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ACh Receptor-Rich Membrane Domains Organized 
in Fibroblasts bv Recombinant 43-Kildalton Protein 

Neurotransmitter receptors are generally clustered in the postsynaptic membrane. The 
mechanism of clustering was analyzed with fibroblast cell lines that were stably 
transfected with the four subunits for fetal (a, P, y, 6 )  or adult (a, P, E, 6 )  type mouse 
muscle nicotinic acetylcholine receptors (AChRs). Immunofluorescent staining indi- 
cated that AChRs were dispersed on the surface of these cells. When transiently 
transfected with an expression construct encoding a 43-kilodalton protein that is 
normally concentrated under the postsynaptic membrane, AChRs expressed in these 
cells became aggregated in large cell-surface clusters, colocalized with the 43-Modal- 
ton protein. This suggests that 43-kilodalton protein can induce AChR clustering and 
that cluster induction involves direct contact between AChR and 43-kilodalton 
protein. 

A CRUCIAL STEP IN SYNAPSE FORMA- 

tion is the aggregation of neuro- 
transmitter receptors in the postsyn- 

aptic membrane. In mammalian muscle and 
electric organ of the marine ray Torpedo, for 
example, the postsynaptic membranes con- 
tain about lo4 AChR molecules per square 
micrometer (I) ,  whereas nonsynaptic por- 
tions of the membrane are virtually devoid 
of AChRs. Although the precise colocaliza- 
tion of pre- and postsynaptic specializations 
at a synapse clearly involves interactions 
between nerve and muscle, muscle fibers are 
capable of aggregating AChRs even in the 
absence of nerves (2). A synapse-associated, 
intracellular, 43-kD peripheral membrane 
protein isolated from AChR-rich mem- 
branes of Torpedo electroplaque (3) has 
been indirectly implicated in this latter pro- 
cess. Exposure of electroplaque membranes 
to pH 11 releases this 43-kD protein and 
other peripheral proteins from the mem- 
brane and also causes an increase in lateral 
(4) and rotational (5 )  mobility of AChR 
molecules. The 43-kD protein is concentrat- 
ed in AChR-rich membranes where it is 
present in equimolar amounts with AChR 
(6). Finally, chemical cross-linking experi- 
ments reveal a close association between 
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43-kD protein and the p-subunit of the 
AChR (7). 

The availability of cDNA clones for the 
43-kD protein (8,  9) permitted us to study 
directly its role in AChR cluster formation 
by coexpression with cDNAs for AChR 
subunits in fibroblast cell lines. Because the 
development of the neuromuscular junction 
is accompanied by a transition from fetal (a, 
p, r, 6) to adult (a, P, E, 6) AChR (10, 11), 
and by major changes in the morphology of 
the junctional AChR clusters (12), we deter- 
mined the effects of 43-kD protein on both 
receptor types. The quail fibroblast line, 
QT-6 (13), which expresses no detectable 
endogenous AChR (14), was transfected 
with expression constructs for each of the 
four subunit cDNAs of the fetal or  adult 
muscle AChR (15). Fibroblast clones select- 
ed on the basis of the cotransfected neomy- 
cin resistance gene were screened for cell- 
surface a-bungarotoxin binding sites and 
clones expressing fetal AChR (Q-F18) and 
adult AChR (Q-A33) were isolated. The 
functional integrity of AChR in the clones 
was determined by voltage-clamp studies on 
isolated membrane patches (16). Membrane 
patches excised from transfected cells 
showed currents elicited by ACh that were 
not blocked by 100 nM atropine (Fig. 1). 
The channels expressed in clone Q-F18 (15) 
showed a slope conductance of about 40 pS 
for inward current and a burst duration of 
about 5 to 10 ms. Q-A33 exhibited channels 
of larger conductance and briefer burst du- 
ration. Similar properties have been report- 
ed for fetal- and adult-type bovine AChRs 
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Fb. 1. Channels were activated by acetylcholine applied to outside- "U out patches from t r a n s M  fibroMasts. (A) Slow sweeps from a -10 
patch e x a d  from a QF18 cell held at -120 or +80 mV. A -Irn 4 0 50 100 
*ion pipette was positioned dose to the patch and 1 )LM ACh wmbrm~ (mV) 
plus 100 nM atropine was applied during the time indicated by the bar. The channel activity during 
these records was too high to analyzc; they are only shown to illustrate the nicotinic nature of the 
ACh-eliated currents. The baseline cumnt (no channels open) is indicated by arrowheads. (8) 
Singlechannel currents recoded in patches from QF18 or Q-A33 cells, held at - 100 mV. Note the 
larger current and somewhat briefer duration of events in the patch fiom Q-A33 cells. (C) 
Single-channel current-voltage relations for four outsidoout patches each from QF18 (squares) or 
Q-A33 (circles) cells. The lines drawn through the points have slopes of 40 pS (squares) and 60 pS 
(cirdes), respectively. The mean burst durations & SD at a membrane potential of - 100 mV were 7.5 
r 1.9 ms and 2.7 & 2.2 ms, for the Q-F18 and Q-A33 lines, respectively (n = 4 patches). The 
conductaxes b r  inward current were 38 r 0.5 DS and 56 k5.0 DS. resDectivelv. 

a@ in Xmopus oocytes (if), for fetal- 
type endogenous receptors expressed by 
mouse myoblast-like cell lines (17), and for 
adult-type AChRs on dissociated mouse 
musde fibers (18). 

Imrnunofluorescent labeling of cell-sur- 
face AChR mealed a uniform amount of 
specific staining on cells expressing either 
receptor-type (Fig. 2A). In no case did we 
observe the large, spontaneously occurring 
dusters normally seen on cultured m d e  
cells (19). In contrast, afk transient trans- 
kction of mouse 43-kD protein (20) into 
Q-F18 or QA33 cells, large brightly stained 

patches of cell-surface AChR formed (Fig. 2 
B to D). AChR patches ranged in diamem 
fiom kss than 1 pm to greater than 10 pm. 
Tht ~ t ~ u k s  suggest that 43-kD protein can 
induce clustering of both adult and fetal 
AChRs in fibroblast cells. 

To determine whether the 43-kD protein 
interacts directly with the AChR, immuno- 
Auomcent double-labeling of 43-kD pro- 
tein and AChR was performed afk fixation 
and permeabilization of cells. In each case 
AChR dusters were colocalized with aggre- 
gates of intracellular 43-kD protein (Fig. 3). 
Because only a hction of cells transiently 
expressed 43-kD protein in these expcri- 
ments, some cells in each field were negative 
when stained with the antibody to 43-kD 
protein (anti-43-kD protein). These 43-kD 
protein-negative cells showed diffuse intra- 
cellular and cell-surface AChR staining (ar- 
row in Fig. 3D) typical of Q-F18 and 
QA33 cells, and never showed condensed 
patches of cell-surface staining. similariy, 

Fig. 3. Immunofluorescent co-on of 
AChR and 43-kD protein in fibroblasts. QF18 
(A and B), QA33 (C and D), or QT-6 (E and F) 
cells were transiently transfeced with RSV 43-kD 
protein (20), doubly stained with antibodies to 
43-kD p m i n  and AChR with appropriate sec- 
ond antibodies (24) and viewed with Texas red 
(43-kD protein: A, C, E) or FlTC (AChR: B, D, 
F) optics. QF18 and QA33 c& each display 
AChR dusters (B and D) that colocaliP with 
43-kD protein aggregates (A and C). Note that a 
cell expressing diguse AChR (arrow in D) is 
negative for 43-kD protein expression (C). A 
43-kD prot- QT-6 (parent) cell dis- 
plays 43-kD protein aggregates (E) in the absence 
of AChR (F). To control for flu-t cross- 
bleed and second antibody specificiv we pro- 
cessed pallel cover slip cultures and stained them 
in the absence of either the anti-AChR or anti- 
43-kD protein primary antibody. Such -cells 
showed patches of either AChR or 43-kD protein 
staining similar to those shown above, but in the 
absence of the second channel fluorescent signal. 
For photomicrographs the digital was nor- 
malized over the 111 range of video inmi ty  
levels (24). Bus, 10 pan. 

those cells. 
Finally, 43-kD protein alom was trans- 

;nch~ aggregates were not o&ed on cek fected &to the cell line, QT-6. Anti- 
subjected to mock amsfktbns, where 43-kD protein revealed patches of staining 
Row sarcoma virus (RSV)-neo was substi- that were very similar to the AChR duster- 
tuted for RW--43-kD protein (1 5). Forma- associated 43-16) protein patches on QF18 
tion of AChR dusters was therehe corre- or Q-A33 AChR-expressing cell lines (Fig. 
lated wirh 43-kD protein expression. Some 3, A, C, and E). Therefore, dusters of 
fibroblast cell lines have been shown to 43-kD protein were able to brm indepen- 
cxprrss small amounts of end0p;cnous 43- dendv of the interaction with AChR. 

w. 2 clusrrring of A ~ R  on the surf;aee of bd protein (21). Because reag&ts specific Th'ese observations suggest that this 43- 
43-lrD m a x b m n s w  fibroblasts. (Al Con- b r  auail43-kD orotein have not been char- kD intraceflular ~erioheral membrane ore- 

I I 

Qk18 (not aansfccrrd ' 4 3 - k ~  act& we &mot d u d e  the possible tein participates in organizing large &- 
protein) stained by indirect immduOrcscence presence of endogenous 43-kD protein in density aggregates of fetal and adult AChR. with a-bungannoxin and an&-bunmxin  
(23) show a ddy  grainy distribution of our cell lines. However, endogenous 43-kD It is possible, however, that the brmation of 
staining across the cell surface. Similar d t s  protein, if present, was evidently inadequate AChRs dusters involves membrane and 
w a r  0-4 with QA33. (B and C) QF18 in quantity or quality to induce clustering of cytoskeletal proteins in addition to 43-kD 
cells -Ien* wth 43-kD mouse AChR. Thus, AChR dusters were protein. Indeed, seveal other proteins are 

lus, hi** stained only Dbsaed in cells expressing reunnbi- concentrated at the neuromusculu junction of AChR. (D) A QA33 cell transfecred wth 
4 3 - k ~  p m i n  displays war A ~ R  dusters. nant 43-kD protein and were always tole (22). Our results suggest that if such pro- 
Bar, 10 p.m. calized with 43-kD protein aggregates in teins are required h r  AChR duaering, they 

1 FEBRUARY 1991 REPORTS 569 



may be replaced by normal constituents of 
QT-6 fibroblasts. We propose that 43-kD 
protein serves as the key link between AChR 
and the cytoskeleton, and that aggregation 
of 43-kD protein drives AChR clustering 
rather than simply stabilizing AChR clusters 
formed by other means. 
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Protein Kinase C and Regulation of the Local 
Competence of Xenopus Ectoderm 

The limited competence of embryonic tissue to respond to an inductive signal has an 
essential, regulatory function in embryonic induction. The molecular basis for the 
competence of Xenopus ectoderm to differentiate into neural tissue was investigated. 
Dorsal mesoderm or 12-0-tetradecanoyl phorbol-13-acetate (TPA) caused in vivo 
activation of protein kinase C (PKC) and neural differentiation mainly in dorsal 
ectoderm and to a lesser extent in ventral ectoderm. These data correlate with the 
observations that PKC preparations from dorsal and ventral ectoderm differ, the 
dorsal PKC preparation being more susceptible to activation by TPA and diolein than 
is the ventral PKC preparation. Monoclonal antibodies against the bovine PKC a plus 
f3 or y isozymes imrnunostained dorsal and ventral ectoderm, respectively, which 
suggests different localizations of PKC isozymes. These results suggest that PKC 
participates in the establishment of embryonic competence. 

A MPHIBIAN BLASTULA-STAGE ECTO- 

derm can be induced to form meso- 
derm, whereas early gastrula-stage 

ectoderm cannot, but can be induced to 
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neural tissue instead. This phenomenon is 
called embryonic competence; its molecular 
mechanisms remain obscure (1). Dorsal me- 
soderm, which induces overlying dorsal ec- 
toderm to differentiate to neural tissue dur- 
ing normal gastrulation, is able to induce 
ventral ectoderm to differentiate to neural 
tissue (4, although it induces the expression 
of neural markers strongly in dorsal ecto- 
derm and only weakly, if at all, in ventral 
ectoderm (3), indicating that dorsal and 
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