
The traveling salesman problem is one of a class of
diEcult problems in combinatorial optimization that is
representative of a large number of important scientific
and engineering problems. A survey is given of recent
applications and methods for solving large problems. In
addition, an algorithm for the exact solution of the
asymmetric traveling salesman problem is presented
along with computational results for several classes of
problems. The results show that the algorithm performs
remarkably well for some classes of problems, determin-
ing an optimal solution even for problems with large
numbers of cities, yet for other classes, even small prob-
lems thwart determination of a provably optimal solu-
tion.

F EW MATHEMATICAL PROBLEMS HAVE COMMANDED AS MUCH

attention as the traveling salesman problem (TSP). Given a
list of cities (1, . . . n) and costs cg for traveling between all

pairs of cities, the TSP involves specifying a minimum-cost tour that
visits each city once and returns to the starting point. The TSP is
simply stated, has practical applications, and is representative of a
large class of important scientific and engineering problems that
have defied complete understanding. The nature of this representa-
tion has been made precise through the theory of nondeterministic
polynomial time completeness (NP-completeness) (1, 2). The crux
of this theory states that if an efficient algorithm could be found for
the TSP, then efficient algorithms could be constructed for all
problems in class NP-complete. Here, the designation "efficient" has
a very precise meaning. An algorithm is deemed efficient if its
execution time is bounded by a polynomial function written in terms
of some reasonable measure of problem size; for example, the
number of bytes on a computer needed to describe a particular
instance of a problem. The theory has gained almost mythical
significance because, despite years of effort by many researchers, no
algorithm for the TSP or any other NP-complete problem has been
found to meet this standard of efficiency. This failure has led to the
widely held conjecture that no such efficient algorithm will ever be
found. Practitioners faced with the need to solve real problems have
sought to circumvent this state of affairs by developing approximate
(3, 4) [heuristic (5)] algorithms. These algorithms do not solve the
problem in a rigorous sense; they seek to find acceptable, but

D. L. Miller, Central Research & Development Department, E. I. du Pont de Nemours
and Company, Wilmington, DE 19880. J. F. Pekny, School of Chemical Engineering,
Purdue University, West Lafayetre, IN 47907.

possibly inexact (suboptimal), solutions. Another tactic for circum-
venting the pessimistic conjecture is to relax the demanding notion
of efficiency and explore algorithms that admit the possibility of a
large, essentially infinite, execution time in the search for a rigorous
solution (6) . The exact approach has the advantage that it deter-
mines a best possible (optimal) answer on completion. Furthermore,
if appropriately designed, exact algorithms may be made to yield
approximate solutions of a known quality on premature termina-
tion.

We investigated whether the exact solution of large NP-complete
problem instances is a reasonable goal. Our results show that a
well-designed algorithm executed on a powerful computer can
optimally solve a particular class of instances of the TSP many
hundreds of times larger than has been reported. The question of
whether an optimal solution can be obtained is of more than
academic interest because the ability to determine optimal or
near-optimal solutions can be of considerable economic importance.
In fact, the TSP algorithm reported in this article is used to generate
schedules for a variety of chemical manufacturing facilities.

As a simple example, consider the sequencing of jobs (1, . . . n) on
a facility. The cost of switching production from job i to job j (cq)
is frequently asymmetric; it is easier to paint a white car and then a
black one than vice versa, so cG f c j i . The processing sequence that
is lowest in cost may be calculated by solution of the corresponding
TSP. For this and more complicated examples, the exact algorithm
may fail to produce a provably optimal schedule in a reasonable
time. However, a comparison of the schedules generated by the
exact algorithm versus those generated by simple heuristics some-
times shows a wide discrepancy in favor of the exact algorithm. The
scheduling of a no-wait flowshop provides a more sophisticated
application of the TSP (7-9). A no-wait flowshop consists of jobs
(1, . . . n), each of which is processed on a set of machines
(1, . . . rn); first on machine 1, then on machine 2, and so on in
increasing machine number. The no-wait condition implies that a
job can only be delayed before processing begins on machine 1, after
which no interruption can occur. Associated with each job is an
rn-tuple of numbers that indicate the processing time on each
machine. A schedule consists of the processing sequence on machine
1 and the length of delay to insert between the jobs in the sequence.
This delay is the minimum time necessary to prevent a job from
catching up with its immediate predecessor on a downstream
machine. Because the sum of the processing times is fixed, finding
the sequence that minimizes the sum of the delays, hence the time to
process all jobs, is equivalent to a TSP (7). From a general point of
view, the TSP is well suited for modeling the behavior of any system
where the performance attribute is simply an additive function of
consecutive system states.

The enormous literature on the TSP may be broadly classified

754 SCIENCE, VOL. 251

according to the origin and structure of the intercity costs. A
summary through 1985 is available (10). Instances involving sym-
metric cost matrices (cy = c j i) are widely studied, with applications
documented in x-ray crystallography (n 5 14,000) (11), circuit
board drilling (n 5 17,000) (12), very large scale integrated circuit
fabrication (n 5 1.2 million) (13), circuit board assembly (n 5 104)
(14), and the study of protein conformations (15). Sometimes, the
cities can be represented as points on a Euclidean plane. For this
case, and for some other symmetric matrix applications, the Lin-
Kernighan heuristic (16) has proven to be highly successful, often
coming within a few percent of optimal as proven by the lower
bounding technique of Held and Karp (17). Recent work by
Johnson (4) provides a detailed comparison of Lin-Kernighan with
heuristics based on simulated annealing, genetic algorithms, and
neural networks. Execution times are reasonable for Lin-Kernighan,
even for instances with up to 100,000 cities, and Johnson (4, 18)
makes a strong case that it is the best available heuristic for "
Euclidean and other symmetric cost matrices. Padberg and Rinaldi
(19, 20) have successfully applied an exact branch and bound
algorithm to some symmetric cost matrices. Using a Cyber-205,
they report optimally solving instances involving 318 cities in 3.4
hours, 532 cities in 6 hours, 1002 cities in 7.3 hours, and 2392 cities
in 27.3 hours. With an IBM 3090/600 and algorithmic modifica-
tions, the 2392-city instance was solved in 2.6 hours. Routine
solution of 100-city instances requires 15 to 30 min of Vax 111780
time. Independently, but using similar techniques, Grotschel and
Holland (21) have solved a 666-city instance based on locations of
cities throughout the world in about 9 hours and a 1000-city
random-distance matrix in 30 min on an IBM 3081D.

Padberg and Rinaldi (19) report that the Lin-Kernighan heuristic
found a solution within 1.7% of optimal for the 532-city instance in
the first 7% of the total execution time. The remaining 93% of the
time was required to find and guarantee an optimal solution. Taken
together, these results indicate-that many symmetric instances have,
for practical purposes, yielded to the carefully designed Lin-Ker-
nighan heuristic. Furthermore, the exact results show that optimal
soiutions for some instances of the symmetric problem are within
reach of a well-crafted algorithm.

The case of asymmetric intercity costs has proven considerably
more problematic for heuristics and has received less attention,
although Kanellakis and Papadimitriou (22) have proposed a Lin-
Kernighan-type heuristic. We are interested in this case because
asymmetric costs are typical in the scheduling of chemical processes.
Other asymmetric cost applications arise in the solution of pattern
allocation problems in the glass industry (23) and in the overhaul of
gas turbine engines (24). In this article we summarize an exact
algorithm for the asymmetric TSP (ATSP). The algorithm derives
its strength from several techniques that avoid an explicit search of
the large number of possible solutions, although its performance
deteriorates to an exhaustive search when the assumptions inherent
in these techniques fail. For one class of problem instances drawn at
random from the domain of all possible instances, the algorithm
obtains optimal solutions in reasonable time for many thousands of
instances of sizes up to 5,000 cities and for a few instances of sizes
up to 500,000 cities. For the symmetric TSP and many other classes
of instances, however, the algorithm only guarantees solution
optimally for less than 30 cities. How are these apparently contra-
dictory results to be reconciled?

superficially, solution of large random problem instances has little
practical significance, but the computational results presented below
show that the algorithm obtains an optimal solution for some
practical instances-and reasonable approximate solutions for other
instances that it cannot solve to optimality. More importantly, the
large random asymmetric results, in conjunction with the results of

other researchers on certain symmetric instances, seem to suggest
that some instances of the TSP are tractable. Favorable computa-
tional results on artificially contrived problems must be kept in
perspective; certainly it is not very difficult to confound all existing
exact algorithms. Although, the fact that any nontrivial large in-
stances can be solved to optimality offers hope that many large in-
stances of practical importance may someday be solved to provable
optimality.

Development of an effective exact algorithm requires that one
have intimate knowledge of the problem and that one make some
assumptions about the domain of instances to be encountered.
When these assumptions are violated, an algorithm performs poorly.
Alternate exact algorithms may be appropriate, although there are
structures for which no known algorithm is effective (25). Our effort
builds on the fact that other researchers have been successful at
exactly solving the ATSP (10).

Preliminaries
Formuiations that concisely define the ATSP are important for

the development of exact algorithms because they provide a formal-
ism through which knowledge can be acquired and synthesized into
algorithms with provable properties. The primal and dual formula-
tions of the related assignment problem (AP) imply a few simple
results that are at the heart of our algorithm.

The question of which order to visit the cities can be resolved by
consideration of a collection of yes-no decisions posed in the
following form: Should city j be visited immediately after city i? If
the answer is yes, then cityj will immediately follow city i in a tour
and cost cy will be incurred. If no, then city i should be immediately
followed by some city other than j . Given n cities, there are n2
unique yes-no questions of this form. A feasible tour results from
precisely n yes answers in such a way that each city is entered and
exited once in a single continuous tour. A mathematical formulation
of the problem makes this notion of a related collection of decisions
precise. Given a directed graph, that is, G = (V, A) , with vertex set
V = (1 , . . . n); arc set A = {(i, j) I i, j = 1 , . . . n); and cost cy
associated with each arc, the ATSP may be stated as an integer
program of the following form

minimize x x cyxy
i E u E V

(1)

E x y = 1, i E V
j E V

(3)

for all proper subsets S c V, S # 0

Each vertex in G represents a city, and an arc (i, j) represents the
possibility of traveling from city i to city j . A feasible solution to
Eqs. 2 to 5 consists of a single directed cycle that covers (visits) all
the vertices of G, that is, a Hamiltonian cycle. There are (n - l) !
feasible solutions. If arc (i, j) is present in a solution, travel occurs
from city i to j , xy = 1, and cost cy is incurred; otherwise xy = 0. An
optimal solution is a minimum-cost Hamiltonian cycle. A cost
matrix for a small example problem and an optimal tour of cost 16
are shown in Fig. 1. This example will be used to explain our
algorithm.

15 FEBRUARY 1991 ARTICLES 755

Cost matrix Optimal dual variables -1
0 0 0 0 0 3

Optimal assignment Optimal tour

Fig. 1. Example cost matrix and dual variables for optimal AP solution. An
optimal assignment (cost = 14) and optimal tour (cost = 16) are shown in
the boxes.

The AP consists of Eqs. 1 to 3 and 5, and we denote the optimal
value by val(AP). In terms of the above discussion, a solution to the
AP may be interpreted as precisely n yes answers in such a way that
every city is exited and entered exactly once, but it does not
necessarily imply a single continuous tour and hence is physically
unrealistic. Clearly val(AP) 5 val(ATSlJ), where v a l (A T S P) is the
optimal tour cost, because the ATSP has the same constraints as the
AP with the additional requirement of a physically realistic tour. In
terms of graph G, each of the n! possible AP solutions consists of a
collection of one or more disjoint cycles that cover all the vertices
(cyclic cover). An optimal AP solution of cost 14 is shown for the
example in Fig. 1. The AP is known to be a natural integer program
in the sense that it may be solved as a linear program by replacement
of Eq. 5 with the following:

Associated with the AP is an intimately related problem (dual-AP)
with optimal value val(dua1-AP) = val(AP), whose formulation is
crucial to our algorithm:

maximize x u i + C v j
i E V j€V

(7)

Figure 1 lists a set of optimal dual variables for the example. A
reduced cost element Ey is defined to be cu - ui - v j . From
elementary linear programming theory, the reduced costs have a
straightforward interpretation: the quantity val(AP) + tg is a lower
bound on the cost of an AP solution that includes arc (i, j) . For
example, the reduced cost of matrix element row 1, column 3 in Fig.
1 is 5 (= 8 - 3 - 0), which means that an AP (and ATSP) solution
including arc (1, 3) would cost at least 19 (= 14 + 5). The reduced
costs gauge the impact of forcing a transition between two cities.
This information is critical to eliminating a large number of
unattractive solutions and concentrating effort on those solutions
that can be optimal.

Overall Algorithm
Any effective exact algorithm must clearly avoid explicitly exam-

ining the vast majority of the solutions. One potential method for
pruning a large number of solutions from consideration is the
creation of a simpler problem with an identical set of optimal
solutions that can be solved much more rapidly. To this end,
consider a cost matrix (ci,) associated with ATSP', relaxation AP',
and dual-AP' defined as follows:

cy if cy 5 A
C !. =

m otherwise

The following simple proposition defines conditions under which an
optimal solution to ATSP' is also optimal for ATSP: an optimal
solution x' for ATSP' is an optimal solution for ATSP if v a l (A T S P)
- val(AP) 5 + 1 - uj - v',, and A + 1 - ul - v',, r 0 for
all iEV, where u' and v' are optimal solutions to dual-AP' and v',, ,
is the maximum element of v ' . A complete discussion of this
proposition may be found in (26). The quantity A + 1 - u,! - v',,
underestimates the smallest reduced cost of any discarded matrix
element; hence, satisfying the proposition simply guarantees that no
excluded element can lead to a better solution. We use the propo-
sition as the basis for our ATSP algorithm as follows.

1) Choose A.
2) Construct (c;) according to Eq. 9 and solve ATSP'.
3) If v a l (A T S P 1) - val(AP) 5 A + 1 - uj - v 6 , and A + 1 -

u: - v',, r 0, then the optimal solution to ATSP' found in step 2
is optimal for ATSP; otherwise, double A and repeat steps 2 and 3.

1f necessary, this procedure will increase A untii(ci,) consists of the
entire original cost matrix. For the computational results reported
below, we estimated a starting value for A in step 1 by solving small
problems with similar cost matrix structure. This estimation strategy
was successful in that none of the trials reported below required a
second iteration of steps 2 and 3. Alternatively, A could have been
estimated from the largest arc cost in a heuristic solution to the
ATSP. In all computational trials reported below. the value of A
used to satisfy the conditions of the proposition was such that only
a small fraction of the original matrix was retained. The algorithm
embodied in steps 1 to 3 is superior to the direct solution of ATSP
only to the extent that an optimal solution to ATSP' is more rapidly
obtained. In the next few sections we discuss a branch and bound
approach for solving ATSP' that is effective for some cost matrix
structures.

Branch and Bound
Branch and bound is a well-known enumerative search technique

for obtaining optimal solutions to the ATSP (10). The feasible
solutions are divided into a collection of disjoint sets, lower bounds
are obtained for each set, and the lower bounds are used in
conjunction with upper bounds so that some sets are discarded from
further consideration. The procedure is applied recursively to each
of the sets. The recursion explodes exponentially whenever the lower
bounds are weak with respect to the optimal solution value. Each
disjoint set may be viewed as a more constrained ATSP. In our
algorithm, the AP is used to determine lower bounds for the ATSP.
The algorithm creates disjoint sets based on an optimal solution to
the AP and determines upper bounds by splicing two or more cycles
in an AP solution into a possibly suboptimal Hamiltonian cycle.
Each of these operations has been specialized to take advantage of
the sparsity of the ATSP' cost matrix to accelerate performance.

We have added a feature to the basic branch and bound approach
that attempts to quickly find an ATSP solution among the set of
optimal solutions to the AP. This feature is denoted Hamiltonian
cycle problem reduction because the goal is to reduce the solution of
the ATSP to the solution of a Hamiltonian cycle problem on a
suitably defined graph. Given an unweighted graph, the Hamilto-
nian cycle problem requires finding a single cycle that visits all
vertices once. We define the admissible graph to be C = (V, Z),
where V is the vertex set given above, = {(i, j) I cq - ui * - vj *
= 01, and u* and v* are optimal AP dual variables. In an intuitive
sense, the admissible graph contains the most attractive travel

SCIENCE, VOL. 251

possibilities. In fact, a Hamiltonian cycle on c is an optimal solution
to the ATSP (27). If C does not have a Hamiltonian cycle, then the
AP lower bound mav be increased bv the minimum nonzero
reduced cost element with respect to the optimal dual solution (27).
Within the context of branch and bound, the reduction procedure
prunes sets of feasible solutions from further consideration when-
ever a Hamiltonian cycle is found or if the increase in the lower
bound strength is sufficiently large. For the computational results
reported below, the reduction procedure frequently enabled prun-
ing. In many cases, particularly for large problems, we would have
been unable to determine optimal ATSP solutions without the
reduction procedure.

In ordeito determine how close G is to a true Hamiltonian cycle,
we use an exact algorithm (28). It is analogous to the ATSP
algorithm except that the AP relaxation is replaced by an un-
weighted bipartite matching relaxation. The virtue of testing the
Hamiltonicity of the admissible graph is that the unweighted
bipartite matching problem is a strong relaxation for the admissible
graphs we encountered, and algorithms for solving the unweighted
bipartite matching problem are very efficient.

We now summarize the complete branch and bound approach
used in step 2 of the previous section to obtain the results reported
below. Let Q be a set of problems related to the ATSP to be solved
and designate UB (upper bound) the best known solution for this
problem. Denote val(z) to be the cost of feasible solution z and let
L(ATSP) be the value of the AP lower bound of ATSP.

1) Initialization. Place ATSP in Q. Set UB to 0 (null solution).
By definition val(0) = m .

2) Termination test. If Q is empty, terminate; UB is an optimal
solution with value val(UB).

3) Selection. Remove a problem fi with the smallest lower bound
from Q. For purposes of selection, problem fi inherits the lower
bound of its parent; see step 7.

4) Lower bounding. 1f L(P) is not less than val(UB), discard P
and repeat from step 2. The optimal AP solution, z , may be a
Hamiltonian cycle. In this case, UB is replaced by z .

5) Upper bounding. Determine a feasible solution z to problem
P. If val(z) is less than val(UB), replace UB with z.

6) Reduction. Construct an admissible graph G(P) from the
optimal dual variables computed in step 4. If G(P) has a Hamilto-
nian cycle, z , replace UB by z ; otherwise, add the minimum reduced
cost to L(P) to obtain a higher lower bound for P. Discard P if the
new lower bound is not less than val(UB).

7) Branching. Create new problems fi,, &, . . . , Pk from prob-
lem P so that an optimal solution to one of the new problems is also
optimal for P. Place each of the newly created problems into Q.
Discard problem fi and repeat from step 2.

The branch and bound procedure of steps 1 to 7 may be executed
on a parallel computer so that execution time is decreased (26, 29).
The result of steps 1 to 7 may be viewed as a search tree. Each of the
vertices of the tree uniquely represents one of the problems P
removed from Q, and the edges of the tree connect problems that
are directly related through step 7. The tree contains edge (P, 4) if
problem f i was directly created from problem P. The root of the tree
represen& the original problem. ~ i & r e 2 illustrates application of
the algorithm on the example of Fig. 1 (A = a). Although there are
7! (5040) feasible tours, the algorithm determines an optimal
solution using five search tree vertices.

Lower Bounding
We use a shortest augmenting path algorithm (30) to solve the

first AP encountered in the branch and bound procedure. The key

component of the algorithm is a modification of E. Dijkstra's
well-known labeling procedure for finding the shortest path be-
tween two vertices in a graph. The algorithm has worst-case
complexity of O(n3), but in practice is almost always faster. Subse-
quent APs are solved with a parametric version of the algorithm that
uses the parent AP solution as a starting point to reduce the
worst-case complexity to O(nZ). The AP algorithm contains several
features essential for the solution of large instances of a problem. In
particular, the temporary column labels (30) are managed by use of
d-heaps (31); when combined with a sparse cost matrix, this greatly
enhances performance. Also, the parametric version of the algorithm
terminates prematurely when the value of the parent lower bound
plus the minimum temporary column label is not strictly less than
the current upper bound. For this reason, a strong upper bound
early in the calculation eliminates many vertices in the search tree
without complete solution of the associated AP. A complete discus-
sion of AP solution in the context of the ATSP algorithm is given by
Pekny and Miller (26).

Upper Bounding
A patching procedure (32), tailored to exploit cost matrix sparsity,

is used as an upper bounding technique. The patching procedure
tries to splice together multiple cycles of an AP solution to form a
possible suboptimal Hamiltonian cycle. Any improvement heuristic
may be applied to the result of the patching algorithm. In some
cases, we apply interchange heuristics (4) to the result of patching to
improve heuristic solutions. An upper bound is important in the
sense that no search tree vertices may be eliminated until an upper
bound is established. When the ATSP algorithm is prematurely
terminated, the quality of the upper bounds provided by the
patching procedure may be estimated by use of search tree lower
bounds. This feature is important for industrial applications that
require a feasible solution of known quality in a predictable amount
of time.

Admir3ibl. graph

Fig. 2. Search tree for solution of example problem in Fig. 1. Each vertex
illustrates an optimal assignment and the arc sets "R" and "F" denote
required and forbidden arcs, respectively. The cost of an optimal assignment
at the root vertex is 14 and the corresponding admissible graph was found to
be non-Hamiltonian. At vertex 1, the optimal assignment of cost 15 was
patched to form a tour at cost 17. Vertex 3 has an optimal assignment cost
of 16 and the admissible graph was found to contain a tour. This tour is
optimal because vertices 2 and 4 have optimal assignment costs 2 16.

15 FEBRUARY 1991 ARTICLES 757

Applying the patching procedure at every vertex of the search tree
expends unjustified computational effort. Instead, the patching
procedure is frequently applied to the AP solutions near the
beginning of the calculation and less frequently after an upper
bound has been established. Incorporation of the patching proce-
dure as an upper bounding technique guarantees that the ATSP
algorithm produces an answer of known quality in a worst case of
0(n3) steps (33).

Branching Rules
We utilized a well-known branching rule (10) that uses the

concept of required and forbidden arc sets that are associated with
each vertex of the search tree. The required arc set contains those
arcs that must appear in an AP solution and the forbidden arc set
contains those that must not appear. A free arc is neither required
nor forbidden. The branching rule operates on the cycle with the
smallest number of free arcs, creating a new search tree vertex (child)
for each free arc. At each child vertex, the associated free arc is
converted to a forbidden arc. Required arcs are used to force the sets
of feasible solutions among these children to be disjoint so that there
can be no duplicate search tree vertices. As an example of the
branching rule, consider a cycle (i,, i,, i,), which is used to create
three children, from an AP solution containing all free arcs. In the
first child, arc (i,, i,) is forbidden. In the second child, arc (i,, i,) is
required and arc (i,, i,) is forbidden. In the third child, arcs (i,, i,)
and (i,, i,) are required and arc (i,, i,) is forbidden. For each child,
the additional required and forbidden arcs augment a copy of the
parent's arc sets. The search tree shown provides an illustration of
the branching rule throughout the solution of the example (Fig. 2).
The alternative branching rule of (34) has been found to be effective
on the instances arising from no-wait flowshop and product wheel
scheduling, although on other classes of instances this branching
rule impairs performance.

Computational Results
Because the TSP is an NP-complete problem, all known exact

algorithms have worst-case execution time that scales exponentially
in the number of cities. Despite this worst-case scehario, exact
algorithms for the TSP can deliver remarkable perforpance on
certain problem structures. This performance depends on exploiting
the structure of the cost matrix. The best known exact algorithms for
symmetric matrices do not work with asymmetric matrices. Similar-
ly, our algorithm, designed for asymmetric cost matrices, can
optimally solve only small instances with symmetric matrices and
other structures where AP bounds are weak.

We tested our algorithm on seven cost matrix structures: (i)
matrix elements drawn from a uniform distribution of integers in the
range [0, n]; (ii) matrix elements drawn from a uniform distribution
of integers in the range [0, n] and satisfying the triangle inequality;
(iii) matrix elements drawn from a uniform distribution of integers
in the range [0, i x j] where i and j are the row and column index
of the element; (iv) matrices designed to confound local search
heuristics (35); (v) matrices generated from Euclidean TSPs in
which the cities are randomly placed on a unit square; (vi) structured
asymmetric matrices that are dfficult to solve to provable optimality;
and (vii) matrices derived from chemical industry applications. We
chose the variable cost range [0, n] for the first two test classes
because randomly generated problems with fixed cost range tend to
become easier as problem size grows (27). The results of computa-
tional experiments on each of the first five cost matrix structures are

shown in Table 1. Results for the remaining two classes are
summarized below.

Random asymmetric problems. The algorithm performs well on
large randomly generated problems. For n = 1000, 2000, 3000,
4000, and 5000, we solved 1000 problem instances at each size.
Average search tree exploration times ranged from 4 s at n = 1000
to 38 s at n = 5000 on a workstation. The standard deviations for
these trials were 3.03, 5.63, 10.7, 16.0, and 21.1 s for n =

1000 , . . . , 5000, respectively. We solved larger problems using
Cray YMP and Cray 2 supercomputers. Search tree exploration
times ranged from 13 min for n = 50,000 to 3.5 hours for n =
500,000. There are two explanations for this performance: the
strength of the AP lower bound and the exact algorithm for the
directed Hamiltonian cycle problem. The AP bound is very good
even on small problems (n = 1000), and the bound improves with
problem size (Table 1). Frequently, val(AP) was identical to
val(ATSP), which allowed the Hamiltonian cycle reduction proce-
dure to find an optimal tour using the root vertex admissible graph.
In these cases, all implicit enumeration was confined to the Hamil-
tonian cycle algorithm and the full branch and bound algorithm was
not needed. The largest computational result is significant from a
linear programming standpoint since it required the solution of an
AP with 1 x lo6 constraints and 2.5 x 10'' variables. The
performance of the AP algorithm, unlike that of the ATSP algo-
rithm, is relatively insensitive to cost matrix structure, so that large
APs are routinely solvable.

Even for cases that required exploration of more than one search
tree vertex, for example, the 30,000- and 100,000-city problems, the
Hamiltonian cycle reduction procedure is crucial to finding an
optimal solution. When an AP solution has the same cost as the
optimal tour, there are usually many alternate optimal solutions to
the AP. One, or perhaps a few, of these imply Hamiltonian cycles,
but the majority do not. Without the Hamiltonian cycle reduction
procedure, the basic branch and bound algorithm must be used to
find one of the alternate optimal assignments that imply a Hamil-
tonian cycle. Because the AP algorithm has no way to preferentially
select solutions that imply Hamiltonian cycles, a large number of
search tree vertices of the same lower bound value can be explored
before the discovery of an optimal tour. The Hamiltonian cycle
algorithm quickly does the same enumeration by using a bipartite
marching algorithm on the admissible graph.

So that the impact of the cost range could be tested, instances
were also solved that had cost matrix elements drawn from [O, 0.2 x
n] and [O, 5 x n] for up to 5000 cities. Results for the smaller cost
range are similar to those shown in Table 1, whereas, for the larger
cost range, solution times are about five times those listed. The
instances of cost range [O, 5 x n] are more difficult because the
root-node admissible graphs rarely have a Hamiltonian cycle neces-
sitating AP-based branch and bound. Instances of larger cost range
are about as difficult as a range of [O, 5 x n].

Random asymmetric cost matrices with triangle inequality. Table 1
shows the performance of the algorithm on random asymmetric cost
matrices that satisfy the triangle inequality. We generated random
matrices with each element drawn from a uniform distribution of
integers in the range [0, n] and then used a closure algorithm to
enforce the triangle inequality (36). The 0(n3) closure algorithm
limited our testing to small problems, n = 100 to 500. Search tree
exploration times are comparable to the times on random matrices
not satisfying the triangle inequality and take on the average 1.5 to
2 times longer. The enforcement of the triangle inequality decreases
the value of many cost matrix elements, making the problem more
amenable to solution by the Hamiltonian cycle reduction procedure.
This tends to decrease the number of vertices in the search tree.
However, the admissible graph becomes more dense, and this adds

SCIENCE. VOL. 251

to the solution time.
Instances with cii drawn from [0, i x j] . Cost matrices with elements

drawn from a uniform distribution of integers in the range [0, i
x j] are known to be more difficult for many AP algorithms. The
difficulty stems from concentration of small costs in the upper left
portion of the matrix. This cost matrix structure is more difficult
for the ATSP algorithm. Instances of size n = 1000 take about six
times as long to solve as random problems of the same size; for n
= 5000 the factor increases to nearlv 20. The largest instances of

u

this structure are solved in less than 4 hours with a workstation
(Table 1).

Directed diamond instances. Papadimitriou and Steiglitz (35) have
proposed a class of TSP instances that are pathological for many
heuristics. This class has small identical subgraphs (directed dia-
monds with six vertices) that are interconnected to construct
weighted graphs with the following properties: (i) The optimal tour
cost is 0. (ii) There are (n/6)! next-best tours of arbitrarily high cost.
(iii) None of the edges in the optimal tour are to be found in any of
the next-best tours. Because the optimal tour cost is 0, the Hamil-
tonian cycle reduction procedure finds the optimal tour at the root
vertex in the search tree (Table 1). Analysis of the data reveals that
it scales as slightly worse then O(n3). At first glance, such perfor-
mance on a highly structured class of difficult problem instances may
seem surprising. However, the structure that renders these problems

pathological for tour improvement heuristics does not necessarily
have the same effect on other algorithms. In this case, the exact
Hamiltonian cycle algorithm is able to identify an optimal tour in
reasonable time. Although there are many problem structures that
defeat the Hamiltonian cycle algorithm as well, these may or may
not defeat tour improvement heuristics. A problem class that
appears difficult with respect to one algorithm may be well solved by
another. Thus a repertoire of algorithms seems to be essential.

Euclidean problems. Our algorithm was used to solve Euclidean
problems corresponding to points randomly placed on a unit square
(Table 1). As expected (lo), the AP lower bound is poor and the
algorithm is able to solve only small problems to optimality. The
unsuitability of AP-based lower bounds for symmetric and Euclid-
ean problems is well known, but we include these results for the sake
of completeness, and to demonstrate the behavior of the algorithm
when the underlying assumptions are violated. However, inability
to find provably optimal solutions in a reasonable time does not
mean inability to find good approximate solutions. In fact, for the
532-city instance solved to optimality by Padberg and Rinaldi in 6
hours on a Cyber-205 supercomputer (19) , the ATSP algorithm
finds a solution within 8.2% of optimal in 18 s and within 6.8% of
optimal in 130 s on a Sun 41330 workstation. The exact algorithm
is considered to have failed because the lower bound is only
approximately 80% of optimal after a very long time, but, from a

Table 1. Performance of algorithm for several classes of problems. "In- indicated A. This time is an estimate because we coded matrix generation and
stances" refers to the number of trials at each problem size. "Search tree conversion as a seamless operation because of memory limitations. Where
vertices" indicates the number of vertices explored in the search tree. there is no entry, time was negligible. Total algorithm execution time is the
"Solution time" is the time required to explore the search tree, and "matrix sum of matrix conversion and solution times.
conversion" is the time required to obtain the sparse cost matrix for the

Instances Search tree
vertices

Solution
time (s)

Matrix
conversion

(s)
Machine

Random asymmetric problems, c,,E[O, n]
1,000 1,000 40 10.3 0.999110 4.09 0.64 Sun41330
2,000 1,000 40 8.14 0.999587 9.64 2.1 Sun41330
3,000 1,000 40 7.47 0.999738 16.7 4.6 Sun41330
4,000 1,000 40 6.92 0.999807 25.9 11 Sun41330
5,000 1,000 40 7.97 0.999851 38.1 17 Sun41330

30,000 1 40 213 0.999943 1122 13 CrayYMP
50,000 1 40 1 1 789 25 CrayYMP

100,000 1 50 10 0.999991 1847 70 CrayYMP
150,000 1 50 1 1 3100 117 CrayYMP
200,000 1 60 1 1 6276 216 CrayYMP
500,000 1 40 1 1 12,623 1107 Cray2

Random asymmetric matrices with cilEIO, n] with triangle inequality enforced
100 3 20 3.46 0.990741 0.423 0.01 Sun41330
200 3 20 2.00 0.997138 6.60 0.03 Sun41330
300 3 20 1.33 0.998978 2.39 0.06 Sun41330
400 3 20 1 1 3.11 0.1 Sun41330
500 3 20 1 1 5.40 0.16 Sun41330

Difficult matrices, c,,E[O, i X j]
1,000 3 5000 1647 0.998769 81.4 0.64 Sun41330
5,000 3 50,000 2448 0.999623 723 17 Sun41330

10,000 3 63,000 17,242 0.999925 4138 68 Sun41330
20,000 3 100,000 32,713 0.999972 12,329 2 72 Sun41330

Diamond graphs
60 1 1 1 1 0.13 Sun41330

180 1 1 1 1 1.18 Sun41330
300 1 1 1 1 5.83 Sun41330
420 1 1 1 1 17.7 Sun41330
600 1 1 1 1 65.6 Sun41330
900 1 1 1 1 301.5 Sun41330

1,200 1 1 1 1 899.7 Sun41330
1,500 1 1 1 1 2176.8 Sun41330

Euclidean matrices from unit square
10 1 1.0 65 0.86 0.5 Sun41330
15 1 1.0 211 0.77 1.36 Sun41330
20 1 1.0 5041 0.74 29.62 Sun413 30

15 FEBRUARY 1991 ARTICLES 759

practical perspective, the heuristic solutions reported by the algo-
rithm are reasonable even very early in the calculation. This is not to
suggest that the ATSP algorithm should be used as a heuristic on
symmetric matrices; certainly there are better heuristics. However,
exact algorithms that fail to find a provably optimal solution can still
deliver reasonable performance.

Nearly symmetric and clustered asymmetric problems. Clustering is
said to occur within a cost matrix when cities can be grouped so that
intragroup travel costs are low relative to intergroup travel costs.
Symmetric cost matrices tend to have clusters of size 2 because small
cost elements have an equally small twin. An AP lower bound is
poor because the larger intergroup costs do not contribute and
many cycles of size 2 appear in the optimal AP solution. This poor
lower bound translates into poor ATSP algorithm performance.
Matrices with a small but significant asymmetry also tend to form
clusters of size 2. The presence of even minor cost matrix asymmetry
precludes the use of algorithms designed for symmetric problems.
Even with a high degree of asymmetry, strong clustering can occur.
In fact, the AP bounds can be arbitrarily weak on such problems,
with concomitant poor ATSP algorithm performance. Unformnate-
ly, these structures occur frequently in practice; products in a
chemical plant may belong to families, and transitions within a
family may be much cheaper than those that cross family boundaries.
For this reason, our algorithm can require long times to solve real
world problems even of small size. Some real world problems
involving only a few dozen cities cannot be solved to proven
optimality by our algorithm. Fischetti and Toth (25) have proposed
a technique that has potential for improving performance on nearly
symmetric and clustered asymmetric problems through the combi-
nation of many different lower bounding techniques, but they still
report difficulties.

Product wheel and no-wait Jowshop scheduling applications. Many
multiproduct chemical plants operate on a product wheel; that is,
the plant cycles through the products in a fixed sequence. The
determination of an optimal sequence is a TSP in which the
products represent cities and the cost matrix is given by the cost of
product transitions. These problems frequently display clustering
and can be difficult to solve. We obtained ten example problems
ranging in size from 14 to 60 products from manufacturing
facilities. The algorithm solved problems of size 14, 17, 17, 17, 19,
23, and 24 products to optimality in less than 10 s on a Sun 41330.
The three largest problems, of size 35,43, and 60 products, were all
either nearly symmetric or highly clustered and could not be solved
to optimality.

The scheduling of a no-wait flowshop provided a further test on
an industrially derived structure. Schedules were generated for three
problems of size 60, 80, and 100 jobs using data representative of a
chemical manufacturing facility. For each problem, jobs can be
grouped into one of six families. The facility has four reactors, and
each job must be processed on the reactors in the same order and for
a fixed time in each reactor. The processing times in each reactor
vary markedly (factors of 10) from family to family but are similar
(-10% variance) within a family. Like the product wheel problems,
these flowshop problems display clustering, but to a weaker extent.
All three test problems were solved to optimality in less than 20 s
with a Sun 41330.

Conclusions
We have reviewed recent computational successes for the sym-

metric TSP, summarized a new algorithm for exactly solving the
ATSP, and presented computational results that demonstrate a wide
range of behavior. How is this data and that of other researchers to

be understood within the theory of NP-completeness?
The theory of NP-completeness deals only with worst-case algo-

rithmic performance, while the data reflect actual performance on
particular cost matrices. Our experiments with both contrived and
practical instances have shown that, with respect to a given exact
algorithm, instances can display varying degrees of tractability. At
least some large instances are tractable and the TSP is not necessarily
impossible to optimally solve. This is of little consolation if one is
faced with an actual instance on which no known algorithm is
effective, but NP-completeness provides no reason that a given
instance cannot be solved, only that a difficult instance can be
produced to defeat a given algorithm. At present, theoretical
understanding cannot easily predict actual performance on any given
instance, which is crucial in deciding whether an algorithm is
computationally useful, or, for practical purposes, whether a prob-
lem is tractable or intractable. The theory is incomplete and, as is
often the case in the physical sciences, a more complete theory may
not appear until substantial experimental work is done in this area.
As a result, the investigation of the nature of NP-completeness
should be considered at least partly an experimental science. Work
on the TSP indicates that a prerequisite for success is an intimate
knowledge of both the problem and the types of instances to be
encountered. The lack of reliable guarantees of performance should
not discourage research on exact algorithms because the potential
practical and scientific benefits of success for many NP-complete
problems are substantial.

REFERENCES AND NOTES

1. NP-completeness: consider the multiplication of two n x n matrices. The
straightforward multiplication algorithm requires n3 multiplications and n3 - nZ
additions. The multiplication of two matrices is said to be solved through an
efficient algorithm because no more than a number of steps bounded by a
polynomial in some measure of problem size (number of rows and columns) is
required regardless of the actual numbers contained in the matrices. No such
efficient algorithm for solving the TSP has been conceived that is guaranteed to
produce a minimum cost solution for every combination of intercity costs.

2. M. R. Garey and D. S . Johnson, Computers and Intractability: A Guide to the Theory
ofNP-Completeness (Freeman, New York, 1979).

3. S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Science 220, 671 (1983).
4. D. S . Johnson, Proceedings of the 17th Colloquium on Automata, Languages and

Programming (Springer-Verlag, New York, 1990), p. 446.
5. A heuristic is a solution strategy that produces an answer without any formal

guarantee as to the quality. A very simple heuristic for the TSP would be to begin
at the starting city and travel to the nearest city, then proceed from this city to the
nearest city not already visited, and continue this nearest neighbor strategy until all
cities had been visited once and only once. In the final step of the heuristic, the last
city in the tour is connected to the starting city. This heuristic can produce an
arbitrarily bad answer because the initial travel choices can result in high-cost
transitions later in the tour.

6. A commonly held misperception is that an NP-complete problem cannot be solved
to optimality in a reasonable amount of time. In fact, the NP-completeness of a
problem simply says that hard instances can be produced that will confound any
known exact algorithm. An optimistic interpretation of NP-completeness suggest^
that for any given problem instance, an effective exact algorithm could be
developed. Under this optimistic interpretation, many different exact algorithms
may have to be developed for instances encountered in practice; however, the
conjecture that an effective exact algorithm can be developed for any instance is not
inconsistent with complexity theory. Keep in mind that this conjecture says
nothing about the expense of developing exact algorithms. In fact, developing exact
algorithms for certain instances may entail great effort.

7. D. A. Wismer, Oper. Res. 20, 689 (1972).
8. J. N. D. Gupta, Naval Res. Logist. Q. 23, 235 (1976).
9. C. H. Papadimiti-iou and P. C. Kanellakis, J. Assoc. Comput. Mach. 27, 533

(1980).
10. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, The Traveling

Salesman Problem: A Guided Tour ofcombinatorial Optimization (Wiley, New York,
1985).

11. R. G. Bland and D. F. Shallcross, Oper. Res. Lett. 8, 125 (1989).
12. J. D. Litke, Commun. A C M 27, 1227 (1984).
13. B. Korte, paper presented at the 13th International Mathematical Programming

Symposium, Tokyo, 1988.
14. D. Chan and D. Mercier, Int. J. Prod. Res. 27, 1837 (1989).
15. H. Bohr and S. Brunak, Complex Syst. 3, 9 (1989).
16. S. Lin and B. W. Kernighan, Oper. Res. 21, 498 (1973).
17. M. Held and R. M. Karp, ibid. 18, 1138 (1970).

SCIENCE, VOL. 251

18. D. Johnson, Nature 335, 155 (1987).
19. M. Padberg and G. Rinaldi, Oper. Res. Lett. 6, 1 (1987).
20. , Report R. 247 (Institute di Analisi Dei Sistimi ed Informatica del CNR,

Rome, 1988).
21. M. Grotschel and 0. Holland, Report No. 73 (Institut Kir Mathematik, Univer-

sitat Augsburg, Germany, 1988).
22. P. C. Kanellakis and C. H. Papadimitriou, Oper. Res. 28, 1086 (1980).
23. 0. B. G. Madsen, J. Oper. Res. Soc. 39, 249 (1988).
24. R. D. Plante, T. J. Lowe, R. Chandrasekaran, Oper. Res. 35, 772 (1987).
25. M. Fischetti and P. Toth, "An additive bounding procedure for the asymmetric

traveling salesman problem" (DEIS, University of Bologna, Italy, 1989).
26. J. F. Pekny and D. L. Miller, Math. Program., in press.
27. , D. Stodolsky, Oper. Res. Lett., in press.

28. D. Stodolsky, J . F. Pekny, D. L. Miller, Eng. Des. Rex. Cent. Rep. 05-25-88
(Carnegie Mellon Univ., Pittsburgh, PA 1988).

29. D. L. Miller and J. F. Pekny, Oper. Res. Lett. 8, 129 (1989).
30. E. Balas, D. L. Miller, J. F. Pekny, P. Toth, J. Assoc. Comput. Mach., in press.
31. R. E. Tarjan, Data Structures and Network Algorithms (Society for Industrial and

Applied Mathematics, Philadelphia, 1983).
32. R. M. Karp, SIAMJ. Comput. 8, 561 (1979).
33. Solution of the root vertex AP followed by patching with A = m.
34. M. Bellmore and J. C. Malone, Oper. Res. 19, 278 (1971).
35. C. H. Papadimitriou and K. Steiglitz, ibid. 26, 434 (1978).
36. c, 5 c,, + c,, for all i, j, k E V .
37. We thank Cray Research Inc. for computer access and technical support.

The myoD Gene Family: Nodal Point During
Specification of the Muscle Cell Lineage

The myoD gene converts many differentiated cell types
into muscle. MyoD is a member of the basic-helix-loop-
helix family of proteins; this 68-amino acid domain in
MyoD is necessary and sufficient for myogenesis. MyoD
binds cooperatively to muscle-specific enhancers and ac-
tivates transcription. The helix-loop-helix motif is respon-
sible for dimerization, and, depending on its dimerization
partner, MyoD activity can be controlled. MyoD senses
and integrates many facets of cell state. MyoD is expressed
only in skeletal muscle and its precursors; in nonrnuscle
cells myoD is repressed by specific genes. MyoD activates
its own transcription; this may stabilize commitment to
myogenesis.

T H E MYOD GENE IS CAPABLE OF ACTIVATING PREVIOUSLY

silent muscle-specitic genes when introduced into a large
variety of differentiated cell types with a viral long terminal

repeat (LTR) used to promote constitutive transcription (1-4). In
certain cell types, the entire program for muscle differentiation
seems to be activated (3). The range of cell types converted to
muscle by myoD includes a number of fibroblast cell lines, adipo-
cytes, melanoma cells, a hepatoma cell line, neuroblastoma cells,
osteosarcoma cells and P19 teratocarcinoma cells, as well as primary
cultures of chondrocytes, smooth muscle, retinal pigment, fibro-
blasts, and brain cells. MyoD is expressed only in skeletal muscle.
Cardiac and smooth muscle, which express many of the same
muscle-specific structural genes as skeletal muscle, do not express
MyoD (1, 5) . The MyoD protein seems to activate myogenesis by
directly binding to the control regions of muscle-specific genes (6).
On the basis of these properties, we refer to myoD as a "master
regulatory gene." Implicit in this shorthand is the fact that other
factors must be responsible for the initial activation of myoD, and

The authors are at the Howard Hughes Medical Institute, Fred Hutchinson Cancer
Research Center, 1124 Columbia Street, Seattle, WA 98104.

that the activity of the MyoD protein, itself, could be and is
regulated. We view myoD as a "nodal point" (2) in the flow of
myogenic information from the early embryo to the mature myofi-
ber and, as discussed below, consider all members of the myoD
family (myogenin, m$-5, m64-herculin) to perform more or less the
same "function," because assays to date have not dramatically
distinguished one from another. In contrast to segmentation genes,
homeotic genes, lineage genes, and the like, studied in Drosophila or
Caenorabditis elegans, myoD seems to affect the identity of a single cell
type, not constellations of many types of cells.

We describe here the structure of MyoD; how it activates the
myogenic program; and how myoD, itself, is transcriptionally and
posttranscriptionally regulated during development. The story can
appear extremely simple; however, not unexpectedly, new findings
bring new paradoxes and complexities, which we will also explore.

A Single Genetic Function Can Activate
Myogenesis

The notion that myogenesis can be controlled by a single master
regulatory gene originates in a series of experiments from Holtzer's
lab (7). When the thymidine analog bromodeoxyuridine (BrdU)
was incorporated into DNA, myogenesis in, culture was inhibited,
but, with continued growth in the absence of BrdU, the reappear-
ance of muscle was very rapid. This suggested that incorporation of
BrdU into DNA inhibited one or a few targets on one or a few
chromosomes and, in turn, these targets were capable of reactivating
the myogenic program when subsequently segregated to daughter
cells after growth and division in the absence of BrdU (8) . We now
know that BrdU turns off transcription of myoD, although we do
not know how (9).

The idea of a pivotal control gene gained momentum from the
work of Taylor and Jones (lo), who showed that brief treatment of
C3H 1 0 ~ : fibroblastic cells with 5-azacytidine induced the forma-
tion of large numbers (25 to 50%) of myogenic colonies, as well as
fewer numbers of chondrogenic and adipogenic colonies. The high
frequency of myogenic colonies suggested that 5-azacytidine, which

15 FEBRUARY 1991 mTICLES 761

