
The Quark-Hadron Transition in 
Cosmology and Astrophysics 

A transition from normal hadronic matter (such as pro- 
tons and neutrons) to quark-gluon matter is expected at 
both high temperatures and densities. In physical situa- 
tions, this transition may occur in heavy ion collisions, the 
early universe, and in the cores of neutron stars. Astro- 
physics and cosmology can be greatly affected by such a 
phase transition. With regard to the early universe, big 
bang nucleosynthesis, the theory describing the primor- 
dial origin of the light elements, can be affected by 
inhomogeneities produced during the transition. A tran- 
sition to quark matter in the interior by neutron stars 
further enhances our uncertainties regarding the equation 
of state of dense nuclear matter and neutron star proper- 
ties such as the maximum mass and rotation frequencies. 

N ORMAL NUCLEAR MATTER IS COMPOSED OF WHAT ARE 

known to be composite particles, namely, nucleons. Simi- 
larly the low-energy interactions of nucleons are described 

by the exchange of strongly interacting mesons such as T'S, p's, and 
so on. At a more fundamental level, the theory of strong interactions 
is described by quantum chromodynamics (QCD)-in terms of 
quarks and gluons. Experimentally, QCD is successful in describing 
the interactions of quarks and gluons at high energies. Particles in 
QCD are known to be asymptotically free, that is at high energies 
quarks and gluons are weak& coupled, while at low energies they 
appear to be confined in hadrons, that is, baryons (including 
nucleons) and mesons. Although the low-energy features of QCD 
and confinement have difficulties in predicting physical quantities 
such as baryon and meson masses, it is widely believed that at either 
high temperatures or high densities, normal (confined) nuclear 
matter undergoes a phase transition to an unconfined quark-gluon 
state (1). 

The best quantitative evidence for a phase transition is found (2) 
by an application of lattice gauge theory to QCD. Monte Carlo 
simulations (3) of lattice QCD showed that indeed a phase transi- 
tion takes place though the order of the transition will depend on the 
gauge group and whether or not fermions (quarks) are included in the 
calculations (1). Estimates for the critical temperature and density are 
T, = 150 to 200 MeV, p, = 2 to 3 GeV fmP3 (1 fm = lopi5 m). 

There are three known physical environments in which the above 
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conditions on the temperature and density can be achieved: heavy 
ion collisions (4, 5 ) ,  the early universe (6), and the cores of neutron 
stars (6). The best chance for actually studying the properties of the 
quark-gluon phase are in the laboratory. Although current heavy ion 
experiments are approaching the necessary conditions, there has 
been no clear signal as yet that the quark-gluon phase has been 
observed ( 5 ) .  In this article, I will discuss our current understanding 
of the quark-hadron transition as it applies to the early universe and 
to the cores of neutron stars. 

Conditions for a Quark/Hadron Transition 
In the early universe (6-lo), the transition from an initial uncon- 

fined quark-gluon phase to the confined hadronic phase took place 
at about t = lop5 s after the big bang. Recently (11-18), cosmo- 
logical interest in the quark-hadron transition has been focused on 
the later time of about 1 s to 2 min, which is the era of nucleosyn- 
thesis (19). Perturbations formed during quark-hadron transition 
(10, 20-24) may affect the standard model predictions of the 
abundances of the light elements. 

In the interior of neutron stars, the extremely high densities 
present may be sufficient to convert matter to the quark-gluon phase 
(6, 25-30). In this case the final product of the stellar evolution of 
massive stars would be a quark core with a (large) hadronic crust. 
Properties of neutron stars such as the maximum mass and rotation 
frequency are strongly dependent on the nuclear equation of state. 
The already uncertain nuclear equation of state at high densities is 
hrther complicated with the possibility of a phase transition to 
quark matter. 

Before discussing the early universe or neutron star cores, it will 
be useful to briefly describe the (naive) thermodynamic picture for 
the quark-hadron phase transition. In the quark-gluon phase, one 
can use the simple bag model (viewing hadrons as a bag containing 
quarks and gluons) equation of state for the pressure, Po, and 
energy density, pQ 

T2 7 
p a = - [ 2 ( ~ $ - 1 )  + - N ~ N ~ ] T ~ - B  

90 2 (1) 

where Nc is the number of colors corresponding to a SU(Nc) gauge 
group for QCD (N, = 3), Nf is the number of light quark flavors 
(Nf = 3 for up, down, and strange quarks), and B is the bag constant 
representing the difference in vacuum energy between the two 
phases. (I am using units such that ti = c = k, = 1). One can in 
addition add higher order corrections to Eq. 1 (31). With this choice 
of an equation of state the critical temperature is almost 
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completely determined by the value of B which takes reasonable 
values between 50 and 450 MeV fm-3. 

The equation of state for the hadron phase is far less certain. The 
simplest possibility is to compute the pressure for non-interacting 
hadronic states. In Fig. 1 (32), the pressure (p/T4) is shown as a 
function of temperature for the quark-gluon phase (labeled Q)  for 
two choices of the bag constant: B = 50 MeV fm-3 (solid) and B 
= 450 MeV fmP3 (dashed). The hadronic pressure for known 
particles is shown by the curve labeled H (solid, dashed, and dotted 
portions). Notice the steep rise in the hadronic pressure, which is 
due to the contribution of the multitude of known hadronic states. 

In this naive Maxwellian construction for a first-order phase 
transition, phase equilibrium is achieved when Po = P,  (the 
chemical potentials are all assumed to be zero). One notices 
immediately a problem inherent in Fig. 1. The quark and hadron 
curves cross twice, implying a second transition back to hadronic 
matter at very high temperatures. This is, of course, nonsense. It is 
highly uncertain what happens to the hadronic curve beyond the 
low-temperature crossing (if the hadronic phase even exists there). 

One possibility is that our approximation of non-interacting 
hadrons at high density is bad. (This is most certainly true.) One can 
therefore try to incorporate interactions as mean fields as was done 
elsewhere (8). In Fig. 2, the same phase diagram is shown, but the 
hadronic curves assume (for both phenomenological and theoretical 
reasons) an exponential hadronic mass spectrum of the form (33) 

where n(m)dm is the number of hadronic states with masses between 
m and m+dm; C and a are constants and To is known as the 
Hagedorn temperature (33). In Fig. 2, a = 1.5 To = 160 MeV and 
C labels the two hadronic curves. Also included are mean field 
potentials (8, 32, 34) representing hard-core interactions. The 
striking difference between Figs. 1 and 2 is the flattening of the 
hadronic pressure. Now there is only a single crossing, and we have 
a picture of a physically sensible phase transition. 

Another possibility is that there exists a critical temperature T, 
above which the hadronic phase no longer exists. One of the 
difficulties in discussing rigorously the confinement transition in 
terms of a low-energy effective field theory, is the absence of a local 
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Fig. 1. The pressure P / T ~  versus T  for hadrons (H) using known particles 
with m 5 2.5 GeV and for quarks and gluons (Q) for B = 50 MeV fm-3 
(solid), B = 450 MeV fm-3 (dashed). T, is represented by an X on 
the hadron curve at the end of the solid portion when B = 50 MeV fm-3 and 
at the end of the dashed portion when B = 450 MeV  IT-^. The dotted 
portion neglects the effect of a gluon condensate. 

order parameter defining the phase. In lattice QCD, the Wilson loop 
(1) serves as an order parameter and it may well turn out that quark 
and gluon condensates which break the chiral and scale symmetries 
of the underlying QCD Lagrangian serve as the confinement order 
parameter as well (35). Campbell et at. (32) studied the behavior of 
the expectation value of the gluon condensate (x) in relation to the 
question of confinement. Hadronic masses are expected to scale with 
(x), so that the hadronic phase is only realized when (x) # 0. The 
vanishing of the gluon condensate >signals the end point of the 
hadronic phase. These points are shown in Figs. 1 and 2 by the X's 
on the hadronic curves. Thus even in the case for the known free 
hadronic states, the double crossing may be avoided simply because 
the hadronic phase ceases to exist above a temperature T, in which 
(x) = 0. 

The Early Universe 
The one environment in which we can be most convinced that a 

transition to quark-gluon matter did occur is in the early universe. 
The standard big bang model is based on an initial hot and dense 
epoch, which expands and cools as the universe evolves. Indeed 
Einstein's equations and the conservation of energy together with a 
model of a homogeneous and isotropic radiation-dominated uni- 
verse yield a simple relation between the temperature of the thermal 
radiation and time 

where the time t is measured in seconds, T in megaelectron volts, 
and N is the number of relativistic degrees of freedom of all particles 
present at temperature T (typically this is the number of spin and 
color degrees of freedom for particles with masses m < < T). 

At T = 200 MeV, we expect the confinement phase transition to 
have occurred so that at lower temperatures, the constituents of the 
universe are hadrons, leptons, and photons. The corresponding age 
of the universe at this time is t =. lop5 s. It is not until t = 1 or at 
T = 1 MeV that the processes leading to nucleosynthesis become 
important. 

Second to the discovery of the microwave background radiation, 
the consistency between the calculated abundances of the light 

T (MeV) 

Fig. 2. The pressure P / T ~  versus T  for hadrons (H) using a Hagedorn 
spectrum with a = 1.5 and To = 160 MeV. The curves are labeled by their 
values of C. Mean field potentials have been included. The quark curves are 
as in Fig. 1. 
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elements D, 3He, 4He, and 7Li, and the observational determination 
of these abundances is the strongest evidence supporting the big 
bang theory. 

At high temperatures T > > 1 MeV the weak interaction rates for 
the processes 

were all in equilibrium, that is, their interaction rates r were larger 
than the expansion rate of the universe which is determined by the 
Hubble parameter H .  In equilibrium, the neutron to proton ratio is 
essentially controlled by the Boltzmann factor so that 

where n and p are the number density of neutrons and protons, 
respectively, and Am = m, - mp is the neutron-proton mass 
difference. For T > > Am, (n/p) = 1. 

At temperatures T > > 1 MeV, nucleosynthesis cannot begin to 
occur even though the rate for forming the first isotope, deuterium, 
is sufficiently rapid. To begin with, at T 1 MeV deuterium is 
photodissociated because the photon energy E, > 2.2 MeV (the 
binding energy of deuterium; E = 2.7T for a blackbody). Further- 
more, the density of photons is very high, n,/n, = 10l0, and the 
high-energy tail of the photon distribution will continue to disso- 
ciate deuterium at lower temperatures. Thus the onset of nucleo- 
synthesis will depend on the quantity: 

where q = n,/n,. When this quantity becomes s 0 ( 1 ) ,  the rate for 
p + n + D + y finally becomes greater than the rate for dissociation 
D + y -+ p + n. This occurs when T = 0.1 MeV. 

Because the rates for processes in Eq. 5 freeze out at T = 1 MeV 
(that is, their interaction rate falls below the expansion rate), the 
neutron to proton ratio must be adjusted from its equilibrium value. 
When freeze out occurs, the ratio (n/p) is relatively fixed at (n/p) = 
116. 

The equilibrium value is adjusted by taking into account the free 
neutron decays up until the time at which nucleosynthesis begins. 
This reduces the ratio to (n/p) = 117. Because virtually all the 
neutrons available end up in a deuterium which gets quickly 
converted to 4He, we can estimate the ratio of the 4He nuclei 
formed compared with the number of protons left over 

or more importantly the 4He mass fraction 

for (n/p) - 117, we estimate that Y p  = 0.25 which is very close to 
the observed value. The actual calculated value of Y, will depend on 
a numerical calculation which runs through the complete sequence 
of nuclear reactions. 

The calculated abundances 4He (by mass) D, 3He (by number), 
and 7Li (by number) are shown (19) in Fig. 3, as a function of the 
baryon to photon ratio q. The observational bounds: Y = 0.23 2 

0.01, D/H > 1.8 x lop5,  (D  + 3He)/H < and %i/H < 1.4 
x 10-lo constrain the baryon to photon ratio to be q = (2.8 to 3.3) 
x lo-''. [Uncertainties (36) in the nuclear cross sections may allow 
a slightly larger value of q, q 5 4 x 10-lo.] The fact that all of the 
light element abundances can be explained by a single set of 
parameter values in the simplest possible model (standard big bang) 
is strong evidence for the model itself. 

The importance of the constraint on q is that it can be converted 
to an upper limit on the total baryon mass density or more 

importantly, on the fraction of closure density made up by baryons. 
A key question in cosmology today is the overall density of the 
universe, p. The cosmological density is often referred to with 
respect to a closure density p,, = 1.88 x hi g cmp3 where 
Ha = 100 ha km Mpc-' s-' is the present value of the Hubble 
parameter (observationally, ha is known to be in the range - 0.4 to 
1.0). The critical density is the density necessary to close the 
universe, that is the ratio R = p/p, distinguishes between closed (R  
> l ) ,  flat (R = I ) ,  and open (R < 1)  spatial geometries. It is widely 
believed (by theorists) that today R = 1. One can relate q to the 
fraction of R in the form of baryons by 

where To = 2.7 K is the temperature of the cosmic microwave 
background today. The upper limit of q I 3.3 x 10-lo implies an 
upper limit R, 5 0.08 indicating that baryons make up less than 8% 
of the closure density. Thus if R = 1, nucleosynthesis implies the 
need for nonbaryonic dark matter. 

During the quark-hadron transition, it is expected (20) that 
perturbations in the baryon number density are formed which will 
lead to inhomogeneities in the n/p ratio at the time of nucleosyn- 
thesis. If we remember that the baryon chemical potential is small 
but not zero, then it is straightforward to compute the net baryon 
density in terms of the chemical potential. In a simple model 

Fig. 3. The mass fraction of 4He, Yp, and the abundances by number of D, 
3 ~ e ,  D + 3He, and 7 ~ i  as a function of q,, = 1 x 10l0. The vertical band 
delimits the range for 1 consistent with the observations. 
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containing only nucleons and massless up and down quarks, we 
would find: 

( l l a )  

2 
nBQ = 5 FH T~ (lib) 

for the baryon densities in the hadronic and quark phases where 
chemical equilibrium (kH = 3 ~ ~ )  has been assumed. The density 
contrast, nB$zBH is strongly dependent on the confinement transi- 
tion temperature, and could be as large as -200 for T, = 100 MeV. 
Realistically one would expect nB$zBH to range from -7 to 100 for 
T, r 100 MeV (24). These numbers of course are assumption- 
dependent and different assumptions regarding the nonequilibrium 
transport of baryon number near the phase boundry could increase 
or decrease these estimates (22). 

Given the presence of baryon inhomogeneities in the early 
universe, because of the proton's electric charge, there is a prefer- 
ential diffusion of neutrons versus protons out of the high density 
fluctuations (11). With a more uniform neutron density, the per- 
sisting inhomogeneity in the proton density results in a universe 
with both inhomogeneities and a variable n/p ratio. The result is that 
nucleosynthesis in the high density regions occurred with a low n/p 
ratio while the low density region had a high n/p ratio. 

In the first set of calculations (1 I), it was claimed that such mixed 
conditions might allow RB = 1, while still fitting the observed 
abundances of 4He, D, and 3He, but with an overproduction of 
7Li. It was argued that perhaps depletion processes may have 
occurred to reduce an initial high primordial 7Li abundance to one 
that conforms with the observations of old population I1 dwarf 
stars. Thus with only the additional assumption of an effective 
depletion of 7Li, one of the main conclusions from nucleosynthesis 
could be altered. One should note that recent work (37) on the 
effects of depletion do not allow for an initial 7Li abundance 
significantly above the observed population I1 abundances. Under 
certain conditions however, the 7Li abundance may be reduced 
toward the end of nucleosynthesis by late time dissipation processes 
(38). 

The initial calculations, however assumed that first neutron 
diffusion took place followed by the period of nucleosynthesis. It 
was later pointed out (13) that during nucleosynthesis, as neutrons 
are depleted at a higher rate in the high density regions, there will be 
neutron diffusion back into the high density regions. It was even 
argued that for certain phase transition parameters (such as separa- 
tion of nucleation sites C = 10 m at the time of the transition) the 
back diffusion could lower the 7Li abundance. However, more 
detailed diffusion calculations showed (14-16) that not only could 
7Li be affected but 4He as well. Indeed it was found (15) that, by 
and large, nucleosynthesis with RB = 1 and with a baryon density 
contrast, R = 100, tended to overproduce both 4He and 7Li. As 
back diffusion evens out the effects of the initial fluctuation, the 
averaged result should approach the homogeneous value which 
leads to excesses in both 4He and 7Li for RB = 1. Furthermore, any 
narrow range of parameters, such as those which yield relatively low 
lithium and helium, are unrealistic because in any realistic phase 
transition there is a distribution of parameter values (distribution of 
nucleation sites, separations, density fluctuations, and so on). There- 
fore, narrow minima are washed out which would bring the 7Li and 
4He values back up to excessive levels for parameter values with RB = 
1. This is an important point because difhsive effects are only 
important in lowering the nuclear abundances in a narrow window of 
parameter space. The recent study by Meyer et at. (39) finds little 
change when averaging over a distribution of fluctuation separations. 

Indeed the latest calculations (15-18) all showed that for RB = 1, 

only the D abundance can be brought into agreement with obser- 
vations when the distance scale of the inhomogeneities, C r 30 m. 
Though the standard model constraints on q can be modified, the 
modification is rather limited (1 7) as can be seen in Fig. 4, allowing 
only a slight variation in the lower limit on q. One should bear in 
mind that these results assume that a significant baryon density 
contrast R r 100 is present. The value of R is also very sensitive to 
the transition temperature. The assumption of chemical equilibrium 
yields values of R < 100 for T > 100 MeV. Higher values of R 
require additional assumptions (40). 

Furthermore, the value of C is also very sensitive to Tc and the 
surface tension, a, of the phase interface (22, 41 ); e = 3.7 x lo4 m 
( u / M ~ V ~ ) ~ / ~  ( T ~ / M ~ V ) - ' ~ / ~ .  For values of all3 = 70 MeV estimat- 
ed by Fahri and Jaffe (42) which agree with the effective field theory 
model estimates (32), C 5 0.7 m for T, 2 100 MeV. Thus it seems 
unlikely at this time to expect values of parameters such as R and e 
so as to yield sizable modifications to standard big bang nucleosyn- 
thesis. 

Neutron Stars 
The quark-hadron phase transition may play an important role in 

the dynamics of neutron stars. Neutron star properties such as the 
maximum mass and rotation frequency are strongly dependent on 
the equation of state of dense nuclear matter. A phase transition 
(and hence a phase boundary) in the interior of a star will therefore 
greatly affect these two observable properties. 

Given an equation of state, Einstein's equation together with the 
assumption of hydrostatic equilibrium lead to the Tolman-Oppen- 
heimer-Volkoff equation (43) 

where p, p, and M are all to be taken as functions of r, the radial 
distance to the center of the star. By solving these equations 
(typically numerically) usingp(p) as obtained from calculations, one 
can obtain M(p), p(r), and p(r), for a given value of the central 
pressurep or energy density [it is assumed of course that M(0) = 01. 
A solution to these equations does not, however, guarantee stability. 
Typically, stable configurations will be found when dM/dp(O) > 0. 

Fig. 4. Allowed region in the 8 - plane from the observational constraints 
on D, 3He, 4He, and 'Li (from both population I and I1 stars). The area 
outlined by bold lines indicates the only region consistent with all 
observations. 
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Thus there will be a maximum central density and a maximum mass 
when dM/dp(O) = 0 and d ' ~ / d ~ ( O ) ~  < 0. At the maximum central 
density, it is straightforward to compute the maximum keplerian 
rotation frequency by balancing centripetal and gravitational forces 
at the surface of the star. The general relativistic form for the 
maximum rotation frequency takes the approximate form (44) 

for a star of mass M and radius R. 
The properties of normal nuclear matter near normal nuclear 

matter density (no = 0.15 fmp3, po = 3 x 1014 g ~ m - ~ )  are 
reasonably well studied (45). One can, for example, work in the 
context of a relativistic nuclear mean field theory (46) to obtain the 
equation of state at nuclear matter density. Interactions between 
nucleons can be accounted for by the inclusion of the vector meson 
exchanges of p's and o's and two-pion exchange is simulated by the 
scalar field a. The couplings of the meson fields to nucleons as well 
as the a self-coupling can all be determined by nuclear matter 
properties. The resulting equation of state then resembles the well- 
known Friedman-Pandharipande (47) equation of state. In Fig. 5 ,  
the neutron star mass as a function of central density is shown (30) 
by the curve labeled N for this equation of state. 

It is not realistic to expect this equation of state to be valid at 
higher densities when hyperons (excited baryon states) are expected 
to be present (30, 48, 49). The problem, however, with including 
additional baryon states (the entire low-lying baryon octet, for 
example) and cp-meson exchange for completeness, as was done by 
Kapusta and Olive (30), is that we have now inserted many more 
coupling constants which are extremely difficult to determine exper- 
imentally. Unfortunately, the neutron star mass curves are quite 
sensitive to these couplings. 

In Fig. 5 ,  the sensitivity to the a-hyperon couplings are shown 
(30). The curves are labeled by the ratio guA/g,. The other 
couplings have been fixed by the SU(3)-expected values. Clearly the 
uncertainties in these couplings translate into large uncertainties in 
neutron star masses. 

The possibility of a quark core within a neutron star adds to the 
uncertainty. Much of the work on neutron stars with quark cores 
was concerned with questions regarding the stability of these stars 

Central energy density (g ~ r n - ~ )  

Fig. 5. Stellar mass as a function of the central energy density p(O), for a pure 
nucleon equation of state (N) and for equations of state which include 
hyperons. The curves are labeled by the ratios, Jg,. The 4 signifies that 
vector cp exchange was included along with u, p, and o exchange as mean 
fields. 

(25-30). The quark equation of state can be written as 

assuming T = 0 and massless quarks, notice the similarity to Eq. 1. 
One can again add in higher order corrections (31). Using Eq. 14 
one can construct a quark interior at high density again by a Maxwell 
construction, such that Po = P ,  with chemical equilibrium for both 
baryon number and electric charge. In Fig. 6, the neutron star mass 
is plotted versus the central density for the preferred equation of 
state, labeled 0.48cp [see (30) for details]. Also plotted in Fig. 6, are 
the neutron star masses assuming a quark interior. The curves are 
labeled by the critical baryon density for the quark phase in units of 
nuclear density no = 0.153 fmP3. Similar to the case of a high- 
temperature transition, the value of the bag constant determines the 
critical baryon density. As one sees from the figure, in addition to 
the sensitivity of the neutron star masses, these hybrid stars are only 
stable for low (n, 4n0, though the exact number is model 
dependent) critical densities. 

Because the maximum mass and radius of the neutron star are 
dependent on the presence of a quark core, it is not surprising that 
the maximum rotation frequencies will also be sensitive to the star's 
interior. For example, for the models displayed in Figs. 5 and 6, the 
maximum rotation frequency varies from R, = 0.76 x lo4 s-' for 
the quark core with n, = 3n0 to R, = 1.3 x lo4 s-', for the case 
with no quark core but the soft equation state with (the probably 
unrealistically high value) g,,/g, = 1.187. The pure nucleon 
equation of state gives R, = 0.96 x lo4 s-l. 

Future Prospects 
Despite the uncertainties concerning the details of the quark- 

hadron transition, it is possible to extract qualitative and in some 
cases quantitative effects of the transition in the early universe and in 
cores of neutron stars. Unfortunately, uncertainties in the nuclear 
(hadronic) equation of state will make it difficult for astronomical- 
observations to add much insight at this time on the nature of the 
transition. The immediate hope is that experiments at CERN and 

c 
0'23014 loi5 loi6 

C8ntral energy density (g ~ r n - ~ )  

Fig. 6. Stellar mass as a function of the central energy density p(0) for the 
equation of state 0.48 cp with a first-order phase transition to quark matter at 
n = l . l n o  (dotted), 2n0 (small dashed), 3n0 (large dashed), 4n0 (dot-dashed), 
and with no transition at all (solid). The strong fine structure constant was 
taken as a, = 0.4. 
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future heavy ion facilities such as RHIC will be able to unambig­
uously discover a signal for the quark-gluon phase. Once the phase 
transition is better understood, it will clearly shed new light on the 
early stages of the universe and the final state of massive stars. 
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