingulum 
and the anterior cingulate gyms (Brod- 
mann's area 24). In addition, a secondary 
but significant peak (Table 1, peak 4, a d  
Fig. 2B) was seen more posteriorly within 
area 24. Significant peaks of activation were 
also found deep in the parietal lobe along 
the upper bank of the lateral sulcus (Table 1, 
peak 2, and Fig. 2D), a location described as 
SII in humans and in monkey (22), and in 
the SI arm area of the postcentral gyms 
(Table 1, peak 3, and Fig. 2A). All signifi- 
cant pain-related foci were restricted to the 
cortex contralateral to the stimulated arm. 

The finding that both primary and sec- 
ondary somatosensory cortical areas are ac- 
tivated by painful skin stimulation indicates 
that each of these regions is involved in the 
processing of heat pain information in hu- 
mans. It is well established that single neu- 
rons within both areas are activated by 
innocuous mechanical stimuli (6); however, 
because the subtractive PET analysis elimi- 
nates activitv attributable to factors common 
to both experimental conditions, the activa- 
tion we observe in SI and SII is the result of 
the paidid heat and not of the mechanical 
contact or innocuous warming of the skin. 
Because heat information is conveyed by 
two distinct populations of pehpherd 
nerves-warm fibers, which respond maxi- 
mally at temperatures less than 44"C, and 
heat- nocicepiors, which only begin to re- 
spond at 44°C (23)-the cortical activation 
related to painful heat stimuli most likely 
originates through activity of these nocicep- 
tive primary afferents. The strong pain-relat- 
ed activation of SII contrasts with the pre- 
dominant activation of SI by nonpainll 
vibrotactile stimuli in similar experiments 
(24). Thus, at least two areas within the 
parietal lobe of the human cerebral cortex 
&e activated by heat pain, and SII cortex 
may be more important for processing of 
pain than for processing of tactile informa- 
tion. 

We observed a pronounced unilateral ac- 
tivation in the region of the anterior cingu- 
late gyrus (area 24) related to heat pain. This 
area has been classified as part of the limbic 
system of the brain, which is thought to 
control emotions and affective responses to 
pain (25). Accordingly, neurosurg&ns have 
resected this area (usually bilaterally) in cases 
of intractable pain with a strong emotional 
component and found that patients com- 
plained less about their pain but still ac- 
knowledged its existence (9). Nevertheless, a 
number of factors indicate that the anterior 
cingulate activation is not simply the result 
of emotional arousal or anxiety. First, gen- 
eral anxiety attributable to the experimental 

SCIENCE, VOL. 251 



Table 1. Significant pain-related foci of activation. Coordinates of peak activation are expressed in 
millimeters (19). M-L, medial-lateral relative to midline (positive = right); A-P, anterior-posterior 
relative to anterior commissure (positive = anterior); S-I, superior-inferior relative to commissural 
line (positive = superior). Probability (Prob.) estimates are based on Z scores (20). 

Peak Stereotaxic coordinates Activation indices 
no. Cortical area 

M-L A- P S-I t statistic Z score Prob. 

1 -15 +1  +33 5.32 3.23 0.002 Ant. cingulate 
2 - 44 -23 +29 4.11 2.50 0.02 SII 
3 -31 -31 +60 3.58 2.18 0.03 SI 
4 -5 -17 +39 3.56 2.17 0.03 Ant. cingulate 

situation is common to both the Heat Pain 
and Warm conditions and thus is eliminated 
by the data analysis. Second, subjects report 
that the stimuli evoke little emotional reac- 
tion; in fact, these stimuli are described as 
the least unpleasant of commonly used ex- 
perimental pain stimuli (26). Third, the lev- 
els of noxious heat were determined for each 
subject to be painful but within his range of 
tolerance. Fourth, practice sessions were 
conducted so that the anxiety and emotional 
reactions associated with a novel experimen- 
tal situation or unexpected noxious stimuli 
would be reduced; as a result, pulse rates 
were normal throughout the experimental 
procedures. Finally, a strictly emotional re- 
action to the stimuli would be expected to 
result from activation of nonspecific arousal 
pathways and to produce a bilateral activa- 
tion of limbic structures (25). 

In contrast to our results, human studies 
of anxiety (in anticipation of pain) reveal 
bilateral activation of several cortical sites, 
but not within or close to the cingulate 
gyms (27). 

An alternative explanation for the unilat- 
eral activation in the region of the anterior 

dangerous stimuli is of teleological impor- 
tance and may be a major role of paleolimbic 
pathways. 

Thus, the normal processing of painful 
stimuli in humans is not distributed over 
large areas of the cortex, but is restricted to 
three major structures-anterior cingulate 
cortex, SII, and SI. We propose that precise 
information about pain intensity and later- 
ality reaches both parietal and frontal corti- 
cal areas. This information may then con- 
tribute to the evaluation of temporal and 
spatial features of pain in the parietal area 
and to the regulation of emotional reactions 
in the limbic regions of frontal cortex. 
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unrestrained, elicits topographically coded 
gaze (gaze = eye-in-space = eye-in-head + 
head-in-space) shifts in which the vectors are 
predicted by the location being stimulated 
on the motor map (4). This motor map is 
retinotopically coded and is in spatial regis- 
ter with the overlying visual map. 

The deeper layers contain tectoreticular 
neurons (T-RNs) -that control gaze shifts via 
projections to contralateral brainstem re- 
gions that generate eye and head movements 
(5) .  TRNs have both multimodal sensory 
responses ( 6 )  and movement-related dis- 
charges (7-9). Many TRNs burst just before 
a gaze shift. These neurons are grouped on 
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the motor map into a large, nearly circular 
zone, the center of which specifies the am- 
plitude and direction of the intended gaze 
shift. Other TRNs, located in the zero- 

Movement of Neural Activity on the Superior 
Colliculus Motor Map During Gaze Shifts 

amplitude location at the rostra1 pole of the 
SC, are active when the cat fixates a target 
and are silent during orienting gaze shifts (8, 
10). Therefore, the retinotopic position of 
the ensemble of active TRNs differs if mea- 

The superior colliculus contains neurons that cause displacements of the visual axis 
(gaze shifts). These cells are arranged topographically in a motor map on which the 
vector (amplitude and direction) of the coded movement varies continuously with 
location. How this spatial representation becomes a temporal code (frequency and 
duration) in the motoneurons is unknown. During a gaze shift, a zone of neural 
activity moved continuously on the map from an initial location, defining the vector of 
the desired gaze shift, to a final "zero" position containing neurons that were active 
during hation. Thus, the spatial-temporal transformation may be accomplished by 
control of gaze throughout the spatial trajectory of activity on the motor map. 

sured at the start and end of a gaze shift. In 
our experiments, we determined, in the cat, 
the retinotopic location of the active ensem- 
ble of neurons during a gaze shift (11). 

We analyzed the activity of TRNs identi- 
fied on the basis of their antidromic re- 
sponse after stimulation of the contralateral 
predorsal bundle (7, 8). The animal was 
required to make predictive gaze shifts to a 
spatial locus devoid of a newly appearing T HE MAMMALIAN SUPERIOR COLLIC- 

ulus (SC) is a laminated neural struc- 
ture that transforms sensory infor- 

mation into motor commands that rapidly 
move the visual axis (1). Visually responsive 
neurons in the superficial layers are orga- 
nized into a retinotopic map of visual space, 
subtending up to 80" of the contralateral 

visual field (2). Here we investigated the 
deeper layers, which are organized into a 
motor map (1). 

In the cat, the animal studied here, coor- 
dinated eye-head movements are used to 
look at targets situated farther than about 
* 10" from center (3). Microstimulation of 
the deeper layers, in the cat whose head is 

sensory cue, a procedure that prevented 
phasic visual responses from contaminating 
the movement-related neuronal activity. 

The movement-related discharges of two 
TRNs, cells Q24 and Q37, recorded in the 
same cat are shown in Fig. 1. Of the two 
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Fig. 1.  Movement-related discharges of TRNs. 
Shown in each panel are the gaze (G), head (H), 
and eye (E) position traces; neural discharge for 
cells 4 2 4  (A to D) and 4 3 7  (E to H); and spike 
density function [number of  action potentials 
(spikes) per second (spls)] (11). The occurrence 
of an action potential is represented by a small 
vertical line. Additional small lines superimposed 
on top of others indicate extra spikes within the 
same 2-ms time bin. The preferred movements for 
cell 4 2 4  were directed horizontally and for cell 
Q37 were directed down to the left at an angle of 
about 45" to the horizontal. Traces are aligned on 
gaze-shift onset (vertical dashed lines). Arrows, 
maximum spike density. 
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