
may be replaced by normal constituents of 
QT-6 fibroblasts. We propose that 43-kD 
protein serves as the key link between AChR 
and the cytoskeleton, and that aggregation 
of 43-kD protein drives AChR clustering 
rather than simply stabilizing AChR clusters 
formed by other means. 
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Protein Kinase C and Regulation of the Local 
Competence of Xenopus Ectoderm 

The limited competence of embryonic tissue to respond to an inductive signal has an 
essential, regulatory function in embryonic induction. The molecular basis for the 
competence of Xenopus ectoderm to differentiate into neural tissue was investigated. 
Dorsal mesoderm or 12-0-tetradecanoyl phorbol-13-acetate (TPA) caused in vivo 
activation of protein kinase C (PKC) and neural differentiation mainly in dorsal 
ectoderm and to a lesser extent in ventral ectoderm. These data correlate with the 
observations that PKC preparations from dorsal and ventral ectoderm differ, the 
dorsal PKC preparation being more susceptible to activation by TPA and diolein than 
is the ventral PKC preparation. Monoclonal antibodies against the bovine PKC cx plus 
f3 or y isozymes imrnunostained dorsal and ventral ectoderm, respectively, which 
suggests different localizations of PKC isozymes. These results suggest that PKC 
participates in the establishment of embryonic competence. 

A MPHIBIAN BLASTULA-STAGE ECTO- 

derm can be induced to form meso- 
derm, whereas early gastrula-stage 

ectoderm cannot, but can be induced to 
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neural tissue instead. This phenomenon is 
called embryonic competence; its molecular 
mechanisms remain obscure (1). Dorsal me- 
soderm, which induces overlying dorsal ec- 
toderm to differentiate to neural tissue dur- 
ing normal gastrulation, is able to induce 
ventral ectoderm to differentiate to neural 
tissue (4, although it induces the expression 
of neural markers strongly in dorsal ecto- 
derm and only weakly, if at all, in ventral 
ectoderm (3), indicating that dorsal and 

SCIENCE, VOL. 251 



ventral d e r m  di& in competence. In 
the face of a constant saength-inducing 
signal, the lower capacity of veritral eao- 
derm to express neural markers must depend 
on a difkrence in its capacity to receive, 
transduce, or respond to the inducing sig- 
nals. In the present study, we investigated 
whether PKC. which becomes activated in 
response to n&-inducing signals (4), par- 
ticipates in the establishment of the &- 
en& in competence between dorsal and ven- 
tralectoderm. 

We first examined whether the in vim 
activation ofPKC differs between dorsal and 
ventral ectoderm We used recombinates 
made of dorsal mesoderm and dorsal or 
ventral stage 10 ectoderm, which were then 
cultured to the equivalent of stage 13 (5). 
PKC normally becomes activated in the 
neurectoderm in vivo between stages 10 and 
13 (4). We meamred translocation of PKC 
fro& ;he soluble (qtosolic) to the particu- 
late (membrane) fraction, which is a mea- 
sure h r  PKC activation (4,6, 7), and hund 
more translocation in recombinates with 
dorsal rather than ventral ectoderm (Fig. 
1A). Dorsal mesoderm also induced more in 
vivo phasphorylation of an 80-kD PKC 
substrate in dorsal than in ventral eaderm 
(Fig. 1C) (6, 8), while the amount of thc 
80-kD substrate did not d i e t  between dor- 
sal and ventral ectoderm (Fig. 1E) (8). We 
also examhed the in vivo activation of PKC 
using 12-0-tetcadeamyl phorbol-13-ace- 
taw (TPA) insttad of mesoderm as the PKC 
activator (4) and found that TPA induced 
PKC translocation in dorsal stage 10 ecto- 
derm, but virmally none in ventral stage 10 
ectoderm (Fig. 1B). Similarly, TPA induced 
phosphorylation of the 80-kD PKC sub- 
strate in dorsal but little in ventral euodenn 
(Fig. ID). These results indicate that both 
dorsal d e r m  and TPA induce mom 
PKC activation in dorsal than in ventral 
d e r m .  

We also measured the activatable adenyl- 
ate cyclase (AC) activity in the ditrcFent 
explants and recombinates. Because the ac- 
ti-ble AC activity increase during neural 
induction depends on PKC activation (9), 
we were able to use this parameter as an 
indirect measure for PKC activation. We 
h d  that dorsal mesoderm and TPA in- 
duced a larger increase in activatable AC 
activity in dorsal ectoderm than in ventral 
e c t a d k  indicating a stronger PKC activa- 
tion in dorsal d e r m  (9). 

Wenextexaminadtowhatextentdorsal 
memdenn and TPA are able to ind- neu- 
ral ditkentiation in dorsal and ventral eao- 
derm. Histology revealed that whereas all 
ectoderm-mesoderm recomb'ites s h o d  
some neural difkentiation, the volume of 
induced neural tissue was much larger (81 k 

5%; mean 2 SEM) (Fig. 2A) in recombi- 
nates made with dorsal ectodenn than in 
those made with ventral ectoderm (33 2 
5%; mean 2 SEM) (Fig. 2B). This &- 
ence indicates that dorsal ectoderm can 
more easily be induced to neural tissue by 
stage 10 dorsal mesoderm than can ventral 
d m .  The total amount of mRNA h r  
the XIF-6 n e u r o h e n t  gene (9, 10) also 
reached a factor 3.0 + 0.3 (n = 5) more in 
dorsal ectoderm recombinates than in ven- 
tral ectoderm recombinates. The difference 
in competence between dorsal and ventral 
ectoderm was revealed more strikingly when 
TPA was used as neural inducer. TPA (i) 
induced neural dillkentiation in dorsal ec- 
toderm only (4, 1 I), (ii) gave no histologi- 
cally detectable neural differentiation in ven- 
tral ectoderm (Fig. 2C), and (iii) also gave 
no expression of the XIF-6 neurofilament 
gene probe. This difference in competence 
to dillkentiate into neural tissue correlates 
closely with the di&rence between dorsal 
and ventral ectoderm in the in vivo activa- 
tion of PKC. This difference is more pro- 
nounced when TPA is used to activate PKC 
or to induce neural dillkentiation. Because 
TPA bypasses receptors and activates PKC 
direcdy, we then wondered whether the 
di&ence in competence might involve 
PKC imlf. 

Becausewehunddifkencesinthein 
vivo translocation of PKC between dorsal 
andventral ectoderm, we examined whether 

DEAE isolates of PKC from dorsal and 
ventral ectoderm also differed in susqtibil- 
ity to various activation conditions and sub- 
strates. The choice of substrate greatly influ- 
ences which cohctors (such as Ca2+ and 
phospholipids) are required by PKC (12). 
We selected three general substrates: the 
nonapeptide from the EGF receptor, the 
peptide from glycogen synthase (7), histone 
III S, and a neumspecilic subarate, B-50 
(13). We hund that piutiaUy p d e d  dorsal 
and ventral PKC preparations phosphoryl- 
ate histone III S (Fig. 3A) and the two other 
general substrates with the same kinetics 
under maximal activation conditions (7), 
which c o b  that the amount of PKC 
docs not differ between dorsal and ventral 
ectoderm. However, under maximal activa- 
tion conditions, dorsal PKC preparations 
phosphorylated B-50 to a greater extent 
than did ventral PKC preparations. B-50 is, 
apparently, a better substrate fbr the dorsal 
PKC preparation. 
N w  we h e d t h e  iduenceofdi&r- 

ent activation conditions on dorsal and ven- 
tral PKC preparations. To do this, we de- 
termined the relative conmbutions of the 
PKC activators diolein, TPA, and phos- 
phatidylserine (PS) to the activation of dor- 
sal and ventral PKC preparations, by lower- 
ing the concentration of PS from 8 d m 1  
(100%) to 0 while keepiag the di- 
olein or TPA concentration constant. We 
hund that at lower PS concentrations, 
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brane (stippled bars) fraction was measurrd in dorsal a d  ventral stage 10 atodam explants, which 
were incubated with 500 nM TPA fix 0, 25, or 40 min, the time period in which maximal PKC 
translocation is Bund in entire stage 10 cctodam when this is mated with TPA (4). Values are means 
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phosphorylation of either substrate by the 
dorsal PKC preparation hmased, but that 
phosphorylation by the ventral PKC prepa- 
ration decreased (Fig. 3B). These differences 
were greater for phosphorylation of B-50 
and were also greater when TPA instead of 
diolein was used to activate PKC (Fig. 3B). 
Because the differences in response to di- 
olein or TPA were most noticeable at the 
lower PS concentrations, these results indi- 
cate that the dorsal PKC preparation is 
better activated by diolein and TPA than is 
the ventral PKC preparation. At a low PS 
concentration, the TPA concentration that 
gave half-maximal B-50 phosphorylation 
was much lower for the dorsal (16 nM) than 
for the ventral PKC preparation (64 nM) 
(Fig. 3C). 
These results indicate that PKC prepara- 

tions from dorsal and ventral ectodenn have 
di&rent biochemical properties in vim, the 
dorsal PKC preparation king more respon- 
sive to activation by diolein and TPA. The 
PKC preparation derived from dorsal ecto- 
derm, which is induced to become neural 
tissue during normal development, is also 
better able to phosphorylate the neurospe- 
cific PKC substrate B-50 than is the ventral 
PKC preparation. These results suggest that 
the differences between dorsal and ventral 
PKC could rdlect differences in isozymes. It 
has been shown that various mammalian 
PKC isozymes have subtly different bio- 
chemical properties, such as their responses 
to phospholipids or TJ?A and their substrate 
specificities, and that they are expressed in 
tissue-specitic patterns (14). To investigate 
this possibility, we i m m d e d  whole- 
mount stage 10 embryos with monoclonal 
antibodies against the bovine PKC a plus p 
or y isozymes (15). We hund immunostain- 
ing in dorsal ectoderm with the antibody 
against PKC a plus p (Fig. 3D), and immu- 
nostaining in ventral @em with the 
antibody against PKC y (Fig. 3E). These 
results indicate more direcdy that differrnt 
PKC isozymes are localizad in dorsal and 
ventral d e n  Bovine PKC a and fl 
phosphorylate B-50 three- to sixfold better 
than does PKC y (16), which fits well with 
our findings here. 

Finally, we treated fertiliztd eggs with 
D,O or with 254-nm ultraviolet (UV) light 
during the fim cell cyde to generate hyper- 
dorsalized or hyperventralized aneural (1 7) 
embryos, respectively. PKC preparations, 
which had been isolated fiom entire stage 10 
d m  in D,O-treated and UV-treated 
embryos and then activated in v im (as in 
Fig. 3B), exhibited the same B-50 phos- 
phorylation characteristics as n o d  dorsal 
or normal ventral PKC preparations, respec- 
tively (18). This finding indicates that 
manipulating the first cell cycle, which leads 

Dorsal 1 B Ventral 1 

OON TPA CON TPA 

m. 2 Neural dihmtiation in do& and ventral cctodcrm. (A and B) Dorsal (A) and ventral (B) 
ectodcrm recombi i  were culnued to stage 41 and were then processed histologically. The 
cross-sectional area ofthe neural tissue was measured with a digitizer, and the volume of neural tissue 
was calcdad. The volume of neural tissue, measured in 15 r e c o m b i i  is indicated. (C) Dissected 
stage 10 dorsal and ventral d e r m  was incubated without (CON) or with 250 or 350 nM TPA 
('PA) for 4 or 16 hours (4, 11). Explants were cultured for 2 days, prepved for histology, and scored 
for neural differentiation. Values are means 2 SEM of at least 15 i n d e e n t  experhmts. Addition 
of the CAMP analogs dibutyryI-cAMP or 8-bromo-CAMP (1 mM each) after 4 hours of treatment with 
TPA, which enhances the neural dih-entiation-indudmg abiity of TPA (9), also failed to induce 
neural tissue in ventral ectoderm (18). 

Fig. 3. Different chammidcs of 
tions from dorsal and 

: 2 a P -  stage 10 ectodcnn. Total 
PKC (cymolic and membrane frac- 
tion) was isdated from cctodcrm 
explants. Equal activities ofthe dor- 
sal and ventral PKC [assayed with 
using histone III S, or peptides 
from the EGF receptor or glycogen 
synthase as substrate under maxi- 
mal stimulation conditions (71 
were used to phosphorylate either 
histone III S or B-50. Phosphoryl- 
ated histone 111 S and B-50 were 
analyzed on 10% SDS-polyacryl- 
arnide gels (B and C) or on a 5 to 
15% (SDS-polyauylamide gradi- 
ent gel (A). (A) The time depen- 
dence of histone IIJ S and B-50 
phosphorylation under maxjmal ac- 
tivation conditions [in the presence 
of phospha t idyk  (8 Mml) 
(PS) and diolein (0.8 @ml)]. Ra- 
dicectivity incoprated into B-50 
(excised from the gel) increased 

20 min 

1 TPA l n ~ l  2 4 8 10 OL YI ,LO LN L 9 Y 16 32 64 128 256 A 
Dorsal 

from 50 (t = 2) to-350 (t = 20) 
cpm (dorsal) and from 35 (t = 2) to 
90 (t = 20) cpn (ventral), whereas 
the radioaaivity incorporated into 
histmIIISinaeasedsimilarlyfor 
dorsal and for ventral, for example, 
from 70 (t = 2) cprn to 1200 (t = 
20) cpm. These data arc from one 
of four expmhem, which gave 
similar results. Under these activa- 
tion conditions, we found identical 
results using the three &rent gen- 
eral PKC &bstrates, histone fi S, 

' I 

the nonapeptide from the EGF receptor (compare with Fig. 1, A and B) or the peptldc from glycogen 
synthase. (B) Histone III S and B-50 phosphorylation were tested for a range ofPS concentrations from 
100% (8 ~~glml), thmugh 80,60,40,20, and 0% in the p m c e  of diolein (0.8 Mml) or 200 nM 
TPA. (C) B-50 phosphorylation in the prcsena of 20% PS and a range of TPA concentrations as 
indicated. The TPA concentration that gave half-maximal B-50 hosphorylation is indicated with an 
asterisk. In (B) and (C) the incubation time was 20 min. (% and E) Stage 10 embryos were 
whole-mount i r n m d e d  with monodonal antibodies against bovine PKC isozymcs a and (D) 
or 7 (E); dl, dorsal lip. 
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to a change in the relative amounts of dorsal 
versus ventral tissue, also changes the in 
vitro activation characteristics of PKC in the 
entire ectoderm. 

In this study we investigated whether 
PKC has a function in the neural compe­
tence of dorsal and ventral ectoderm. We 
conclude that dorsal and ventral ectoderm 
have different competences to be induced to 
differentiate to neural tissue. This difference 
in competence is shown most clearly by the 
observation that TPA is able to induce neu­
ral differentiation in dorsal ectoderm but 
none in ventral ectoderm and confirms the 
findings of Sharpe et al. (3, 19). However, 
our results also agree with other studies (2) 
that show ventral ectoderm can be induced 
to form neural tissue when placed in contact 
with dorsal mesoderm (20). 

The abilities of dorsal mesoderm and TPA 
to induce more neural tissue in dorsal than 
in ventral ectoderm correlate with their rel­
ative abilities to activate PKC in vivo in 
dorsal and in ventral ectoderm. This indi­
cates that the PKC signal transduction path­
way has a role in regulating the difference in 
competence to differentiate to neural tissue. 

In vitro activation of PKC shows that 
dorsal and ventral PKC preparations have 
different biochemical properties, which par­
allel the differences in in vivo PKC activa­
tion. The more extreme difference between 
the dorsal and ventral PKC preparations in 
in vitro PKC activation with TPA than with 
the natural PKC activator diolein correlates 
with the more extreme difference between 
the in vivo response of dorsal and ventral 
ectoderm to TPA than to the natural induc­
er, dorsal mesoderm. This again suggests 
that the difference in neural induction com­
petence between dorsal and ventral ecto­
derm may be regulated by PKC itself. Final­
ly, the differences between dorsal and ventral 
PKC reflect differences at the level of PKC 
isozymes, as suggested by the observations 
that monoclonal antibodies against the bo­
vine PKC isozymes a plus p or 7 selectively 
immunostain dorsal and ventral ectoderm, 
respectively. Although the precise identities 
of the Xenopus PKC isozymes have not been 
determined yet, the striking similarity in 
their B-50 phosphorylation characteristics 
between the bovine PKC a plus p and 
Xenopus dorsal PKC and between bovine 
PKC 7 and the Xenopus ventral PKC, re­
spectively, suggest that these are related 
enzymes. Our results suggest that these dif­
ferences in localization of the different PKC 
isozymes may reflect distinct physiological 
functions and may be related to the types of 
tissue in which the isozymes are found. 
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