
Mesoscopic Conductors and Correlations in 
I 

Laser Speckle Patterns 

Submicrometer disordered metallic systems at low tem- 
peratures display interesting conductance fluctuation ef- 
fects, owing to the interference of coherent electron wave 
transmission through the system. This quantum interfer- 
ence phenomenon also gives rise to the striking experi- 
mental observation that the llf noise power (where f is 
frequency) in disordered conductors increases as the 
temperature is decreased, contrary to common intuition. 
The theoretical techniques developed for this problem can 
be applied to the transmission of light through a random 
medium, and this yields novel predictions for the corre- 
lations in the laser speckle patterns and the possibility of 
studying the positions and motions of scatterers in a 
medium which multiply scatter the probing light. 

T HE STUDY OF ELECTRICAL CONDUCTIVITY AND OTHER 

transport phenomena is an old subject in solid-state physics. 
The conventional approach deals mainly with macroscopic 

samples (-1 mm in size) at room temperatures. In this case the 
sample conductivity is determined only by the average scattering 
rates at which lattice vibrations (phonons), other electrons, and 
impurity atoms scatter a fonvard-moving electron out of its direc- 
tion of motion (that is, its Bloch state k). The motion of the electron 
is usually treated within the semiclassical Boltzmann transport 
theory. The justification for such a simple approach is the following: 
At room temperature, inelastic scattering by phonons occurs at a 
very high rate, for instance, of the order 1 / ~ ~ ~  - kBT/h - loi3 s l ,  
and since the phase information of the electron wavefunction is 
destroyed each time it is scattered inelastically, the typical distance at 
which an electron remains phase-coherent is very short, roughly of 
the order -100 A. Thus in this high-temperature regime, any effects 
associated with interference of coherent electron wavefunctions are 
confined to this short length scale, and further, they are relatively 
unimportant in describing macroscopic electron transport. Crudely 
speaking, the electrons here can be regarded as semiclassical parti- 
cles, and their wave aspects (which necessarily leads to the interfer- 
ence effects) can be approximately ignored. 

With rapid advances in microfabrication technology in recent 
years, it is now possible to produce in the laboratories metal or 

S. Feng is in the Department of Physics, University of California, Los Angeles, CA 
90024, and 11. Physikalisches Institut, Universitat m Koh, 5000 Koln 41, Germany. 
P. A. Lee is in the Department of Physics, Massachusetts Institute of Technology, 
Cambridge, MA 02139. 

8 FEBRUARY 1991 

doped-semiconductor samples with dimensions on the order of or 
smaller than 1 pm. When such small samples are cooled down to 
low temperatures (for instance, < 1 K), the wave coherence length of 
the electron wavehction L, becomes the order of or even longer 
than the sample dimensions L. In this regime, it becomes crucial to 
include the phase coherence of the wavefunctions properly in 
describing the transport properties of system, and the semiclassical 
Boltzmann equation approach is inadequate. This regime has come 
to be known in the field of condensed matter physics as the 
mesoscopic regime, which means that owing to phase coherence of 
the electron wavefunction the system displays physical behaviors 
that are in between the familiar macroscopic semiclassical picture 
and one that requires an atomic or molecular description (1). 

We shall concentrate our attention in this article on the disordered 
mesoscopic metal systems, that is, we assume that our conducting 
samples contain a significant amount of impurity atoms or structural 
disorder. Our discussion is also valid for doped semiconductors, for 
such systems at low enough temperatures behave in the same way as 
a metal, albeit with a much slower Ferrni velocity v,. The strength 
and the concentration of the impurities in the system can be 
characterized by the elastic scattering mean free path 1, which 
physically represents the typical distance over which the wavevector 
k of an electron in a Bloch state becomes significantly altered. 
Typically, 1 is of the order 100 A, and it is important to notice that 
it does not depend on the temperature. This is because elastic 
scattering does not involve any change in the electron's energy. 
Another crucial point is that elastic impurity scattering only has the 
effect of changing the simple Bloch states of an electron (with a well 
defined k) into a much more complicated multiply scattered wave- 
function, but it does not affect the electron wavefunction's phase 
coherence. A useful, if overly simplified physical picture for electron 
transport in a disordered metal sample is one in which an electron 
undergoes random walks because of multiple scattering with the 
impurity atoms, with a step size 1, while maintaining phase coher- 
ence up to time T~,. The random walk leads to a diffusion constant 
D = v ,1/3, and an expression for the phase coherence length L, = cn. Since the inelastic scattering rate 1 / ~ ~ ~  generally decreases 
with the temperature T, for a sample of size - 1 pm, the mesoscopic 
regime is reached when the temperatures are below 1 K. 

As we shall now see, the interference among the multiply scattered 
electron partial waves leads to many novel fluctuation phenomena in 
mesoscopic conductors. But first we shall introduce the Landauer 
formula, which ties together the problem of mesoscopic conduc- 
tance fluctuations and the seemingly unrelated problem of the 
correlations effects in laser speckle patterns, both of which we shall 
discuss in the present article. 
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The Landauer Formula for Quantum 
Conductance 

The conductance of a disordered metal in the mesoscopic regime L 
< L, can be related to the transmission probability of the electronic 
wavefunction propagating from the left of the disordered metal 
sample (see Fig. 1A) to the right, via the Landauer formula (2) :  

where T,, is the intensity transmission coefficient at Fermi energy E, 

from a propagating waveguide mode a in the (clean) left lead to the 

Fig. 1. (A) Geometry for studying conductance fluctuations in mesoscopic 
disordered conductors, and also for understanding the Landauer conduc- 
tance formula which maps the conductance problem into that of a general 
wave propagation through random scattering media. The shaded regions are 
the ideal leads which are free of impurities (or scatterers in the optical 
context). A conductor is mesoscopic if its size L is less than the phase 
coherence length L+. (B) A typical measurement of conductance versus 
magnetic field illustrating the phenomenon of universal conductance fluctu- 
ations, done on a mesoscopic doped semiconductor sample, taken from 
Skocpol et 01. (6). The vertical axis g = c/(e2/h) is the dimensionless 
conductance. The three curves are effectively for three Merent value of the 
Fermi wavevector k,. Note that the fluctuation ing is of order unity. 

sample to the b mode on the right. These waveguide modes in the 
leads are also referred to as conducting "channels," and they 
essentially refer to the various quantized directions at which an 
incoming electron wave is incident onto the disordered metal sample 
(and similarly for the outgoing waves). The total number of such 
channels is given by N = (k,wd-', where k ,  is the Fermi 
wavevector, d is the dimension of space, and W is the width of the 
sample. Equation 1 is perhaps more familiar in the context of an 
electron tunneling through a thin insulating barrier sandwiched 
between two pieces of clean bulk metals, in which case the conduc- 
tance is also proportional to the tunneling transmission coefficient 
for the electron wave to go through the barrier. The summation 
over all the propagating channels in the leads refers to the physical 
notion that in a conductance measurement, onlv the total electron - ,  
flux, that is, the current, is collected; and since all channels are 
equally populated owing to Fermi statistics in the leads, all the 
conducting channels contribute to quantum conductance equally. 
We emphasize that the Landauer formula defined this way is valid 
only in the mesoscopic regime L < L+, since the sample region 0 < 
z < L is assumed to be described by wavefunction transmission with 
full phase coherence. The power of such a relation is that it reduces 
the hroblem of quantum conductance, or  mesoscopic transport, to 
that of a scalar wave propagation through a disordered scattering 
medium. Thus quantum transport is just like a scattering experiment 
in nuclear or elementary particle physics, where the disordered 
conductor plays the role of a big "nucleus." It is also instructive to 
note that the parameter e2/h, which has the dimension of conduc- 
tance (or inverse resistance), [e2/h = (25.8 kfi)-l], sets the natural 
scale for all the quantum transport problems, since the wavefunction 
transmission coefficients are dimensionless auantities. This is the 
fundamental reason that e2/h enters in an essential way in all the well 
known examples of quantum transport, such as electron localization 
(3), the quantized Hall effect (4) ,  and the recently discovered 
quantized longitudinal conductances in quasi-one-dimensional sys- 
tems (5 ) .  For example, in a metal with conductivity a, the average 
conductance (G) equals UW~-'/L by Ohm's Law, where d is the 
dimension of space (thus, for thin films d = 2). We can easily show, 
using the Boltzmann expression for a, that (G) = (e2/h) (N~JL). The 
dimensionless number g = (G)/(e2/h) plays a central role in the 
modern theory of the electron localization problem, (3), and it has 
been shown that the system is metallic only i fg  exceeds unity. This 
is the regime that we shall consider in this article. 

We also note that from this ~ o i n t  on. the transmission coefficients 
are no longer specific to the problem of quantum transport in 
mesoscopic metals, where the transmission coefficients refer to that 
of a coherent propagating electron wavefunction going through a 
disordered conductor at very low temperatures. In fact, they can 
refer to any coherent scalar wave propagation through a disordered 
scattering medium, such as a laser light (in the scalar wave approx- 
imation) propagating through a thick slab of glass filled with small 
voids ("air bubbles"); or an ultrasonic wave propagating through a 
piece of metal which contains microcracks (again in the scalar 
approximation). The only replacement of necessary to 
make our discussion applicable to the case of light or sound is simply 
k, * k = o/c, and the understanding that 1 should be taken as the 
&sport mean free path of light (or  sound) 1". This is the reason 
why many of the techniques developed in the mesoscopic conduc- 
tance fluctuations can be readily applied to study the various 
correlations and fluctuations effects in a general wave propagation 
problem in the multiple scattering regime, such as light propagation 
through a milky fluid or a thick scattering wall. Therefore in our 
discussions below, we shall use the language of electron transport in 
mesoscopic metals and that of coherent light transmission through 
a slab containing random scatterers interchangeably. 
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Universal Conductance Fluctuations 

The average conductance attributable to disorder scattering is given 
reasonably accurately by the Bolmann theory. The first hint of the 
importance of quantum interference effects comes from considering the 
fluctuations of the conductance. It has been recently demonstrated, both 
experimentally (6) ahd theoretically (7),  that a mesoscopic conductor 
exhibits the so-called "universal conductance fluctuations." This phe- 
nomenon can be summarized as follows: For mesoscopic conductors 
with L I L+, the conductances vary from sample to sample, (that is, for 
different realizations of the locations of the im uri atoms), so that its 
root-mean-square fluctuations SG = F ((G - (G))~)  is roughly given by 
e2/h. Here the average ( ) refers to an average over an ensemble of similar 
mesoscopic conductors with different realizations of the impurity posi- 
tions. As we saw in the last section, e2/h is the fundamental conductance 
unit for quantum transport, so it is not too surprising that it sets the size 
of conductance fluctuations in a mesoscopic conductor. We note that the 
size of these "universal conductance fluctuations" are anomalously large, 
when viewed from the standpoint of semiclassical transport theory. In 
the latter case one can estimate the magnitude of fluctuations by 
considering the sample as a collection of independent grains of linear 
dimension 1, so that one expects SG J(G) - (1/L)di2 for a cubic sample (L 
= W). Since the average conductance is given by (G) = U L ~ - ~ ,  this 
implies that the semiclassical expectation for sample-to-sample conduc- 
tance fluctuations is SG, - e2/h ( L / L ) ( ~ - ~ ) ,  that is, it goes down with the 
size of the system L with a power (4 - d)/2. Thus we see that the 
universal conductance fluctuations represent enhanced conductance vari- 
ations from sample to sample owing to quantum interference, when the 
phase coherence length L+ is sufficiently large at low temperatures. 

Experimendy, these sample-to-sample conductance fluctuations are 
actually observed in one given sample, which is however subject to a 
varying applied magnetic field. As the magnetic field adds a phase factor 
to the electron partial waves between the various random scattering 
events, it has the same effect as changing the positions of the impurity 
atoms randomly, thus effectively allowing one to change from one 
sample to another. The amount of magnetic field change that has to be 
imposed to effectively change a sample can be estimated from the 
following simple argument: The area covered by two typical interfering 
scattering paths is roughly LW (see Fig. 1A and consider for simplicity 
L = W). We know from quantum mechanics that, if a magnetic field 
change is such that the flux change enclosed by these two paths, A+ - 
(AB)LW, exceeds the flux quantum +, = k/e, then these two paths will 
acquire a phase difference of - 2 ~  and we would then have effectively 
created a new sample by this change of the applied magnetic field. Thus 
the measured magnetoconductance (see Fig. 1B) should exhibit random 
fluctuations with a typical field scale of AB, = +,,/(LW). This is indeed 
seen in experiments (6). We also need to emphasize that these seemingly 
"random" magnetoconductance fluctuations for a given mesoscopic 
conductor as a function of the applied field can be differentiated from 
noise. When one changes the field up and down, the fluctuating 
magnetoconductance from our mechanism should be completely repro- 
ducible, provided that no impurity motion has occurred during the 
experiment. Thus this magnetoconductance curve can be regarded as a 
kind of "magneto-finger print" of the given disordered conductor. But 
what can we say about the conductance fluctuations when just such 
impurity motion occurs? 

Sensitivity of the Mesoscopic Conductance to 
Impurity Motions: Implications for l l f  Noise 

So far we have established that for a mesoscopic conductor L I 
L+, the conductance changes by an amount -e2/h when the 
positions of all the impurity atoms are altered in a random way, that 

is, when we go from one sample to another. It is natural to ask what 
the conductance fluctuations would be if we only move one 
impurity. The physical relevance of such a question is the following: 
At the very low temperatures where mesoscopic effects are impor- 
tant, the impurity atoms are usually frozen in their positions; in 
other words, the probability for them to be thermally activated to 
hop to another site is prohibirively low. (Such a probability is 
-e-hE'kBT, where the typical energy barrier for impurity hops in a 
metal is of the order -0.1 eV.) But impurity atoms can still hop due 
to quantum tunneling events. Since a mesoscopic sample is very 
small, estimates suggest that even such quantum impurity hops are 
not very frequent. So it is relevant to consider theoretically what the 
typical conductance change is when just one impurity atom makes a 
hop, which we denote as SG,, observable in mesoscopic conductors 
when a single impurity atom undergoes a quantum tunneling event 
to move to another metastable position. Without a calculation, one 
might make the naive guess that just like in semiclassical theory, one 
gets SG, = m, SG = a. (e2/h), where Ni = niLd is the total 
number of impurities in the system, and ni is the impurity concen- 
tration. A detailed calculation indicates instead that (8) 

1 r 2  

Thus we see that the effect of moving a single impurity on the typical 
conductance change is enhanced by a large factor L2/12. Physically, 
this result can be understood from an argument involving the 
difisive interference processes. Going back to Fig. lA, we see that 
the typical number of scattering events by a particular electron 
partial wave propagating across the mesoscopic sample is on the 
order of (L/1)2. Thus the probability that a given simple impurity is 
visited by this typical scattering path should be the ratio of the total 
scattering volume of this path ( ~ / l ) ~ u , l  to the volume of the entire 
system Ld, where a, is the scattering cross section of a given 
impurity. The motion of this impurity will change the phase of the 
scattering path visiting it by a random amount, so that the ratio 
between SGf and S G ~  should be given by this probability, and we 
arrive at our result Eq. 2, after using the relation between the elastic 
mean free path and the scattering cross-section 111 = np,. An 
especially interesting and somewhat surprising special case is a thin 
film sample of thickness t (that is, d = 2), where 

thus the typical conductance change induced by moving just one 
impurity is a constant fraction of the conductance change induced 
by moving all the impurities, which is independent of the size of the 
film, as long as L I L+. This shows how sensitive the conductance 
of a given sample is to the motion of a single impurity. 

When one considers the question of the typical conductance 
change caused by moving m impurity atoms, one can show theoret- 
ically that s G ~  = mSG:, as long as (m/Ni)(L2/12) I 1, and for the 
opposite case SG, saturates at SG = e2/h, which corresponds to the 
typical conductance change due to moving all the impurities. We 
now note the interesting result that in order to obtain the maximum 
quantum conductance fluctuations SG = e2/h for a mesoscopic 
conductor, one does not need to move all the impurity atoms. 
Rather, it suffices to move only a small fraction p = m/Ni of the 
impurities, whenp = 1 2 / ~ 2 ,  which is usually a small percentage. This 
is another illustration of the extreme sensitivity of mesoscopic 
conductance to impurity motions (8). 

This sensitivity of quantum conductance to impurity motions 
allows the possibility of using a simple conductance measurement in 
small metal wires or films to study the quantum tunneling events of 
an individual or a group of impurity atoms at low temperatures. 
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Such experiments have been performed recently (9), and it shows 
rather good agreement with the theoretical predictions from the 
picture just outlined. More recently, this novel feature of mesoscopic 
conductance fluctuations has been used to study experimentally the 
spin dynamics in a small size metallic spin-glass system, where the 
very long time scale spin fluctuations can be probed rather sensitive- 
ly by measuring the magneto-conductance fluctuations of the system 
at low temperature (9a). 

This theory of mesoscopic conductance fluctuations caused by 
impurity motions can be used to predict the magnitude of the llf 
noise in disordered metals at relatively low temperatures (say 
<70 K) where the multiple scattering condition 1 & L+ is satisfied. 
(This corresponds to a low temperature regime where the average 
conductivity of the sample is no longer temperature dependent.) 
Furthermore, the theory is applicable even to macroscopic samples 
when L % L+. This is done by assuming that a fractionp of impurity 
atoms can hop around randomly during the experimental measuring 
time, and that a large sample (a thin film for instance) can be thought 
of as made up of a collection of phase coherent sheets of size L+. Each 
such sheet must be treated quantum mechanically, so that its conduc- 
tance fluctuations as a function of time are given from the theoretical 
considerations above, by SG: = p(~$12)(e2/h)2 when p < 12/~: or 
6 ~ :  = (e2/h)2 when p > 12/~:. The electron transport between the 
various L+ size sheets can be combined as if they were classical 
resistors; (that is, no phase coherence between them needs to be 
included); for the integrated llfnoise magnitudes this gives 

This result is qualitatively different from its semiclassical counter- 
part, and even quite contrary to common intuition: as the temper- 
ature is lowered, L+ in general increases; so that the noise magni- 
tudes, actually increase with a decreasing temperature! This is 
contrary, for example, to how the (white) thermal Nyquist noise 
behaves as a function of temperature: 6v2  = k,T. Nonetheless, just 
such unusual temperature dependences of the noise power at relatively 
low temperatures has been found experimentally by a number of 
groups after the proposal of our theory, leaving little doubt about the 
essential correctness of the quantum interference interpretation for the 
low temperature llfnoise in disordered metals (10). 

Universal Conductance Fluctuations and Laser 
Speckle Patterns 

How can we understand the origin of the rather counter-intuitive 
result of the universal conductance fluctuations from the wave 
propagation point of view? This question has led us to investigate 
the correlations among wave transmission coefficients through a 
disordered scattering medium. From Eq. 1, it follows that the 
problem of computing sample to sample conductance fluctuations 
reduces to the following quantity: 

( (6~) ' )  = (:)I aba'b' z Cabarb' 

where Cab,.,. = (6Tab6Ta.,.) is the correlation function among 
individual transmission channels, and ( ) denotes an average over an 
ensemble of samples with different impurity configurations. Thus 
the statement of universal conductance fluctuations amounts to 
showing Cabarb, = 1 for any values of 1 & L < L+ and in any 
dimension d. We note that in a light scattering experiment, a laser 
wave is incident in a given direction (channel) and the transmitted 
light intensity can be measured in any direction (in far field), so that 

the individual Tab can be measured directly for a given sample. The 
correlation function Cabarb, can then be constructed experimentally 
by collecting Tab for different samples. Thus we see that light 
scattering experiments offer much more detailed information on the 
multiply scattered wave correlations and fluctuations, and they can 
be used as a way to test theoretical concepts which were originally 
constructed for low-temperature electron transport. As we will see, 
this connection between these two sets of problems has also led to 
important new understanding about light propagation in multiple 
scattering random media, as well as some interesting potential 
applications involving the use of the speckle-pattern correlations to 
retrieve useful information about the properties of the scattering 
medium itself. Here the term speckle pattern refers to the compli- 
cated interference pattern in the transmitted intensities Tab as a 
function of the outgoing direction b (or the light frequency) which 
are readily observable by the eye in any complex scattering prob- 
lems. We clarify here that 1 stands for the transport mean free path 
of the scattering of light, which measures the typical distance at 
which the incident beam is scattered significantly out of the forward 
moving direction. 

The intensity-intensity correlation function Cabarb, can be computed 
theoretically in the multiple scattering regime 1 a L, by means of a 
perturbative approach in which the disorder is treated as a small 
parameter, that is, we assume that l/k,l a 1. The intensity transmission 
coefficient Tab for a given sample is given by Tab = ltabI2, where tab refers 
to the complex amplitude transmission coefficients. From the path 
integral picture of quantum transmission, the t,,'s can be represented as 
a sum over the amplitudes correspondi~g to all the possible multiple 
scattering paths p propagating through the sample, that is, 

where A:, = exp(2~ris:,/X), and 4 is the total path length of the 
random walk path p, with the constraint that the incoming wave is 
in channel a and the outgoing one is in channel b (See Fig. 1A). As 
Cab,,,, involves the correlations among four such sums over all 
possible paths, the understanding of this function looks like quite a 
formidable task at first. But because most of the correlations among 
the different paths reduce to zero upon ensemble averaging ( ), we 
can obtain the most important contributions to this correlation 
function by identifying the subset of paths which will yield nonvan- 
ishing correlations. In Fig. 2A we draw the most obvious subset of 
correlated diffusion paths, which turns out to give rise to the largest 
contribution to the correlation function Cab,,,,, and can be evaluated 
to yield (11) 

c:iirb = (Tab) (Ta'b')Shq,,~qpl(AqaL) (7) 

where Aq, = q, - q,, and q, is the component of the wavevector of 
the incoming wavefunction perpendicular to the z-direction, Fl(x) 
= 2/sinh2x, and (Tab) - 1/NL is the ensemble average value of the 
transmission coefficient. 

When we set a = a '  and b = b', Eq. 7 reduces to the relation 

which is a well known result in laser speckle patterns, and shows that 
the relative intensity fluctuations are of order unity (12). In fact, this 
is the physical reason why multiply scattered light interference 
patterns look so "speckle"-like. 

The 6-function factor in Eq. 7 represents what we term the 
"memory effect." Since this C(') term vanishes identically if q, - q,. 
# q, - q,., and since C( l )  is the largest contribution to the 
intensity-intensity correlation function, this means that a shift in the 
direction of the incoming beam, represented by a small Aq,, results 
on average in a shift of the same angle in the outgoing intensity 
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speckle pattern (in direction space). This is quite remarkable because 
we are working in the multiple scattering regime 1 6 L so that the 
amount of unscattered wave going through a slab of thickness L is 
exponentially small, and the incoming plane wave has come through 
as a seemingly random speckle pattern. But if the incoming direction 
is changed by a small angle 60 less than 60, = l/kL (so tha; the factor 
Fl  is not too small), it is possible to "detect" such a change by 
looking at the cross-correlations between the two speckle patterns. 
We note the important difference between this correlation angle for 
memory effect with the simple angular size of the individual speckles 
on a speckle pattern: the angular width of the speckles is governed 
by l/k W where W is the size of the incoming beam spot (the simple 
diffraction limit which separates out the different "channels"). Thus 
by making the incoming beam size much larger than the thickness of 

the scattering sample, it is possible to separate the two different 
angular scales. 

The "memory effect" has recently been verified experimentally by 
Freund et at. (13), whose principal results we illustrate in Fig. 3. 
This result can also explain the well known optical phenomenon that 
a speckle pattern executes apparent motions in a well defined 
direction as some optical component is moved (here the direction of 
the incoming beam). This is because the eye only notices the short 
term coherence (that exists in our case within the small correlation 
angle of 60, = l/kL) and ignores the longer term randomization of 
the pattern. 

This new understanding about the correlation properties of laser 
speckle patterns in the multiple scattering limit may lead to potential 
applications in detecting moving objects behind a scattering me$- 
um whose thickness L is large compared to the transport scattering 
mean free path 1, that is, when light or ultrasound or any other 
classical wave propagates through a diffusive multiple scattering 
medium. As indicated by the c(') correlation function Eq. 7, the 
motion of the source at some velocity v leads directly to an average 
motion of the far-field speckle pattern behind the thick scattering 
medium by the same speed. In optical context, this allows for the 
possibility of performing "speckle pattern interferometry" even in 
the highly multiple scattering regime L 1. 

It can easily be shown that upon summing over all the incoming 
and all the out-going channels of the C ~ ~ ~ , , ,  correlation function, 
one obtains a corresponding variance of the conductance fluctua- 
tions which are much small than e2/h. Mathematically, this is because 
C(l)  is nonvanishing only for a very small subset of channels. Thus, 
to understand what correlations among the transmission coefficients 
are responsible for the universal conductance fluctuations, we must 
try to find higher order terms in the perturbation expansion of the 
intensity correlations which are less restricted in the range of 
channels where they are important. Figure 2B represents the subset 
of interfering paths which are responsible for the next leading order 
correlation process. It can be evaluated to give 

(2) (Tab) (Ta'b') 
Caba'b' = g 

[F2(AqaL) + F2(AqbL)1 (9) 

where F2(x) = 2x-'(cothx - x/sinh2x), andg = ( ~ ) / ( e ~ / h )  = Nl/L 
is the Thouless parameter or the dimensionless average conductance, 
which in the weak disorder regime l/kl 6 1 is always much larger 
than unity. Thus c(') is much smaller than C(l), but it is important 
to note that it decays to zero only when both Aq, and Aq, are large. 
So it is nonzero for a much larger range of channels. This difference 
in the channel (or angle) dependence comes about because when the 
two sets of difising paths in Fig. 2B cross somewhere in the middle 
of the sample, two paths can exchange partners in propagating 
through the sample. Thus the dependence on the outgoing angular 
difference drops out of the correlation function. Since this can only 

Fig. 2. Correlation processes for the intensity transmission coefficient 
correlation function C ,,,.,. = (6T,,6T ,.,. ). Since T,, = lt,,I2, we represent it 
graphically by to, and its time reversed path t*,, (with arrow reversed). Inside 
the sample we sum over all possible multiple scattering paths due to random 
scattering. The pairing of multiple scattering paths results in correlated 
amplitudes which do not average to zero upon ensemble average. (A) The 
correlated paths which contribute to C!,'!.,.. (B) The correlated paths which 
contribute to c:;?.,.. Notice that this process is independent of the angular 
distance between the outgoing channels b and b'. This is the reason why 
C!?i.,, has a nonzero limit for the case when a = a '  but with b being very 
different from b'. The crossing of the two difision paths gives rise to the 
reduction factor lig. (C) Same as in (B), but for the correlation process 
C::,).,.. Notice that this correlation process is independent of all the channel 
indices. This term, which represents effectively "infinite range" correlations 
among all transmission channels, is responsible for the universal conductance 
fluctuations in mesoscopic conductors. 
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happen for two sets of ditlbion paths which meet once inside the 
system, this correlation process C(2) is down from the previous C(') 
process by the probability of two difhsion paths going through the 
same point in space, which we have seen previously is given roughly 
by l/g. This is reminiscent of the l/g factor in weak localization 
theory, where the quantum correction to conductance is due to 
paths which must self-intersect once in the system (3). For the case 
of a single incident beam, that is a = a', our theory predicts that the 
transmitted speckle pattern intensities are correlated at large angle 
separations by an amount - (V2/g, which is a small but constant 
value (14). This represents physically the important result that if a 
given speckle spot in the transmission far field is brighter than 

Pixels 

Fig. 3. Experimental illustration of the "memory effect," performed by 
Freund et al. (13). The right-hand side shows several images of a small 
portion of the transmission speckle pattern as the incident laser beam 
direction is varied. The arrow at the bottom of each image calls attention to 
the semicircular arc enclosing a bright spot (the "bull's eye") which serves as 
a convenient visual reference for tracking the motion of the patterns. The 
initial reference pattern produced by a normally incident laser beam is shown 
in (A), while in (B) the laser is rotated by 10 millidegrees, and (C) by 20 
millidegrees. The correlation function shown to the left of each image 
corresponds to the cross-correlation coefficients of the reference pattern with 
the corresponding image. This correlation is plotted as a function of pattern 
shift in pixels, and the peak represents the maximum degree of overlap of the 
two patterns, which, in turn, "remembers," and therefore tracks, the incident 
laser beam direction. The pattern in (D) is one which is unrelated to the 
reference in (A), and the correlation function shows the expected small 
statistical fluctuations about zero. In this experiment, the various relevant 
parameters taken as follows: L = 810 pm, W = 15 mm, A = 0.633 pm, and 
1 = 100 pm. The absorption length is much larger than the sample thickness. 

average, all the other spots also tend to be a little brighter. Thus the 
speckle pattern is not really very random! This is an important 
manifestation of the non-self-averaging nature of coherent wave 
transport in the multiple scattering regime. We will see that owing 
to its special dependence on channel separation angles, the c ( ~ )  

correlations dominate over any correlation experiments which have 
a "one-channel" in, "all-channels out" type configuration. 

However, summing Eq. 9 over all the channel indices again yields 
a value for the conductance fluctuations much less than e2/h. Thus 
we must go on searching for the higher order intensity correlations 
which are still longer ranged in the channel space. Figure 2C 
represents the next order correlation process, corresponding to two 
intersections for the two sets of paired interfering scattering paths, 
which can be evaluated to give 

~ j l ; ; ' ~ '  = 
(Tab) (Ta'b') 

g2 
Notice that this intensity correlation process is extremely weak. 
However, it has effectively "infinite" range in the channel space, or 
in other words all channels are correlated to each other by this small 
but nonzero amount. Summing this correlation function over the 
channel indices yields the result of the universal conductance 
fluctuations. Drawing analogy to the theory of weak localization, 
the l/g2 factor reflects the fact that the fraction of random-walking 
paths which must intersect twice is of the order 112. 

We remark that when one considers correlations among the 
transmitted intensities, it does not make sense to speak generally 
about what correlation processes are the most dominant. This 
depends on which specific correlation experiment one is interested 
in. For example, we have seen that for individual channel intensity 
correlations, C(') makes the largest contribution; but if one wants to 
consider the conductance fluctuations in mesoscopic conductors, 
(which amounts to a sum over all channels of the correlations among 
different transmission coefficients), c ( ~ )  is the most important 
correlation process. If one instead considers the correlations and 
fluctuations properties of the total transmitted intensity T: = &Tab, 
which can also be directly measured in an optical experiment, it is 
easy to show that it is dominated by the c ( ~ )  correlation function. In 
other words, we can say that there are in fact three distinct kinds of 
speckles: the short-range, the long-range, and the infinite-range 
correlations; they play the dominating role in three different classes 
of correlation experiment: the single-channel to single-channel 
transmission case, the single-channel to all-channel transmission 
case, and the all-channel to all-channel transmission case. 

I t  is also easy to generalize the above calculations to the case of 
correlations of transmitted intensities at different frequencies, for 
which we write the correlation function C(Ao) = (ST,,(w)ST,,(o 
+ Ao)). Realizing that angular shifts and frequency differences are 
both sources for giving rise to decorrelations of the speckle intensi- 
ties, we can write down the general structure of the frequency 
correlations as 

with C(')(Ao) = ( T , , ) ~ P , ( ~ ~ ) ,  C2) Ao) = (T,,)2k F2 
(-3, and c ( ~ ) ( A ~ )  = (TaJ2P  F3( d- Aojoj, where w, = D / L ~  
is a correlation frequency F,(x) and fi2(x) are approximately the same 
functions as the corresponding ones for describing the angular corre- 
lations, in Eqs. 7 and 10; and F3(x) = 1 for x < 1, F3(x) = x-'I2 for 
x % 1. Recent experiments have measured the C(2)(Aw) long-range 
correlations, which are in excellent agreement with our theory (15). 
We remark that the frequency correlations in light experiments &e the 
direct analogs of the Fermi energy correlations in conductance fluc- 
tuations experiments with mesoscopic conductors. 
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It is also quite interesting to explore the connection of the above 
picture with the recent development of the so called "diffusive wave 
spectroscopy" (DWS) (16). This is an area of active current research 
whose goal it is to exploit modern understanding about multiple 
scattering and apply it to the light scattering experiments in colloidal 
solutions, in the regime of high concentration, such that L % 1, so 
that traditional scattering theory based on the single scattering 
(Born) approximation is no longer valid. From the point of view of 
the physics of colloidal systems, it is important to have a scattering 
tool that can function for high concentration systems. In this 
context, the stereotypical sample is a solution in which the solvent 
particles scatter the light, but unlike in the mesoscopic conductor 
problem, they are all free to move around as a result of Brownian 
motion. This makes the intensity transmission coefficients time 
dependent, that is, we have Tab(t). 

In a DWS experiment, one usually measures the auto-correlation 
function 

c ( t )  = (GTab(t)STab(O) ) (I2) 

Similarly, we have for the higher order correlation processes 
Cc2)(t) = F,(*~), and C(3)(t) = (TJ2/2 F 3 ( m 0 ) .  
Again, for the correlations properties of the total transmitted 
intensities T:(t) = X,T,,(t), the d 2 ) ( t )  correlation process domi- 
nates, which we recall has a novel long-time tail in the form of 
l / d .  This interesting prediction on the long time tails in DWS with 
total transmitted intensities awaits experimental verification. 

We emphasize in closing that all the above novel correlation 
effects among the various speckle pattern intensities in the multiple 
scattering regime were not contained in the conventional statistical 
theory of speckle patterns, which assumes the various speckle inten- 
sities to arise from a sum of statistically independent random ampli- 
tudes (12). Thus we see that the new insights obtained from the study 
of mesoscopic conductance fluctuations have served to further our 
understanding in a seemingly unrelated set of problems of correlations 
effects in multiply scattered classical wave propagations. 

It turns out for the case of the scattering particles executing simple 
Brownian random walks with a diffusion constant Dp (to be 
distinguished from the light diffusion constant D),  C(t) is given by 
a set of correlation functions having again the same structure as the 
angular or frequency correlations that we have considered for static 
scattering media, that is, 

where the largest term C(')(t) takes the form 

ccl)(t) = (T,,)~F,(- (14) 

where to - (12/~') T ~ ,  with T~ = l / ( ~ ' ~ k ' ) ,  and Fl(x) is exactly the 
same function as in the static case, in Eq. 7, which we recall decays 
exponentially for large x.  We see that just like in the case of 
mesoscopic conductances, the light intensity auto-correlations are 
very sensitive to the motions of the scatterers; this is made evident 
by the characteristic time scale to for the decay of the correlation 
which is very much reduced from T,, the diffusion time of a particle 
over a distance given by the wavelength of the light. This effect is 
just another aspect of the extreme sensitivity of the coherent 
multiply scattered wave transmission to any motion of the scatterers 
in the multiple scattering regime. It allows for the possibility of 
probing the motions of the diffusing scatterers at very high concen- 
trations such that interparticle interactions are important, as well as 
at very short time scales such that deviations of particle motions 
from standard Langevin random walk descriptions are possible (1 7). 

The time scale to for speckle decorrelation in Eq. 12 can be 
understood physically by considering again a typical multiple scat- 
tering path going across the sample of size L, with the number of 
scattering events n = (~11)'. After a time interval t, the scattering 
particles would all typically have moved a distance Ar2 = Dpt. Thus 
the total scattering path length sp would have been changed 
randomly by an amount A$ = nDpt. When t is of the order to, that 
is, when the speckle pattern has been effectively decorrelated, this 
should correspond to the condition k h p  = 1; that is, a phase shift 
of 2 ~ r  for the typical scattering path, due to scatterer motions. This 
then leads to the expression for the time constant for the decay of the 
speckle pattern correlations to. 
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