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Recoverin: A Calcium Sensitive Activator of
Retinal Rod Guanylate Cyclase

ALEXANDER M. D1ZHOOR, SANGHAMITRA RAY, SANTOSH KUMAR, GREG NIEMI,
MARIBETH SPENCER, DOANE BROLLEY, KENNETH A. WALSH, PAUL P. PHILIPOV,
JAMES B. HURLEY,* LUBERT STRYER

Vertebrate retinal photoreceptors recover from photoex-
citation-induced hydrolysis of guanosine 3’, 5’-mono-
phosphate (cyclic GMP) by resynthesizing cyclic GMP,
which reopens cation channels that have been closed by
light. Activation of guanylate cyclase by light-induced
depletion of cytosolic calcium is a key event in this
recovery process. This cyclase has now been shown to be
regulated by a 23-kilodalton calcium binding protein. The
protein is present in both rod and cone photoreceptors
and was named recoverin because it promotes recovery of
the dark state. The amino acid sequence of recoverin
exhibits three potential calcium binding sites (EF hands).
That recoverin binds calcium was confirmed with calci-
um-45 and by observing calcium-induced changes in its
tryptophan fluorescence. Recoverin activated guanylate
cyclase when free calcium was lowered from 450 to 40
nM, an effect that was blocked by an antibody to recov-
erin. Thus, guanylate cyclase in retinal rods is stimulated
during recovery by the calcium-free form of recoverin. A
comparison of recoverin with other calcium binding pro-
teins reveals that it may represent, along with the protein
visinin, a family of proteins that are regulated by submi-
cromolar calcium concentrations.

brane of rod outer segments (ROS) are kept open by bound

cyclic GMP (1). Light activates an enzymatic cascade that
stimulates cyclic GMP hydrolysis leading to channel closure (2).
Restoration of the dark state requires cyclic GMP resynthesis by
guanylate cyclase. Cyclic GMP and cytosolic Ca®>* concentrations
are set by a feedback loop (3). The Ca®* enters through a cyclic
GMP gated channel, and this influx is matched by efflux through a
Na*-K*, Ca’?* exchanger (4, 5). Photoexcitation blocks Ca**
influx but not its efflux so that free Ca®>* drops detectably within 0.5
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second of light onset (6). Guanylate cyclase activity increases when
Ca?* is lowered to less than 100 nM (7). This activation is
cooperative and mediated by a protein that can be detached from the
guanylate cyclase catalytic moiety in low ionic strength buffer. Here
we report the purification, amino acid sequence determination, and
functional characterization of this protein, named recoverin.

Recoverin was purified from bovine retinas (Fig. 1). Soluble
proteins, including recoverin, were extracted with a low ionic
strength buffer from isolated ROS membranes exposed to white
light (8). Phosphodiesterase and residual transducin were separated
from recoverin by DEAE-cellulose chromatography. Fractions con-
taining recoverin were then incubated with a matrix prepared by
incubating concanavalin A-Sepharose with ROS that had been
solubulized with detergent (9). Recoverin was eluted with 1.5
percent octyl glucoside (OG). This fractionation step is efficient, but
the nature of the interaction between recoverin and this column has
not been determined. Recoverin was then further purified by gel
filtration chromatography. Fast protein liquid chromatography
(FPLC) with an jon-exchange column then produced a final product
that was at least 95 percent homogeneous as indicated by SDS
polyacrylamide gel electrophoresis (PAGE) (Fig. 1E). This repre-
sents a 100-fold purification from ROS. The ratio of recoverin to
rhodopsin in bovine ROS, estimated from densitometric scans of
gels stained with Coomassie blue, was about 1:250. The electro-
phoretic mobility of recoverin on SDS polyacrylamide gels corre-
sponds to a 26-kD protein, and its gel filtration elution volume
corresponds to that of a 28-kD sphere.

A rabbit polyclonal antiserum to purified recoverin was prepared,
and antibodies were isolated from the serum with immobilized
recoverin (10). The affinity purified antibody specifically recognized
a 26-kD protein in retina homogenates (Fig. 2A) and in pineal
homogenates. Immunoreactive proteins were not detectable in
brain, heart, liver, lung, and kidney (Fig. 2A), nor were they
detectable in spleen, muscle, or adrenal tissue. The antibody has also
been used to purify recoverin by affinity chromatography from crude
mixtures of soluble retinal proteins (11). The affinity purified
antibody recognized the entire photoreceptor layer of frozen sec-
tions of bovine retina (Fig. 2, B and D). The outer segments, inner
segments, cell bodies, and synaptic pedicles of both rods and cones
were labeled with the antibody. All photoreceptor types including
red, green, and blue cones were recognized (Fig. 2, B to E).

Intact recoverin could not be sequenced directly because of its
modified amino terminus. Instead, the protein was digested with
cither cyanogen bromide (CNBr), hydroxylamine (NH,OH), or
proteases (12). Fragments were then purified by reversed-phase
high-performance liquid chromatography (HPLC) and subjected to
Edman degradation. Two partial cDNA clones were isolated from a
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Agtl] bovine retina cDNA library with the antibody as a probe (12,
13). A full-length cDNA was then isolated from a Agtl0 bovine
retina cDNA library. Aligned sequences of overlapping peptide
fragments and the amino acid sequence deduced from the cDNA are
shown in Fig. 3A. The complete amino acid sequence of recoverin
contains 202 residues and has a calculated mass of 23.3 kD (Fig.
3B). It is 59 percent identical to visinin, a cone-specific Ca**
binding protein from chicken retina (14). According to criteria

defined by Kretsinger and coworkers (15), there are three potential
Ca?* binding sites like the EF hands in calmodulin, intestinal
calcium binding protein, and other calcium binding proteins (Fig.
3C).

Fluorescence spectroscopy confirmed that recoverin binds Ca®*.
The tryptophan fluorescence intensity decreased and the emission
spectrum shifted to the red when the Ca* was raised from less than
10 nM to 1.4 pM (Fig. 4A). In contrast, raising the concentration

Fig. 1. Purification of recoverin. The ROS were
isolated from 400 bovine retinas and bleached, A ‘
and soluble proteins were extracted (9, 20) with 1 e
200 ml of buffer B (20). (A) ROS soluble extract. QL6743 30 20

NaCl(M)
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SDS-PAGE of 40 pg of protein. (B) DEAE

cellulose chroma phy. The extract (400 mg B
protein) was applied to 80 ml of DE52 in 10 mM | 'g [
tris-HCI (pH 8.0) and was eluted with 140 mM e bt
NaCl. SDS-PAGE of 26 pg of protein. (C)
Immobilized rhodopsin column. Recoverin frac-

ODZBQ

B>

tions (100 mg protein) were identified by SDS-
PAGE and applied to a 20-ml column (9) that had
been equilibrated and washed with buffer C (20).
Recoverin was eluted with buffer C plus 1.5
percent OG. (D) FPLC chromatography (Super-

ODyg,

ose 12 HR 10/30) in buffer C. Recoverin (4.0 mg T

protein) was concentrated by Amicon YM-10 T
filtration and applied and cluted at a rate of 1

ml/min. SDS-PAGE of 10 pg of protein. (E) o PR

FPLC chromatography (Mono Q HR 5/5). Re- . e hind %4

coverin (1.8 mg) was diluted threefold with 10 EEE. b e

mM tris-HCl (pH 8.0) and was applied and P = 30+ - o S

cluted at 0.5 mi/min with a 0 to 0.5 M NaCl 20— P26 m—— i - < p26
gradient in 20 mM tris-HCI (pH 8.0) plus 1 mM i ~2 20—

MgCl,. SDS-PAGE of 7.5 pg of protein. i . —

Throughout, preparations were at 4°C when pos-

sible. All gels were 12.5 percent acrylamide and

were stained with Coomassie blue. The yield was 0.4 mg of protein (Bradford assay with bovine serum albumin as standard).
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Fig. 2. Immunoblor and immunocyrochemical
analyses of mouse and bovine tissues with anti-
body to recoverin. (A) Tissue immunoblot. Ap-
proximately 5 pg of protein from various mouse
tissues were subjected to SDS-PAGE (15 percent
acrylamide), transferred to nitrocellulose, and
probed with affinity purified antibody to recov-
erin (1 pg/ml) (21). (B) Distribution of recov-
erin. Bovine retina sections were probed with
affinity purified antibodies to recoverin (22). Only
the photoreceptor layer is shown. (C) Red and
green cones. Same section as (B) labeled with
CSALl (23). (D) Distribution of recoverin, as in
(B). (E) Blue cones. Same section as (D) labeled
with an OS-2 (24). Arrows indicate cones that are
labeled both with antibody to recoverin and with
antibody to a specific cone type.
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of free Mg?* to 4.2 mM did not alter the fluorescence properties of
recoverin. These results suggest that purified recoverin specifically binds
Ca®>* at micromolar or lower concentrations in solution. Blots with
*5Ca®* (16) also demonstrated that recoverin binds Ca>* (Fig. 4B).

The affinity of recoverin for Ca®>* and its presence in rods and
cones led us to investigate its relation to the putative Ca* sensitive
regulator of photoreceptor guanylate cyclase (7). The ROS mem-
branes were stripped of endogenous activator by washing with a low
ionic strength buffer. As reported (7), stripped membranes exhibit a
low basal guanylate cyclase activity insensitive to Ca®*. Addition of
purified recoverin to these membranes activated guanylate cyclase at
low Ca®* concentrations (Fig. 5A), but at high Ca®* concentrations
the cyclase returned to its basal activity. In the experiment shown,
the activity of the enzyme increased nearly fourfold when Ca®* was
lowered from 450 to 40 nM. The maximum activation was variable
in our assays, suggesting either that recoverin or the guanylate
cyclase preparations are unstable or that other factors may also be
involved.

Half-maximal activation of guanylate cyclase by recoverin oc-
curred at about 240 nM free Ca®*, nearly the same concentration
required in native ROS membranes (Fig. 5B). The Hill coefficient
for activation of cyclase by recoverin is about 3, showing that the
effect is highly cooperative, as reported for native ROS (7). Lam-
brecht and Koch (18) isolated a protein with an apparent mass of 26
kD, most likely recoverin, that activates guanylate cyclase. They
observed half-maximal activation at a free Ca®* concentration
estimated to be between 110 and 220 nM.
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Fig. 3. (A) Partial amino acid sequence of recoverin determined by Edman
degradation. The beginning and end of each sequenced region is marked by
pointed brackets (< and >). Symbols on the left denote the way in which
fragments were generated (12): It, large tryptic fragment; mt, CNBr and then
trypsin; m, CNBr; e, cleavage at Glu; d, cleavage at Asp; r, cleavage at Arg;
and ng, cleavage by hydroxylamine. The cDNA sequence established the
identity of residues 37 to 46 and those marked with an asterisk (*). (B)
Complete amino acid sequence of recoverin and comparison with the
sequence of chicken visinin (14). The sequences of the NH,-terminal five
residues and COOH-terminal seven residues of recoverin were determined
from a full-length cDNA clone. Identical residues in recoverin and visinin are
marked by a colon (:). The three EF hand sequences in each protein are
underlined. (C) Comparison of the three EF hand sequences of bovine
recoverin (Rec) and chicken visinin (Vis) with representative EF hands from
bovine calmodulin (CaM) and bovine intestinal calcium binding protein
(ICBP) (15). Numbers refer to the consecutive order of EF hands within the
protein sequence starting from the NH,-terminus. The consensus sequence
for EF hands (15) is shown at the top. E, glutamate; n, nonpolar residue; *,
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If recoverin is the endogenous Ca®* sensitive activator of guanyl-
ate cyclase, then it should be possible to block cyclase activation in
native ROS membranes by adding antibody to recoverin. In fact, 50
pg of polyclonal antibody to recoverin added to native ROS
membranes (100 pg rhodopsin) completely blocked guanylate
cyclase activation at low Ca>* without interfering with basal cyclase
activity at high Ca®*.

Recoverin differs from Ca®>* dependent activators such as cal-
modulin and troponin C, which require Ca®>* to activate their
targets. Rather, recoverin is a Ca®* sensitive activator that must be
liberated from Ca®* before it activates its target. Three simple
models of how recoverin confers Ca®* sensitivity on guanylate
cyclase can be envisaged:

(i) C" + V + Ca?* & Ca?*-V-C
(ii) V-C" + Ca®>* « Ca’>*-V-C
(iii) V-C" + Ca?* & Ca®>*-V + C

V denotes recoverin, and C* and C are the high and low activity
forms, respectively, of guanylate cyclase. In model (i), recoverin
binds Ca®*, forms a complex with guanylate cyclase, and inhibits its
catalytic activity. This model can be ruled out because guanylate
cyclase in the absence of recoverin has low catalytic activity regard-
less of the Ca®* concentration. In models (ii) and (iii), the Ca®™ free
form of recoverin binds to guanylate cyclase and activates it. The
effect of Ca®* is reversal of this activation. Both models (ii) and (iii)
are consistent with the findings that both recoverin and low Ca®*
concentrations are required for activation and that the activity at

B
Rec  MGNSKSGALSKEILEELQLNTKFTEEELSSWYQSFLKECPSGRITRQEFQTIYSKFFPEA
Vis ~ MGNSRSSALSREVLQELRASTRYTEEELSRWYEGFORQCSDGRIRCDEFERIYGNFFPNS
1 10 20 30 40 50 60
Rec  DPKAYAQHVFRSFDANSDGTLDFKEYVIALHMTSAGKTNQKLEWAFSLYDVDGNGTISKN
Vis  EPQGYARHVFRSFDTNDDGTLDFREYIIALHLTSSGKTHLKLEWAFSLFDVDRNGEVSKS
61 70 80 90 100 110 120
Rec  EVLEIVTAIFKMISPEDTKHLPEDENTPEKRAEKIWGFFGKKDDDKLTEKEFIEGTLANK
Vis  EVLEIITAIFKMIPEEERLQLPEDENSPQKRADKLWAYFNKGENDKIAEGEFIDGVMKND
121 130 140 150 160 170 180
Rec  EILRLIQFEPQKVKEKLKEKKL
202
Vis  AIMRLIQYEPKK
181 192
C En**nn+**nX*Y*ZG*I-X**Zn+**nn++n
Rec 1 ELSSWYQFLKECPSGRITRQEFQTIYSKE
vis 1 ELSRWYEGFQRQCSDGRIRCDEFFRIYGNEF
Rec 2 YAQHVFRSFDANSDGTLDFKEYVIALHMT
vis 2 YARHVFRSFEFDTNDDGTLDFREYIIALHLT
Rec 3 KLEWAFSLYDVDGNGTISKNEVLEIVTAL
vis 3 KLEWAFSLFEDVDRNGEVSKSKVLEIITAL
caM 1 EFKEARFSLEDKDGDGTITTKELGTVMRSL
ICBP 2 TLDELFEELDKNGDGEVSFEEEFQVLVEKEK

any residue; X, Y, Z, —X, and —Z, Ca®>* chelating residues containing
oxygen in their side chain; G, glycine; I, isoleucine, leucine, or valine.
Underlined residues fit the consensus sequence. Abbreviations for the amino
acid residues are A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I,
Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr;
V, Val; W, Trp; and Y, Tyr.
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Flg. 4. (A) Tryptophan fluorescence. Effect of Ca®>* on the fluorescence
emission of 0.9 uM purified recoverin excited at 291 nm (Hitachi MPF-4
fluorimeter, bandw1dth 10 nm, 23°C). Buffers used were 3 mM EGTA
(curve 1), 3 mM EGTA and 5 mM MgCl, (free Mg+, 4.2 mM) (curve 2),
3 mM EGTA-Ca?* buffer (free Ca?*, 1.4 pM) (17) (curve 3) in 50 mM tris,
PH 8.0. Addition of Ca>* or Mg>* did not change the pH by more than 0.2
units. (B) Binding of *Ca®* to 1 pg of purified recoverin (lane 1), 0.5 pg
of purified yeast calmodulin (lane 2), 1.5 pg of purified transducin a subunit
(lane 3). (Left panel) Blot stained with Ponceau S. (Right panel) Blot
probed with *°Ca.
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Fig. 5. The Ca>* dependence of guanylate cyclase. (A) Restoration of Ca®*
sensitive activation of guanylate cyclase by addition of recoverin to stripped
ROS membranes. (@) Activity of stripped ROS membranes; ([]) activity of
the same membranes in the presence of 1.5 pg recoverin. These iments
were performed at 12 mM Mg?*. (B) The Ca?* dependence of cyclase
activity in native ROS.

high Ca®* concentrations in the presence of recoverin is the same as the
basal, Ca>* independent activity of stripped membranes. In model (ii)
ttha“reoovcnncomp mmmsawoaamdw;dmguanylanccyclasc
but does not activate it, whereas in model (iii) the Ca**-recoverin
complex completely dissociates from the guanylate cyclase.

We have investigated the effect of recoverin only on guanylate
cyclase. Recoverin may also have other regulatory roles in the retina,
or it may influence the structural stability of photoreceptors. In fact,
Polans and co-workers (19) have identified antibodies to recoverin
in sera from patients with retinas that have degenerated as a result of
cancer-associated retinopathy (CAR).

Our study shows that, in the photoreceptor, a 23-kD Ca*-binding
protein, recoverin, activates guanylate cyclase when Ca?* is lowered
within the submicromolar range, a key event in the resynthesis of cyclic
GMP and recovery of the dark state. The homology between recoverin
andvisininsugg&tsdntdmeprotcimarcmcmbcmofafamilyof

Ca®*-sensitive regulators that, through cooperative interactions, act as
switches at submicromolar Ca®* levels
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