
Cosmology in 
Defect Dynamics 

the Laboratory: 
in Liquid Crystals 

Liquid crystals are remarkably useful for laboratory ex- 
ploration of the dynamics of cosmologically relevant 
defects. They are convenient to work with, they allow the 
direct study of the ccscaling solution" for a network of 
strings, and they provide a model for the evolution of 
monopoles and texture. Experiments described here sup- 
port the simple ccone-scale7' model for cosmic string 
evolution, as well as some qualitative predictions of string 
statistical mechanics. The structure of monopoles and 
their apparent cylindrical but not spherical symmetry is 
discussed. A particular kind of defect known as texture is 
described and is shown to have a dynamical instability-it 
can decay into a monopole-antimonopole pair. This decay 
process has been observed occurring in the liquid crystal, 
and studied with numerical simulations. 

A SYMMETRY-BREAKING PHASE TRANSITION IS ONE IN 

which the symmetry of a system is reduced. The most 
common example is the freezing of water to ice. In this case, 

the translational and rotational symmetry of the water is "broken," 
and the system takes on the discrete symmetry of the ice crystal. As 
the ice forms, its crystalline orientation varies from one region of 
space to the next, sometimes producing a mismatch or "defect." The 
study of the dynamical evolution of such defects produced in 
symmetry-breaking phase transitions is an increasingly central prob- 
lem in cosmology, particle physics, and condensed matter physics. 
The standard model of particle physics and all extensions of it are 
built on the notion of spontaneously broken internal symmetries. In 
the standard hot big bang cosmology this automatically leads to 
defect production as the universe cools through symmetry-breaking 
phase transitions (1). The idea that defects produced in this way later 
seeded the large-scale structure observed in today's universe has 
considerable appeal. It is the basis for several models of structure 
formation: cosmic strings (2) , textures (3), and domain walls (4, 5). 
In particle physics, recent work indicates that processes involving 
gauged texture in the dynamics of the electroweak phase transition 
play a major role in determining the final matter-antimatter asym- 
metry in the universe (6-9). In condensed matter physics, attention 
has increasingly moved to understanding nonequilibrium scaling 
behavior, particularly near phase transitions (10-15). 

The universality of symmetry-breaking phenomena suggests that 
theories dealing with time and space scales beyond the'grasp of 
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human manipulation may nevertheless be explored by observing 
similar systems in which all the relevant lengths have been uniformly 
scaled down to within reach of the experimentalist, while preserving 
the essential physics. In this spirit, Zurek proposed (16) in 1985 a 
test of one of the key elements of the cosmological scenario, the 
Kibble mechanism, through observations of a quench-induced 
phase transition from normal 4He to the superfluid. His idea was 
that in a rapid quench, topological string defects (vortex lines) 
would be created in the same way that some cosmological theories 
predict. Studying the resulting distribution of strings in the broken 
symmetry phase might thus give valuable clues about how cosmic 
strings, the analogous one-dimensional defects in cosmology, 
should behave. Unfortunately, the experiment was never successfully 
performed, in part because of the difficulties of working with liquid 
helium. 

The superfluid transition in liquid helium is described in terms of 
the transition in functional form from a paraboloid to a "Mexican 
hat" free energy density. The analogy between this and similar 
"Higgs potentials" in particle physics theories provided the motiva- 
tion for Zurek's proposal. Such potentials are ubiquitous in particle 
physics theories, providing the mechanism through which elemen- 
tary particles get their masses. They are also ubiquitous in the 
description of phase transitions in condensed matter, so that one 
might well hope to find a more experimentally tractable physical 
system in which Zurek's proposal might be realized. Liquid crystals 
provide such a system. 

Liquid crystals (17-20) are organic compounds that have phases 
intermediate to the liquid and solid phases. Most of these me- 
sophases, of which more than eight distinct types have been 
identified so far, are characterized by certain symmetries in the 
orientations of the rodlike molecules of the liquid crystalline sub- 
stances. Typically, phase transitions occur between 10" and 200°C, 
and result in structures with length scales on the order of tens of 
micrometers to centimeters which coarsen on experimentally acces- 
sible time scales. Their preparation has been extensively studied (19, 
20) and in contrast to superfluid 4He, they are relatively easy to work 
with in the laboratory and require only an optical microscope for 
observation. There is a great body of experimental work on liquid 
crystals, and several beautiful review articles (17-23), some nearly 20 
years old. However, the main focus of this work has been on the 
static properties of defects-we shall be more interested in their 
dynamics, on which there has apparently been little work. 

In this article, we demonstrate that many dynamical phenomena 
closely analogous to those involved in cosmology and in fbndamen- 
tal particle theories may be directly observed and quantified in a 
particular liquid crystal, the nematic liquid crystal (NLC). As Zurek 
originally proposed for 4He, we are able to test the "Kibble 
mechanism" of defect production in a condensed matter system. Our 
observations agree well with the ideas of scaling that are central to 
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defect theories of the origin of large-scale structure. Furthermore, 
we can observe dynamics of the string, monopole, and texture 
defects found in the NLC. We find the liquid crystal system to be a 
valuable experimental testing ground for many of the ideas currently 
being discussed in a cosmological context, and believe that this is an 
area in which both cosmologists, particle physicists, and condensed 
matter physicists can benefit from increased interaction. 

Topological defects in cosmology. What is a topological defect? 
In a broken symmetry system, there are many different minimum 
energy configurations, all related by the underlying symmetry. This 
set of minimum energy configurations is known as the '6acuum 
manifold," denoted as 4, .  It is the topology of M, that determines 
the existence of defects. The simplest example of this is where M, has 
two disconnected pieces-the system has two distinct minimal 
energy configurations-as in the Ising model, in which the spins can 
be either up or down. If a region of "up" spins borders on a region 
of "down" spins, on the boundary there must be a ''wwall" of higher 
energy. This is a "domain wall." Mathematically, one says that the 
existence of domain walls is guaranteed by the existence of a 
nontrivial homotopy group, in this case .rro(Mo) corresponding to 
Mo being disconnected. Homotopy groups provide a general de- 
scription of the connectedness properties of spaces: .rrO(MO) gives 
the number of disconnected pieces of A,, .rr,(Mo) gives the number 
of topologically distinct noncontractible loops there are on A,, and 
in general, .rr,(M,) gives the number of topologically distinct 
noncontractible n-spheres. Strings occur in theories with nontrivial 
.rr,(M,). Monopoles occur in theories with nontrivial .rr2(Mo) (non- 
contractible two-spheres in A,), and textures in theories with 
nontrivial .rr3(Mo) (noncontractible three-spheres in A,). A further 
distinction occurs because in particle theories, symmetries are some- 
times gauged (that is, involving a gauge field like the vector potential 
of electromagnetism). This has important consequences for the 
defect dynamics. We refer to defects produced by gauge-symmetry 
breaking as being "gauged" defects, and otherwise, as "global" 
defects (Table 1). 

A crucial question for cosmology is the nature of the distribution 
of the defects produced in symmetry-breaking phase transitions. The 
picture of defect formation that has been applied in all these cases is 
called (in particle physics) the "Kibble mechanism." The idea here is 
that at the time the defects freeze out, there is a characteristic scale 
5 beyond which the order parameter (the direction of symmetry 
breaking) is uncorrelated. To estimate the defect density at forma- 
tion, one associates a point on M, at random to every domain t3, 
and continues the order parameter from one domain to the next in 
as smooth a manner as possible. One then forms defects at a density 
of order one per volume e3. Strings, monopoles, and textures are all 
formed in the liquid crystal through the Kibble mechanism, and in 
principle it can be used to calculate the defect density and distribu- 
tion at the symmetry-breaking phase transition. Knowing the initial 
distribution and combining this with a model for the evolution of 
the defect tangle, one may calculate the distribution at later times. It 
is this which we have tested experimentally. 

The evolution of cosmic strings, following their production 
through the Kibble mechanism, has been extensively investigated 
numerically and analyucally. In particular, this work has led to the 
development of a simple scaling model for describing the evolution 
of the string network. At the phase transition, most of the string 
length is in infinite strings, with the remainder in a scale invariant 
distribution of loops (24-27). Subsequently the string network 
rapidly enters the "scaling solution," in which it evolves in a 
self-similar fashion and can at all times be characterised by a single 
scale. In units of that scale the network looks the same (in a statistical 
sense) at all times. The scale is both the typical radius of curvature of 
the strings and their typical separation (27, 28). 

Table 1. Defects and their role in cosmology 

Defect Homotopy 
group 

Behavior 

Walls a (  Rapidly dominate universe. Disastrous unless 
formed late. 

Strings ( A )  Global or gauged-scale with density in the 
universe. 

Monopoles a,(&) Gauged-rapidly dominate universe. Global- 
scale with density in the universe. 

Textures ( A )  Gauged-relax to ;acuum. Global-scale with 
density in the universe. 

For the relativistic strings that occur in cosmology, the scale 
grows at the speed of light. It is this that enables structures on a scale 
of megaparsecs to be formed from defects that were originally 
created when the characteristic scale was microscopic. When the 
universe becomes dominated by matter rather than radiation, matter 
perturbations start to grow around the defect "seeds." The (comov- 
ing) horizon scale at this time (light travel distance since the big 
bang) is about 30 Mpc, and this scale is imprinted on the matter 
distribution, similar to what is seen in large scale galaxy redshift 
surveys. Unfortunately for strings the characteristic scale on the 
network is around a tenth of the horizon, and this has led to doubts 
as to whether strings can produce the observed large-scale structure. 
Nevertheless, this "one-scale" model developed for understanding 
cosmic string evolution (27) can be directly tested in the liquid 
crystal system as we shall describe. 

Magnetic monopoles have been a long-standing problem for 
grand unified theories, because any theory starting from a simple 
gauge group, such as SU(5), and breaking down to electromagne- 
tism at low energies, must produce monopoles. Gauged monopoles 
annihilate very slowly and come to dominate the universe. Conse- 
quently, the simplest combinations of grand unified theories with 
the standard hot big bang model are ruled out (there are several 
mechanisms to avoid this problem, one being an epoch of inflation). 
Global monopoles (29), which occur when a global symmetry is 
broken and .rr2(Mo) is nontrivial, evolve quite differently. These 
enter a scaling solution in a very similar manner to texture (30, 3 1). 
Global monopoles occur in abundance in the liquid crystal, and are 
observed to annihilate rapidly in the coarsening of the defect tangle. 

Texture is the most recently investigated cosmic defect (3). A 
similar theorem to that involved in the monopole case holds 
here-whenever a non-Abelian symmetry is broken to an Abelian 
one, texture is formed. It is therefore very generic and in fact occurs 
in both parts of the standard model. In the electroweak theory, the 
vacuum is just a three-sphere and texture plays a central role in 
processes that violate baryon number conservation, as stated above. 
Texture also occurs in quantum chromodynamics, where (in the low 
energy pion dynamics model) the proton itself actually occurs as a 
.rr3 texture (the "Skyrmion"). In this case it is stabilized (by hand) by 
the addition of higher derivative terms. Without these terms, a 
texture will collapse and unwind itself (3). Our experimental obser- 
vations and computer simulations confirm this behavior in the 
nematic liquid crystal. 

Global texture, like cosmic strings, also enters a scaling solution. 
Here the mechanism is simply the redshifting away of energy in 
Goldstone modes within the horizon, while the fields remain frozen 
on larger scales. An advantage over strings, as shown by numerical 
simulations (32), is that the characteristic scale for texture is always 
the horizon scale, so that texture is better at generating large-scale 
structure than strings. It now appears very promising as a mecha- 
nism for generating large-scale structure in the universe--detailed 
calculations have shown that it correctly predicts the galaxy-galaxy 
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correlation hnction, and other cosmic statistics (33, 34). It also 
produces a distinctive pattern of hot and cold spots on the micro- 
wave sky at a level which may be detectable soon (30). 

Topological defects in liquid crystals. Nematic liquid crystals 
(NLCs) are systems in which the three most interesting cosmic 
defects-strings, monopoles, and texture-all occur simultaneously. 
We shall briefly review the mechanics of the NLC, noting the 
similarities and differences with field theories of cosmological rele- 
vance. Following that, we discuss the defect structures which the 
NLC supports, and finally, we turn to the theory and observation of 
the dynamics of the defect tangle. 

Nematic liquid crystal dynamics. A nematic liquid crystal may 
be thought of as a fluid made of rodlike molecules. As originally 
pointed out by Onsager, the nematic-isotropic phase transition is 
most simply understood as occurring through competition between 
positional entropy, which favors the rods being randomly located, 
and orientational entropy, which favors them being randomly 
oriented. At high concentrations, or low temperatures, maximizing 
positional entropy is most important, and the favored phase is the 
"nematic" phase, where the rods are nearly parallel. Conversely, at 
low concentrations or high temperature, the "isotropic" phase is 
instead favored. Onsager's simple treatment indicates the transition 
to be first order, in agreement with experiment; for a critical 
discussion, see Vertogen and de Jeu (18). 

The order parameter in the liquid crystal is given by the "director" 
field n, which is just the local orientation of the rod molecules. By 
definition, n has unit length, and is to be identified with -n, because 
the rods are not directional. The vacuum manifold Afl is therefore 
SJZ,, the two-sphere with antipodal points identified. Using an 
exact homotopy sequence, one can show that the homotopy of A, 
is as follows: a,(&) = Z,, .rr,(A,) = Z ,  a,(&,) = Z. Thus, we 
should expect to find one type of string, integrally charged mono- 
poles (35), and integrally charged texture. The first two are singular 
in the sense that at the center of a string or monopole n changes 
discontinuously. Texture is completely nonsingular, but cannot exist 
in a static configuration-it evolves by collapsing and unwinding itself. 
As it does so it must produce a singular region for an instant. We shall 
see that in the liquid crystal this happens in an interesting manner. 

Because there are no gauge fields in the NLC, the dynamics are 
most similar to that for a field theory with spontaneously broken 
global symmetry. The relativistic field theory most analogous to the 
nematic liquid crystal is one where a global SO(3) internal symmetry 
(36) is spontaneously broken to O(2) by a traceless symmetric tensor 
Q,,, a, b = 1,2,3. The analogous condition to ln12 = 1 is that Q lie 
on the minima of a potential V(Q) which is invariant under SO(3). 

1 For these minima, one can write Qdb = n,nb - $,, with n, a 
three-component vector. In the field theory, there are, of course, no 
singularities-instead C$ is allowed to vanish at some local cost in 
potential energy. 

The field theory has identical topological properties to the liquid 
crystal. However, there are two important differences in the dynam- 
ics. The most obvious is that dissipation is always important in the 
liquid crystal, where the defect dynamics are friction dominated. A 
similar situation occurs in cosmological defects soon after they form, 
when scattering of particles by the defects is still important. 

A more fundamental difference, however, is that whereas the field 
theory is invariant under global SO(3) rotations in internal space, n' 
= On, and spatial rotations x' = bx separately, the liquid crystal is 
only invariant under the diagonal subgroup of "rigis' rotations, 
where 0 = 0 .  Thus, while the local energy density of a static 
configuration in the field theory is dictated by symmetry to be: 

the local energy density in the liquid crystal has in general four terms 
of second order in derivatives: 

1 
gIc = - {K1(V n12 + Kz(n V x n12 

2 (2) 

+ K3 [n x (V x n)I2 + KqV . [(n . V)n - n(V . n)]} 

Usually, the Ki are not equal; for our particular NLC it has been 
determined that K, = 1.15 x K, .= 0.6 x and K, = 
1.55 x dynes at 25°C (37). The fourth term is a surface energy 
and often neglected because it does not show up in the equations of 
motion. The four terms in Eq. 2 are known as the splay, twist, bend, 
and saddle-splay curvature terms, respectively (21). 

Liquid crystals are often discussed in the "one-constant" approx- 
imation where K, = K2 = K, = K In this case: 

&-K 
Celt = c e f ,  + - V . [(n . V)n - n(V . n)] 

2 

so that the two energy functionals are equal up to a surface term. In 
the one-constant approximation, the equations of motion derived 
from Eq. 2 possess the full internal and spatial rotational symme- 
tries. Thus, after the phase transition we should find that all defects 
related by internal rotations occur with exactly equal abundances in 
the bulk. If we use a local energy functional to decide which defects 
are lower energy and thus more numerous, we must use an 
expression that respects this symmetry, and therefore set K, = K i n  
Eq. 2. In the unequal constant case we have no similar guiding 
principle, and K, must be determined by other means. This is 
important for monopoles, where the surface term scales as area x 
r-' .x r, like the total monopole energy, but is apparently ignored in 
(17). 

In the unequal constant case, configurations that differ by an 
internal rotation, n'  = On, in general also differ in energy. Finding 
analytical solutions that minimize Eq. 2 is in most cases very 
difficult, but a permrbative analysis, where the K, are nearly equal, is 
straightforward and illustrates some important effects. One finds in 
particular that up to "rigid" rotations, and some discrete degenera- 
cies, the rod orientations in the minimal energy configurations are 
completely fixed. 

Monopoles and strings in the NLC. The general one-constant 
monopole is written as n = Ox,+, that is, a global rotation of the 
"hedgehog" monopole (it is called a hedgehog monopole because all 
of the molecules are oriented radially out from the center of the 
defect). The structure of the minimal energy monopole in the 
unequal constant case can be calculated by minimizing the energy 
perturbation with respect to 0 .  In the case where 6K, = 6K, > 0, 
SK, = 0, with "free" boundary conditions (38) we find that the 
minimal energy monopole is given (up to rigid rotations) by n = B 
sin 0 cos(4 - 2 d 3 )  + 9 sin 0 sin(+ - 2 ~ 1 3 )  + S cos 0 with 0, 4 the 
usual polar angles. As long as the SK, are different, the minimal 
energy solution is cylindrically rather than spherically symmetric. 

Recently Goldhaber pointed out that monopoles in the one- 
constant approximation actually have an even larger degeneracy in 
energy (39). He showed that there is a class of deformations that, at 
no cost in energy, concentrate all of the "fluxn from a monopole into 
a single arbitrarily thin tube. If this were true in our system, one 
might expect to see some monopoles at the "ends" of flux tubes (40). 
Instead, in the monopoles we observe experimentally, the flux 
appears to emerge in two opposing tubes, in an apparently stable 
configuration. It  is a simple but lengthy calculation to apply 
Goldhaber's deformation to the 6K, = 6K3 > 0, 6K2 = 0 monopole 
above, and calculate the dependence of the energy perturbation on 
the deformation parameter. We have done this and find that it is 
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Rg. 1. String intercommutation sequence, showing two type-: strings 
aossing each other and reconnecting the other way. Each picture shows a 
region 140 pm in width. Note that the two strings lie almost in the same 
plane-the intercommutation occurs afccr the strings move toward each 
other under their mutual attraction. 

stable. Thus, monopoles survive in cylindrically symmetric, stable 
configurations. 

We now turn to strings. These are related to noncontractible 
loops on &,--as one encircles a string in space the director n rotates 
around to -n. Again in the field theory, all great semiarde paths 
along A, are degenerate in energy, and one would expect to find all 
of the corresponding strings with equal probability. However, with 
unequal constants the degeneracy is broken. Just as in the monopole 
case, we write the family of degenerate unperturbed solutions as 
0% with 0, a constant rotation matrix and the ''planar" solution n, 
= f cos (412) + 9 sin (412) with 4 the azimuthal angle. In this case, 
up to rigid rotations about the z-axis, one finds the minimal energy 
solutions are given (for 6K1 = 6K3 > 0, 6K2 = 0) by n = f cos (412 
+ % sin(412)Lthe director twists out of the plane perpendicular tn 

g ths  followed by n can be ~ontinuously contracted to a point- 
either to one side or the other of the great circle. This is colloquially 
referred to as the rods "escaping in the third dimension" (40, 45). By 
escaping, the NLC avoids the logarithmic divergence in energy at 
the core of a singular string. Thus + 1  strings are more like "flux 
tubes" than strings; evidently, there are nothing but boundary 
conditions to prevent + 1 strings from spreading out in all of space. 
In fact, it is something of a puzzle that they appear to have as definite 
a width as they do. Monopoles emit two + 1 strings opposite each 
other, which are in some cases quite constant in width for large 
distances-a sort of "flu confinement." Energetics, however, favor 
the 21 strings spreading out; the energy of a monopole with 
"unconfined" flux scales as R, the size of the region enclosing it, but 
the energy of a flux tube scales as R In(R/r,) where r, is the core 
radius. For large R the monopole field must spread out. The 
apparent "flux confinement" seems to conflict with this simple 
argument, and bears further investigation. Ignoring this, if one 
calculates perturbatively as above, the minimal energy + 1 string is 
given (outside the core, for SKI = 6K3 > 0, 6K2 = 0) by n = f cos 
4 2 p sin 4). 

To summarize, in the liquid crystal the infinite degeneracy 
between defects related by internal rotations is broken to a discrete 
one. For monopoles there is a single minimal energy configuration, 
for ; strings there are two (e;), and for flux tubes four (+1 tubes 
"escaped" in either direction). Shown in Fig. 2 are a plethora of 
defects, typical of what we see after a thermal quench. 

Experimental observations: Texture decay andscaling expo- 
nents. We have constructed an apparatus for studying rapid pressure 
and temperature induced isotmpic-nematic transitions in a nematic 
liquid crystal, 4-cyano-4'-n-pentylbiphenyl (commercially known as 
K15, or 5CB). This NLC has an isotropic to nematic transition 
temperature at 35.3"C, and a nematic to crystalline transition at 
24°C. In a rapid isotropic to nematic transition, strings, monopoles, 
and textures are produced. We have methodically studied the 

the string as one moves around it. 
Instead of an infinite set of string solutions we are left with just 

tw-a "+$ string and a "-p string. These are topologically 
equivalent, but separated by an energy barrier in the unequal 
consmnt case. It is not hard to see that a loop of +: string aaually 
carries monopole charge unity, so as +; loops shrink they should 
produce a monopole. We have observed this to happen only 
rarely-more often, they shrink and disappear without trace. A 
possible explanation for-this is as follows.-bps are created by a 
long string intersecting itself. However a +: string repels itself (19), 
and therefore pure +; loops would only rarely be chopped off from 
long strings. However, if a long string contains a "junction" 
between a +: and a -: string, the two parts attract, and are more 
likely to intersect and chop off a loop. This would then be comprised 
of a section of + I  joined to another of -: string. Such a loop can 
collapse without Laving a monopole. 

One question of considerable importance to cosmic strings is the 
question of what happens when two strings cross. We frequently 
observe "intercommutation," that is, two strings reconnecting the 
other way as they cross. An example is shown in Fig. 1. This process 
has been simulated numerically by many people in pamde physics 
(41, 42) and condensed-matter physics (43, 44), but has eluded 
documentation in a laboratory system. Intercommutation also 
sometimes results in a 21 string (below) connecting the two 
reconnection points. 

If two parallel +; strings combine, a "+1 string" results. As one 
encircles a +1 string, n follows an entire great circle around the 

Rg. 2. A picture of the defect tangle in a thin film of freely suspended 
nematic liquid crystal after a temperature quench. The dark, sharp lines in 
the picture are type-: strings. In the topcenter of the picture is a diffuse but 
visible type-1 string with three monopoles, which appear as black spots 
on the string. Below that is a type-: string atmched in two places to a 
type-1 string which is also supponing a monopole. Various other features in 
the photograph indude boojums, which are defects which are anached to the 
surface of the film (37) and appear as lines which terminate in dark blobs, and 
many instances of type-1 strings cutting across horseshoe-shaped type-: 
strings. The picture shows a region 790 wm in width. 
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evolution of strings and monopoles in a pressure cell photographi- 
cally and with a high-speed video system, and we have also 
attempted to create textures in a freely suspended thin film of the 
NLC, using a hand-controlled probe. Our observations of texture 
decay and our string density scaling data are in agreement with 
theoretical predictions. 
Texture decay in the NLC. Our first question in seeking a 

texture experimentally is, what does it look like? Texture is hard to 
v i s d k  as it is not localized and may only develop a singularity for 
an instant as it unwinds itself. Mathematically, texture corresponds 
to homotopically nontrivial maps from S, (space with in6nity 
identified) to S,. These maps are a special case of the Hopf fibration 
(46), and may be constructed fiom applying local rotations to a 
uniform director field as follows. We use the fact that the group 
SU(2) is, as a topological space, a three sphere. A map fiom physical 
space onto SU(2) with winding number one is provided byg(x) = 
exp(ix(r)x . air) with the Pauli matrices a and ~ ( r )  (a polar angle on 
the three sphere) a function running fiom 0 at the origin to .rr at 
infinity. Now, to map this onto S,, we simply use n(x). a = 
g(x)ud(x)-l. The resulting director field is: 

The energy density of this configuration is concentrated in a ring 
around the z-axis, lying in the x - y plane. The configuration is 
actually equivalent to a +1 ring (which carries two units of 
monopole charge) surrounded by a -1 ring (which cancels the 
monopole charge). There are no singularities anywhere, but by 
Derrick's theorem (47), the configuration must collapse and unwind 
itself, or be stabilized by higher derivative terms. This latter possi- 
bility was considered by Wu and Zee (48). Because we do not see 
stable textures experimentally in the NLC, we assume that the latter 
possibility is not realized. To see that the configuration is topolog- 
ically nontrivial, and must produce a singularity in the unwinding 
process, consider lines of constant n in space. These lines form two 
rings about the z-axis that link once. If the configuration is to relax 
to a configuration of constant n, these linked lines must cross. It 
being impossible for n to take two values at once, there must be a 
singularity produced at the crossing point (21, 22). 

We have not seen objects like this produced in pressure jumps or 
temperature quenches, and so are faced with the question: why is 
texture so rare? To answer this, we performed a simple relaxation 
simulation of a liquid crystal in the one-constant approximation. 
Space is discretized as a cubic (403) lattice, and multiple sweeps 
through the lattice are performed, minimizing the energy at each site 
as a function of the director at that site while keeping the director at 
neighboring sites 6xed. The initial shape and size of the texture is 
fixed by ~ ( r )  = .rr (1 + tanh [(r - S ) m ) ,  where S determines the 
size of the ring and Wits width. A perfectly circular texture of this 
form collapses to a point and unwinds itself. However, if slightly 
perturbed, replacing the argument of the hyperbolic tangent by [r - 
S ( l  + cos +)]/W, with + the azimuthal angle, a very different 
evolution is observed. Instead of a uniform shrinking, the ring 
pinches off at one point, forming a monopole-antimonopole pair, 
clearly visible in plots of the director field. The monopoles then 
travel around opposite halves of the ring and annihilate on the far 
side. This simulation provides a possible answer to our question. 
Texture has a decay channel into monopole-antimonopole pairs. In 
terms of the linked lines of the previous paragraph, it is evident that 
the monopole and antimonopole act as sources from which all lines 

emerge. The linked lines evidently all cross at once, forming the pair, 
and then break apart as the monopole-antimonopole pair move 
apart. 

In order to observe this decay mode in the NLC, we manipulated 
a freely suspended thin film of NLC with a glass whisker probe, 
mounted on a micrometer stage, in an attempt to hand-manufacture 
a texture defect. We found that linear motion of the probe through 
the crystal readily produced + 1 defect lines and that circular motion 

1 

Fig. 3. A time sequence showing the evolution of a .rr, "tmturen in a fmly 
suspended thin film of nematic liquid crystal (left column) and as simulated 
numerically (right column). The texture breaks at one point to form a 
monopole-antimonopole pair, which then moves around the ring to annihi- 
late on the far side. Each frame shows a region 260 pm in width. 
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sometimes produced ± 1 rings which had no monopoles attached to 
them. Because the ± 1 rings we observed were able to unwind 
without leaving any remnants, we inferred that each ± 1 ring must 
have been surrounded by a diffuse + 1 ring, in order to cancel the 
topological charge. We then observed several rings break apart at 
one point, producing a monopole-antimonopole pair in the same 
manner as the computer simulations did. A sequence of four pictures 
taken from the microscope demonstrating this evolution are shown 
alongside four simulation-generated pictures in Fig. 3 (in which S = 
10 and W = 6). Note the more distinct "flux tubes" in the liquid 
crystal, in line with our discussion above. We conclude that this 
decay channel is real and is the likely explanation for the apparent 
absence of texture in the NLC. 

Scaling dynamics in the nematic liquid crystal. Finally, we 
consider the coarsening dynamics of the defect tangle, after a rapid 
phase transition. We are primarily concerned with understanding 
the evolution of the string density. The singular ±\ strings have 
higher tension and thus presumably dominate the dynamics, so to a 
first approximation we shall only consider their interactions. Ac­
cording to the "one-scale" model for a network of long strings, it 
should at all times be characterized by a single scale £. This may be 
defined in terms of the long string density: p s 1/g2 is the length of 
string per unit volume. The postulate is that at all times g is both the 
typical radius of curvature on the strings and the typical string-string 
separation. There are two important processes to consider. 

First, there is the effect of viscous drag. Let the string tension be 
T, and the frictional force per unit length be IV, with v the velocity. 
Balancing the tension force of T/£ per unit length against the drag, 
we find that a segment of string of radius of curvature £ reaches a 
terminal velocity v = T/T£. The rate of loss of energy from the string 
is approximately W = Tvp/£ = T2p2/T per unit volume, and the rate 
of decrease of p can be calculated by equating this energy loss with 

f = 2.9s f=4.8s 

Fig. 4. A coarsening sequence showing the strings visible in our 230-
nm-thick pressure cell containing K15 nematic liquid crystal, at t = 1.0, 1.7, 
2.9, and 4.8 seconds after a pressure jump of AP = 4.7 MPa from an initially 
isotropic state in equilibrium at approximately 33°C and 3.6 MPa. The 
evolution of the string network shows self-similar or "scaling" behavior. 
Each picture shows a region 360 \im in width. 

the time derivative of the equilibrium string energy density W = Tp. 
Assuming T to be a constant (49) we get: 

dp T , 

jr-cvp (4) 

where a constant of proportionality, c, has been introduced. 
Second, we should include the loss of length from the long strings 

into loops: this is always favored by phase space over reconnection 
of loops onto long string (27). A long string loses length to loops at 
a rate given by a geometrical constant times i//£, which scales the 
same way as the viscous force damping term. Thus, the constant c 
may be taken to include both these effects. Inserting the definition of 
p in Eq. 4 we find that the scaling solution is given by p = (T/cT)t~x. 

We should note that similar arguments have also been given in the 
condensed matter literature before—applied both to domains in two 
dimensions (50) and strings in three (13). In two dimensions one 
obtains for the string length per unit area p = 1/g a t~1/2. With the 
assumption of scaling, the derivation of the exponent is little more 
than dimensional analysis. However, this basic assumption seems to 
have been studied and tested more comprehensively in the cosmo-
logical literature (21, 51, 52) for string networks at least. 

The two-dimensional scaling has been experimentally investigated 
by Orihara, Ishibashi, and Nagaya (53, 54). We have experimentally 
tested the p « r1 string density scaling prediction in three dimen­
sions by recording high-speed video pictures of the string network 
which forms after performing a rapid pressure jump (of AP) to force 
an isotropic to nematic phase transition. The data are analyzed by 
digitizing selected pictures and by locating the strings with a 
gradient-seeking algorithm. Four typical pictures of the string tangle 
in evolution are shown in Fig. 4. For times between 1 second and 32 
seconds, the string network was both low enough in density for the 
strings to be clearly distinguished and high enough in density that 
finite size effects were negligible. The results, shown in Fig. 5, fit the 
predicted t~x power law remarkably well. Repeating the experiment 
at increasing AP, we found the same scaling with time, but 
decreasing string density at a fixed time, consistent with the effect 
expected above, where if the string tension is increased, so is the 
scaling value of £. 

Future directions. In this article, we have made considerable 
progress in the study of the dynamical evolution of topological 
defects in liquid crystals. Our results include simulation and obser­
vation of texture decay through monopole-antimonopole creation, 
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Fig. 5. String density data, accumulated at four different AP values. The 
scaling relation was experimentally determined to be £ « to.si±o.o*^ w j l c r e p _ 
l/£2. For higher AP, the string tension is higher and one expects from the 
analysis in the text that the scaling density will be lower, which is observed. 
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and a detailed study of the scaling of the string density that supports 
both the Kibble mechanism and the one-scale model important in 
cosmology. We have also observed string intercommutation. How- 
ever, there are many issues that remain to be explored. The defect 
tangle should be characterized in more detail. For example, the 

1 relative proportions of loops to long strings, ki strings to k l  

strings, and strings to monopoles should be determined. A system- 
atic, microscopic description of the coarsening process would also 
be particularly useful. Certainly, further theoretical work is needed 
to explain the abundances of the various defects and their interaction 
rates. We hope that such work could eventually provide a more 
general framework for describing the evolution of cosmological 
defects. 

REFERENCES AND NOTES 

1. T. W. B. Kibble, J. Phys. A 9, 1387 (1976). 
2. A. Vilenkin, Phys. Rep. 9, 1387 (1989). 
3. N. Turok, Phys. Rev. Lett. 63, 2625 (1989). 
4. C. T. Hill, D. N. Schramm, J. N. Fry, Comm. Nucl. Particle Phys. 19, 25 (1989). 
5. W. H. Press, B. S. Ryden, D. N. Sperge1,Astrophys. J. 347, 590 (1989). 
6. V. Kuzmin, V. Rubakov, M. Shaposhnikov, Phys. Lett. B 155, 36 (1985). 
7. M. Shaposhnikov, Nucl. Phys. B 287, 757 (1987). 
8. , ibid. 299, 797 (1988). 
9. N. Turok and J. Zadrozny, Phys. Rev. Lett. 65, 2331 (1990). 

10. J. D. Gunton, M. San Miguel, P. S. Sahni, in Phase Transitions and Critical 
Phenomena, C. Domb and J. L. Lebowitz, Eds. (Academic Press, New York, 1983), 
p. 267. 

11. H .  Furukawa, Adv. Phys. 34, 703 (1985). 
12. K. Kawasaki, Phys. Rev. A 31, 3880 (1985). 
13. H .  Toyoki and K. Honda, Prog. Theoret. Phys. 78, 237 (1987). 
14. A. J. Bray, Phys. Rev. Lett. 62, 2841 (1989). 
15. M. Mondello and N. Goldenfeld, Phys. Rev. A 42, 5865 (1990). 
16. W. H. Zurek, Nature 317, 505 (1985). 
17. M. V. Kurik and 0. D. Lavrentovich, Sow. Phys. Usp. 31, 196 (1988). 
18. G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals (Springer-Verlag, 

Berlin. 1988) 
19. P. G. he ~ e t h e s ,  The Physics $Liquid Crystals (Clarendon Press, Oxford, 1974). 
20. D. Demus and L. Richter, Texturer $Liquid Crystals (Verlag Chemie, New York, 

1978). 
21. Y. ~ o u l i ~ a n d ,  in Les Houches Session m, Physics of Defects, R. Balian, Ed. 

(North-Holland, Dordrecht, 1981). 
22. , J .  Phys. 35, 959 (1974). 
23. , ibid. 34, 1011 (1973). 
24. T. Vachaspati and A. Vilenkin, Phys. Rev. D 30, 2036 (1984). 
25. D. Mitchell and N. Turok, Phys. Rev. Lett. 58, 1577 (1987). 
26. , Nucl. Phys. B 294, 1138 (1987). 
27. A. Albrecht and N. Turok, Phys. Rev. 40, 973 (1989). 
28. T. W. B. Kibble, Nucl. Phys. B 252, 227 (1985). 
29. M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989). 

N. Turok and D. Spergel, ibid. 64, 2736 (1990). 
D. Bennett and S. Rhie, ibid. 65, 1709 (1990). 
D. Spergel, N. Turok, W. Press, B. Ryden, Phys. Rev. D, in press. 
A. Gooding, D. Spergel, N. Turok, Astrophys. J., in press. 
D. Spergel, C. Park, N. Turok, ibid., in press. 
It should be noted that the physically relevant "absolute" homotopy class is not 
exactly the same as mathematically defined "relative" homotopy class calculated 
here. This is important in the case of monopoles. For isolated monopoles, the 
absolute homotopy class in our case is just the positive integers (an "anti- 
monopole" is obtained from a monopole by reversing n, which of course changes 
nothing). Howc\rcr, nro "monopoles" may bc put togcther in such a \\.a!. as to $\re 
a charge 2 obicct, or a charge 0 object. To calculate the topological properties of the 
combiGed system one nee& to h o w  how the monopo&s are pu;together. For a 
discussion of this point and references, see appendix 2 in P. Goddard and D. Olive, 
Rep. Prog. Phys. 41, 1357 (1978). This is often also called the influence of T, on 
~ , 4 n e  consequence is that a "monopole" can be made into an "antimonopole" by 
moving it around a suing, as was discussed in G. E. Volovik and V. P. Mineev, 
Sow. Phys. J E P  45, 561 (1976). 
The symmetry group may equally well be taken to be O(3) broken to D,, but since 
the corresponding orbits are the same, O(3)n = S0(3)n, it is sufficient to consider 
SO(3) broken to O(2). This is of course also true for the tensor field. 
P. P. Karat and N. V. Madhusudana, Mol. Cryst. Liq. Cryst. 40, 239 (1977). 
These are chosen by taking the 6K, to be functions of radius, which vanish outside 
some radius r. We do not fix the boundary conditions because that would prejudice 
the issue of which solution has minimal energy. However, permrbatively the result 
is very sensitive to boundary conditions, and if this behavior persists one would 
expect the monopoles in the liquid crystal to be rather variable too. For monopoles 
also, the saddle-splay contribution to the energy is important. 
A. S. Goldhaber, Phys. Rev. Lett. 63, 2158 (1989). 
C. Williams, P. Pierahski, P. E. Cladis, ibid. 29, 90 (1972). 
E. P. S. Shellard, Nucl. Phys. B 282, 624 (1987). 
R. Manner, Comput. Phys. 2, 51 (1988). 
K. W. Schwm, Phys. Rev. D 38, 2398 (1988). 
H. Nishimori and T. Nukii, J. Phys. Soc. Jpn. 58, 563 (1988). 
P. E. Cladis and M. KlLman, J. Phys. 33, 591 (1972). 
N. E. Steernod, The Topology $Fibre Bundles (Princeton Univ. Press, Princeton, 
NJ, 1951). 
G. H. Derrick, J .  Math. Phys. 5, 1252 (1964). 
Y-S. Wu and A. Zee, Nucl. Phys. B 324, 623 (1989). 
It should be noted here that the suing tension is not strictly a constant. In fact, in 
the one constant approximation it is given by KT In(R/r,) where r, is the core radius 
and R = 6 is the typical spacing between strings. However, one can also show using 
the "nematodynamic" (19) equations y a p  = -(6%/6n) for a string moving at 
constant velocity v through the medium, that the damping force is also propor- 
tional to In(R/r,), so the above equations should hold even including this 
logarithmic correction. 
I. M. Lifshitz and V. V. Slyosov, J. Phys. Chem. Solids 19, 35 (1961). 
D. P. Bennett and S. R. Bouchet. Phys. Rev. Lett. 63, 2776 (1989). , , 

B. Allen and E. P. S. Shellard, ibid. 84, 119 (1990). 
H. Orihara and Y. Ishibashi, J. Phys. Soc. Jpn. 55, 2151 (1986). 
H. Orihara, T. Nagaya, Y. Ishibashi, ibid. 56, 3086 (1987). 
N.T. acknowledges the support ofNSF contract PHY80-19754. R.D. is supported 
in part by the Swiss National Science Foundation. We thank P. E. Cladis and M. 
Hindmarsh for stimulating and useful discussions. 

5 November 1990; accepted 25 January 1991 

SCIENCE. VOL. 251 


