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Identification of the Hepatocyte Growth Factor
Receptor as the c-met Proto-Oncogene Product

DONALD P. BOTTARO, JEFFREY S. RUBIN, DONNA L. FALETTO,
ANDREW M.-L. CHAN, THOMAS E. KMIECIK, GEORGE F. VANDE WOUDE,

STUART A. AARONSON

Hepatocyte growth factor (HGF) is a plasminogen-like protein thought to be a
humoral mediator of liver regeneration. A 145-kilodalton tyrosyl phosphoprotein
observedmrapldmponsetoHGFtreatmentofinuctwgctoellswasldmnﬁedby
immunoblot analysis as the B subunit of the c-met proto-oncogene product, a

membrane-spanning tyrosine kinase. Covalent cross-linking of 2I-labeled ligand to

cellular eins of

appropriate size that were recognized by antibodies to c-met

directly established the c-met product as the cell-surface receptor for HGF.

EPATOCYTE GROWTH FACTOR

(HGF) was first purified from hu-

man and rabbit plasma and rat
platelets on the basis of its ability to stimu-
late mitogenesis of rat hepatocytes (1-3).
Thus, HGF may act as a humoral factor
promoting liver regeneration after partial
hepatectomy or liver injury (4). The same
factor was purified from human fibroblast
culture medium and shown to act on mel-
anocytes and a variety of epithelial and
endothelial cells (5). Together with evidence
of HGF expression in several organs (5-8),
these findings indicate that HGF may also
act as a paracrine mediator of proliferation
for a broad spectrum of cell types. Molecular
cloning of HGF revealed structural similar-
ity to plasminogen and related serine prote-
ases (5, 9, 10). Recent evidence that HGF
induces rapid tyrosine phosphorylation of
proteins in intact target cells suggests that a
tyrosine kinase receptor might mediate its
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mitogenic signal (5).

The human mammary epithelial cell line
B5/589 is particularly sensitive to the mito-
genic effects of HGF (5). Intact serum-
starved B5/589 cells were treated with HGF
(approximately 100 ng/ml) for 10 min at
37°C and solubilized on ice. Phosphotyrosyl
proteins were isolated from cell lysates by
immunoprecipitation with antibody to

Fig. 1. Tyrosine phosphorylation of pl45 in
B5/589 human epithelial cells in re-
sponse to HGF. (A) Immunoblot of phosphoty-
rosyl proteins from untreated control cells (C),
treated with HGF, and with EGF (Collaborative
Research). HGF was purified as described (5).
Scnnnmrvedccllswcrccxposodtogrowd'nfac-
tor (100 ng/ml) for 10 min at 37°C as indicated,
detergent-solubilized on ice, and immunoprecip-
itated with monoclonal antibody to pTyr (Up-
state Blotechnolgy) Immunoprecipitated pro-
teins were resolved by 7.5% SDS-PAGE (30) and
immunoblotted with the same antibody (31). (B)
Autoradiogram of 32P-labeled phosphoproteins

from control (C) and HGF-treated cells. Serum-starved cells were metabolically
mdplhosphatc (1.0 mCi/ml) (32). The cells were treated with HGF (100 ng/ml) for 10 min at

[321)]0

37°C as indicated and detergen

2 of (B) was

t-solubilized on ice. Phosglos
with anti-pTyr and resolved by 7.5% SDS-PAGE. (C) Phosphoamino

phosphotyrosine (anti-pTyr). These pro-
teins were resolved by SDS—polyacrylamide
gel electrophoresis (SDS-PAGE) and im-
munoblotted with the same antibody. Sev-
eral phosphotyrosyl proteins were detected
in untreated cells by this method (Fig. 1A).
Treatment of intact cells with HGF induced
phosphorylation of a 145-kD protein
(p145) (Fig. 1A, center lane). B5/589 cells
exposed to epidermal growth factor (EGF)
displayed tyrosine phosphorylation of the
EGF receptor, but not p145 (Fig 1A, right
lane). When lysates from control and HGF-
treated cells that had been labeled with
[32P]orthophosphate were used for immu-
noprecipitation with anti-pTyr, phosphoryl-
aton of pl45 was specifically detected in
HGF-treated cells (Fig. 1B). Phosphoamino
acid analysis of 32P-labeled p145 confirmed
the presence of phosphotyrosine and revealed
the presence of phosphoserine as well (Fig.
1C). The HGF-stimulated phosphorylation
of p145 on tyrosine and its apparent molec-
ular weight were consistent with the possibil-
ity that p145 represented the receptor tyro-
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hotyrosyl proteins were immunoprecipitated
oamino acid analysis of p145 from lane

performed as described (32). The dotted circles indicate the migration of unlabeled

phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY).
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sine kinase for HGF.

A number of receptor-like molecules have
been described for which there are as yet no
known ligands. One of these is the c-met
proto-oncogene product, which is a recep-
tor-like tyrosine kinase comprised of disul-
fide-linked subunits of 50 kD () and 145
kD (B) (11, 12). In the fully processed c-met
product, the a subunit is extracellular, and
the B subunit has extracellular, transmem-
brane, and tyrosine kinase domains as well as
sites of tyrosine phosphorylation (12-15).

To test the hypothesis that p145 might
represent the c-met protein B subunit, pro-
teins immunoprecipitated by anti-pTyr from
control and HGF-treated B5/589 cells were
immunoblotted with a monoclonal antibody
to the cytoplasmic domain of the human
c-met product (16). The prominent 145-kD
protein observed only in HGF-treated cells
(Fig. 2A) provided direct evidence that this
mitogen induced phosphorylation of the
c-met protein on tyrosine residues. When
whole lysates prepared from identically
treated cells were blotted directly with the
same antibody to c-met, the percentage of
c-met protein phosphorylated on tyrosine in
response to HGF could be quantitated (Fig.
2A). We estimate that at least 10% of the
total cellular c-met protein content was im-

>
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69 —
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Fig. 2. Identification of p145 as the B subunit of
the c-met protooncogene product. (A) Antibody
to c-met immunoblot of anti-pTyr immunopre-
cipitates from control (C) and HGF-treated B5/
589 cells. Samples for immunoprecipitation (2
mg of protein) 5:& prepared asotfcsm%ed in Fig.
1A, resolved by 7.5% SDS-PAGE, transferred to
Immobilon membranes (Millipore), and detected
with monoclonal antibody to c-met and 12I-
labeled protein A. To quantify the percentage of
c-met protein that was immunoprecipitable with
anti-pTyr, 200 pg of B5/589 cell lysate (Lysate)
was resolved by SDS-PAGE and immunoblotted
directly with monoclonal antibody to c-met. (B)
Autoradiogram of 32P-labeled phoproteins
from control (C) and HGF-treated B5/589 cells
resolved by 7.5% SDS-PAGE under reducing (R)
and nonreducing (NR) conditions. Serum-
starved cells were metabolically labeled with
[32PJorthophosphate, left untreated (C) or treat-
ed with HGF, and immunoprecipitated with anti-
l;il(;yr a:is dgcnbcd mﬂ Fig. 1B. Samples bcv;(c)rc

uced with 100 B-mercaptocthanol before
electrophoresis as indicated.
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munoprecipitable by anti-pTyr after HGF
stimulation: Analysis of the time course of
HGEF action revealed that the c-met protein
could be recovered by immunoprecipitation
with anti-pTyr within 1 min of treatment
and that this effect persisted for at least 3
hours (17). Comparison of the electropho-
retic mobility of p145 under reducing and
nonreducing conditions confirmed that it
was the B subunit of the c-met protein (Fig.
2C). Without reduction, the 50-kD a sub-
unit of the c-met protein remains disulfide-
linked to the B subunit and substantially
retards its migration in SDS-PAGE (11-15).
Similarly, pl45 immunoprecipitated from
32p-labeled B5/589 cells that had been treat-
ed with HGF displayed a shift in mobility
characteristic of the c-met proto-oncogene
product when subjected to reducing or
nonreducing  electrophoretic  conditions
(Fig. 2C). Together these results identified
pl45 as the c-met protein B subunit and
established that HGF stimulated its phos-
phorylation on tyrosine residues.

The rapidity and extent of c-met protein
tyrosine phosphorylation in response to
HGF supported the possibility that c-met
protein was the cell-surface receptor for
HGF. However, there is evidence that re-
ceptor kinases can phosphorylate other re-
ceptors (18, 19). Thus, conclusive identifi-
cation of the c-met product as the the HGF
receptor required a demonstration of their
direct interaction. '?5I-labeled HGF was
unsuitable for covalent affinity cross-linking
because it consisted of a mixture of single
chain and heterodimeric labeled species
(17). A smaller form of HGF with similar

binding properties (17), designated

Fig. 3. Covalent affinity cross-link- A
ing of !%5I-labeled HGFp28 to the
C-met protein- ine kinase. (A)
Immunoblot of lysates (200 pg of
protein) prepared from M426 hu-
man lung fibroblasts and B5/589
cells using monoclanal antibody to
the cytoplasmic domain of c-met

ein. (B) Cross-linking of '?5I-
: HGFp28 to M426 and B5/
589 cells resolved by 6.5% SDS-
PAGE under nonreducing (NR)
and reducing (R) conditions.
HGFp28 was purified as described
(33) and labeled with Na!25] by the
chloramine-T method (34). Cells
were incubated with Hepes binding

B5/589

M426
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buffer (31) containing 1?5I-labeled HGFp28 (5 x 105

HGFp28, was '2°I-labeled and used to char-
acterize the HGF receptor. We compared its
cross-linking on B5/589 cells and M426
human fibroblasts, an HGF-insensitive cell
line which also lacks detectable amounts of
c-met protein (Fig. 3A). The !?5I-labeled
HGFp28 cross-linked to its recéptor on
B5/589 cells migrated as a 210-kD protein
complex under nonreducing conditions
(Fig. 3B). Under reducing conditions, a
major 170-kD complex was observed (Fig.
3B). These apparent molecular sizes were
consistent with a direct interaction between
the labeled HGFp28 and the 145-kD B
subunit of the c-met protein. Under reduc-
ing conditions, two minor bands of 190 kD
and about 300 kD were also detected (Fig.
3B). Cross-linking of 125I-labeled HGFp28
to the species observed under reducing con-
didons was blocked by addition of either
unlabeled HGFp28 or HGF-neutralizing
antisera (17). Under identical conditions,
125]-labeled HGFp28 failed to cross-link to
any large proteins in M426 cells (Fig. 3B).

To establish that 2I-labeled HGFp28
was physically associated with the c-met pro-
tein, we immunoprecipitated '2*I-labeled
HGFp28 cross-linked complexes with a
polyclonal antiserum (15) specific to the
carboxyl-terminal 28 amino acids of the B
subunit of the c-met protein. The covalently
cross-linked major 170-kD and minor 300-
kD species detected under reducing condi-
tions were immunoprecipitated by the and-
body, and their detection was specifically
blocked by competing peptide (Fig. 3C).
These results demonstrate a direct molecular
interaction between '25I-labeled HGFp28
and the c-met B subunit. The composition of
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ks,

) for 45 min at 25°C, washed with cold

Hepes-buffered saline (pH 7.4), and treated with disaccinimidyl suberate (31). The cells were then

solubilized with SDS and boiled for 3 min in the presence of 100 mM B-mercaj
by 6.5% SDS-PAGE and autoradiography at —70°C. (C)

125Ljabeled proteins were resolved

as indicated.

Inununcxrecipiuﬁon of 125]-labeled HGFp28-cross-linked complexes from B5/589 cells with antise-
rum to the c-met peptide (15). Sample preparation and cross-linking prior to immunoprecipitation,
performed as described in (B), yiclded the electrophoretic pattern shown in the left lane (Lysate) under

reducing conditions. The adjacent lanes show immunoprecipitation of the cross-linked s

ies with

antiserum to the c-met peptide (1:100) in the absence (a-MET) or presence (+ COMP) of competing
peptide (10 pg/ml). Immunoprecipitated proteins were adsorbed to immobilized protein-G (Genex)
and cluted with SDS prior to electrophoresis and autoradiography as described in (B).
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the minor 300-kD cross-linked species re-
mains to be determined. All of these findings
establish that the c-met product is the cell
surface receptor for HGF.

HGEF is structurally related to the family
of serine proteases that includes plasmino-
gen, prothrombin, urokinase, and tissue
plasminogen activator (5, 9). Several prote-
ases, including members of this family, stim-
ulate DNA synthesis presumably through a
proteolytic mechanism similar to tryptic ac-
tivation of the insulin receptor (20). Only
urokinase has been found to associate with a
specific cell-surface receptor, which itself
bears no homology to the c-met protein or
other tyrosine kinase receptors (21). HGF,
however, lacks two amino acids in the cata-
lytic triad required for proteolytic function
(22). The direct interaction of HGF with the
c-met receptor tyrosine kinase suggests a
biochemical mechanism of mitogenic signal
transduction similar to that of insulin, EGF,
and others, and thus represents significant
functional divergence from its serine prote-
ase homologs.

The met oncogene was originally identi-
fied in a chemical carcinogen-treated human
osteogenic sarcoma cell line by transfection
analysis in NIH 3T3 cells (23). Its cloning
revealed that the oncogene encoded a trun-
cated tyrosine kinase activated by chromo-
somal rearrangement (24). Although the
oncogene product is predominantly a cyto-
solic kinase, the proto-oncogene product is a
transmembrane receptor-like protein (14,
15), whose transcript is expressed in many
tissues (25, 26). A high proportion of spon-
tanecous NIH 3T3 transformants overex-
press c-met (27). Moreover, NIH 3T3 trans-
fection analysis has revealed that the murine
c-met proto-oncogene exhibits transforming
activity (26). Since this cell line produces
HGF (28), an autocrine mechanism may
provide the basis for transformation in each
case. Tyrosine phosphorylation of apparent-
ly normal c-met protein has also been ob-
served in certain human gastric carcinoma
cell lines (29). Whether autocrine stimula-
tion is responsible for the constitutive acti-
vation of c-met tyrosine kinase in such tumor
cell lines remains to be determined. In any
case, knowledge that the HGF receptor is
the c-met tyrosine kinase provides the oppor-
tunity to explore the role of this ligand-
receptor system in normal as well as disease
states.
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Regulation of Polyphosphoinositide-Specific
Phospholipase C Activity by Purified G,
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The hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP,) by phospholipase C
yields the second messengers inositol 1,4,5-trisphosphate (InsP;) and 1,2-diacylglyc-
erol. This activity is regulated by a variety of hormones through G protein pathways.
However, the specific G protein or proteins involved has not been identified. The «
subunit of a newly discovered pertussis toxin-insensitive G protein (G,) has recently
been isolated and is now shown to stimulate the activity of polyphosphoinositide-
specific phospholipase C (PI-PLC) from bovine brain. Both the maximal activity and
the affinity of PI-PLC for calcium ion were affected. These results identify G, as a G

protein that regulates PI-PLC.

EGULATION OF INTRACELLULAR
activities by a wide variety of extra-
cellular signals involves cell surface

receptors that interact with GTP (guanosine
triphosphate)-dependent  regulatory  pro-
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teins (G proteins) (1). The best understood
pathways are the regulation of adenylyl cy-
clase by the G, proteins and the cGMP
(cyclic guanosine monophosphate)-specific
phosphodiesterase by the G, (transducin)
proteins. The G, and G; subfamilies of G
proteins are sensitive to modification by
pertussis toxin (PTX) and have been impli-
cated in the inhibition of adenylyl cyclase
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