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Cortical Computational Maps Control 
Auditory Perception 

Mustached bats orient and find insects by emitting ultrasonic pulses and analyzing the 
returning echoes. Neurons in the Doppler-shifled constant-frequency (DSCP) and 
frequency-modulated (PM-PM) areas of the auditory cortex form maps of echo 
frequency (target velocity) and echo delay (target range), respectively. Bats were 
trained to discriminate changes in echo frequency or delay, and then these areas were 
selectively inactivated with muscimol. Inactivation of the DSCP area disrupted 
frequency but not delay discriminations; inactivation of the PM-PM area disrupted 
delay but not frequency discriminations. Thus, focal inactivation of specific cortical 
maps produces specific disruptions in the perception of biosonar signals. 

T HE JAMAICAN MUSTACHED BAT 

(Pteronotus parnellii parnellii) uses bio- 
sonar pulses to orient and to hunt 

flying insects. Its auditory cortex (AC) is 
speciahd for processing information con- 
tained in the pulse (P) and its echo (E). The 
AC has at least ten functional areas (Fig. lA), 
each containing one or more maps that rep- 
resent a P-E parameter or combination of 
parameters important for encoding a particu- 
lar type or types of biosonar information (1). 

The P of the mustached bat has four 
harmonics (H,,), each consisting of a long 
constant-frequency (CF,,) component fol- 
lowed by a short frequency-modulated 
(FM,,) component (Fig. 1B). Of these, H, 
is always the most intense. When a bat is not 
flying, its PCF, is about 61.0 kHz (2, 3). 

During insect pursuit, the mustached bat 
adjusts its P frequency to stabilize the CF, of 
Doppler-shifted echoes at a reference fie- 
quency -200 Hz above its resting frequency 

Depamnent of Biology, Washington University, St. 
Louis, MO 63130. 

(4, 5).  This behavior is known as Doppler 
shift (DS) compensation. Because the pe- 
ripheral auditory system of the mustached 
bat has a disproportionately large number of 
neurons that are sharply tuned around the 
reference frequency, the CF, of DS-com- 
pensated echoes is subjected to fine frequen- 
cy analysis (6). The accuracy of the bat's DS 
compensation depends on its ability to re- 
solve the frequency of the Doppler-shifted 
ECF,. 

The cortical area most likely to play a 
major role in the fine frequency analysis of 
Doppler-shifted echoes is the Doppler-shift- 
ed CF (DSCF) processing area of the pri- 
mary AC (7, 8). This area is tonotopically 
organized but only represents frequencies in 
the range of ECF, from 60.6 to 62.3 kHz 
(2). The frequency tuning curves of DSCF 
neurons are very narrow, even at high stim- 
ulus intensities (8). Further, bats with bilat- 
eral ablation of the DSCF may not be able to 
detect small echo DSs (4). 

To determine the range of a target, the 
mustached bat measures the delav between 

*The first two authors contributed equally to the report. the emitted P and the returniig E. The 
ITo whom correspondence should be addressed. FM-FM area of the AC probably plays a 
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Table 1. Percentage of test blocks within each 
time window in which discrimination per- 
formance was significantly worse than baseline 
for the frequency discrimination experiments. 
There were 20 trials per block. The data in this 
table are based on three bats tested twice each 
and one bat tested once. 

Discrimi- 
A j  

Time window (hours) 
nation 
level (IrHz) 0.2-1.7 1.7-3.2 24-25.5 

Fine 0.05 67 67 0 
0.1 100 33 0 

Interme- 0.3 50 0 0 
diate 0.5 67 0 0 

Coarse 2.0 0 0 0 

primary role in this analysis because neurons 
in this area respond poorly to either P or E 
alone but show a strong response to the P-E 
pair at a particular E delay (target range) (9, 
10). The essential components of the P-E 
pair are the PFM, and the EFM,, where n = 
2, 3, or 4. These neurons are systematically 
arranged according to the delay at which 
they respond best, ranging from 0.4 to 18 
ms (target ranges of 7 to 310 cm). 

To test whether these maps are important 
for the perception of biosonar signals, we 
trained bats to make frequency or temporal 
discriminations involving synthesized P-E 
pairs. Then we inactivated either the DSCF 
area or the FM-FM area by surface applica- 
tion of muscimol, a y-aminobutyric acid 
(GABA) agonist. GABA is an inhibitory neu- 
rotransmitter in the cerebral cortex (II), and 
muscimol has been used to inactivate small 
regions in the somatosensory cortex (12). 

Bats were conditioned to discriminate be- 
tween different 1.2-s trains of P-E pairs. 
One P-E train (S+) was followed irnmedi- 
ately by a train of electric shocks applied to 
the thigh; a leg flexion during the S+ ter- 
minated both the S+ and the programmed 
shock. The second P-E train (S-) was not 
followed by shock; leg flexions during the 
S - had no consequences. A correct response 
was either a leg flexion during the S+ or the 
omission of a flexion during the S-. Con- 
versely, an incorrect response was either the 
omission of a leg flexion during the S+ or 
the occurrence of a flexion during the S- 
(Fig. 2) (13). 

In the frequency discrimination task we 
used trains of PCF,-ECF,. For S+ trials, 
the PCF, and ECF, frequencies were equal. 
For S- trials, the ECF, was set at PCF, + 
Af; where Af = 0.05, 0.1, 0.3, or 2.0kHz. 
In the temporal discrimination task we used 
trains of PFM,-EFM,. For S+ trials the 
echo delay was always set at 4 ms (P onset to 
E onset). For S- trials, the echo delay for 
successive P-E pairs within the train was 
switched between 4 ms and 4 ms + At, 
where At = 1,2,4,6,16, or 36 ms. Each bat 
was trained on either the frequency discrim- 
ination or the temporal discrimination until 
it consistently discriminated between the S+ 
and S- for every Af or At at 2 75% (14). 

After training, baseline data were collect- 
ed for five test sessions before each applica- 
tion of muscimol. About 2 hours after the 
last of these sessions, 0.1 to 0.2 yg of 
muscimol(1 yg per microliter of saline) was 
applied to each DSCF area or FM-FM area 
with a 1-y1 Hamilton microsyringe (15). 

Then. Gelfoam was  laced in the well to 

Fig. 1. (A) Functional orga- A B - pulse ~ c h o  

minimize leakage of the muscimol from the 
application site and to increase the time 
during which the muscimol would be in 
contact with the cortical surface. The first 
test session was begun 10 to 15 min later. 
These sessions were given one after another 

nization of the auditory cor- 
tex of the mustached bat 120 

(dorsolateral view of the left 1 

cerebral hemisphere). The :go 
DSCF area (a) has axes rep- 

- 
resenting both target veloci- 6 
ty (echo frequency) and sub- f 60 u 
tended angle (echo ampli- k' 

L30  tude). The FM-FM area (b) 
consists of three types of FM- 
FM combination-sensitive O -  

until the bar's had returned to 
baseline level. 

Application of muscimol to the DSCF 
area disrupted frequency discriminations, 
but its effect varied as a hnction of the Af 
used (Fig. 3D and Table 1) (16). The fre- 
quency discriminations could be divided 
into three clusters: coarse (Af = 2 kHz), 
intermediate (Af = 0.5 and 0.3 kHz), and 
fine (Af = 0.1 and 0.05 kHz). There was no 
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significant disruption in the coarse discrim- 
ination. Shortly after muscimol application 
(0.2 to 1.7 hours), the intermediate discrim- 
ination was significantly disrupted on more 
than half of all test blocks. and the fine 

neurons (FM1-FM,, FM,- o 10 20 30 2.0 mm 
FM,, and FM1-FM,), which M Time (ms) 
segregate into three subareas. 
Each subarea has an axis representing target range (echo delay). The CFICF area (c) consists of two types 
of combination-sensitive neurons (CFl/CF2 and CFl/CF3), which segregate into two subareas, each 
having two frequency axes that represents target velocity (echo Doppler shifts). The dorsal fringe area (d) 
has an axis for the shorter half of the target ranges represented in the FM-FM area, and the ventral fringe 
area (f) has an axis for the shorter half of the target ranges represented in the dorsal fringe area. The ventral 
anterior (e) contains only combination-sensitive neurons that respond to the first harmonic of the pulse and 
the second harmonic of the echo. The dorsal medial area (g) appears to have an azimuthal axis representing 
the azimuthal location of a target. The dotted line indicates the boundary of the primary auditory cortex. 
(B) Schematized sonogram of a biosonar pulse and its echo. There are four harmonics (H1 through H4), 
each consisting of CF and FM components (CF,, and FM,,); Hz is always the most intense. The echo 
is higher in frequency than the pulse as a result of the Doppler shift (DS). There is a delay between the 
onset of the pulse and the onset of the echo due to the distance between the bat and its target. 

discrimination was significantly disrupted 
on almost all test blocks. By 1.7 to 3.2 hours 
after muscimol application, performance on 
the intermediate discriminations was virtu- 
ally normal while performance on the fine 
discriminations was still significantly dis- 
r u ~ t e d  on about half of the test blocks. 
~ekormance on the latter discriminations 
returned to normal after approximately 6 to 
7 hours. In contrast, application of musci- 
mol to the FM-FM area had no significant 
effect on any of the frequency discrimina- 
tions (Fig. 3B). 

Application of muscimol to the FM-FM 
area disrupted temporal discriminations, but 
its effect varied as a function of the At used 
(Fig. 3A, Table 2). The temporal discrimi- 
nations could be divided into three clusters: 
coarse (At = 36 ms), intermediate (At = 4, 
6, or 16 ms), and fine (At = 1 or 2 ms). 
There was no significant disruption in the 
coarse discrimination. Shortly after musci- 
mol application (0.2 to 2.2 hours), perfor- 
mance on both the intermediate and the fine 
discriminations was significantly disrupted. 
At 2.2 to 4.2 hours after muscimol applica- 
tion, performance was still significantly dis- 
r u ~ t e d  on the fine discriminations but not 
on the intermediate discriminations. Perfor- 
mance on the fine discriminations returned 
to normal by 7 to 8 hours after muscimol. 
Application of muscimol to the DSCF area 
had no significant effect on any of the tem- 
poral discriminations (Fig. 3C). 

Our results indicate that the DSCF area is 
important for fine frequency discriminations 
involving Doppler-shifted echoes, and the 
FM-FM area is important for fine temporal 
discriminations involving E delays. The lim- 
its of the frequency and temporal discrimi- 
nation deficits are predictable from the elec- 
trophysiologically determined ranges of 
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Fia. 2. Schematic of the dis- Correct responses Incorrect responses - 
crimination paradigm used. A B 
The number of P-E pairs pulse I I I I I I I I I I I I 1 1 1 1 1 1 
within the 1.24 stimulus I I I I I I I I I I I I I I I I I 
trains is 12 in the frequency 5 Shock 
discrimination task and 24 J, 
II 

I L 

in the temporal discrimina- 
tion task. A train of electric 
shocks is programmed to C D 
follow the train ofP-E pairs pulse I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 
on S+ trials but not on S- 
trials. A lea flexion by the 2 Echo 

L 

bat during h e  S+ turns off Shock 
"I 

the S+ ad avoids the shock 
L~~ (A). A failure to make a leg tlex~on ----&-- 

flexion during the S+ re- I' 

sults in shock delivery, but a subsequent leg flexion enables the animal to escape further shock (B). On 
S- trials, whether the bat withholds its leg flexion (C) or makes a leg flexion (D), the S- is presented 
in its entirety, and no shock follows. A correct response consists of either making a leg flexion during 
the S+ (A) or withholding a leg flexion during the S- (C). 

these parameters mapped in the DSCF and 
FM-FM areas. The deficits cannot be attrib- 
uted to a general confounding effect such as 
a decrease in sensitivity to shock but must 
have been caused by the specific inactiva- 
tions. Our data also indicate that the inacti- 
vations were focal. The muscimol applied 
near the center of the FM-FM area did not 
spread significantly into the DSCF area, or 
vice versa (the distance from the center of 
each area to the border of the other area was 
only 1 mm). Consistent with this finding, 
applications of larger amounts of muscimol 
(1.5 pg) to portions of the monkey soma- 
tosensory cortex less than 2 mm apart pro- 
duced readily distinguishable behavioral ef- 
fects lasting more than 5 but less than 20 
hours (12). 

Neural response properties necessary for 
the computation of E frequency and delay 
are largely created in subcortical nuclei. 
These nuclei project to the DSCF and FM- 
FM areas where E frequency and delay are 
systematically represented (7- 10). Com- 
bined with the present results, this suggests 

Fig. 3. Percentage of correct resDonses in each 

that the DSCF and FM-FM areas are the 
sites at which the perception of these target 
properties is mediated. 

Earlier AC ablation experiments often 
have failed to show a deficit in frequency 
discrimination despite the use of much larg- 
er ablations, usually including all of the 
primary, as well as most or all of the sur- 
rounding, AC (1 7-19). We suggest four 
explanations for this discrepancy. (i) Earlier 
studies focused on whether animals with 
permanent ablations could relearn frequency 
discriminations. An immediate test more 
directly addresses whether a cortical area is 
normally involved in a particular function, 
whereas a relearning test more directly ad- 
dresses whether the area is indispensable for 
that function (20). (ii) Many of the earlier 
studies used coarse discriminations. Our re- 
sults also suggest that coarse frequency dis- 

Table 2. Percentage of test blocks within each 
time window in which discrimination per- 
formance was significantly worse than baseline 
for the temporal discrimination experiments. 
There were 20 trials per block. The data in this 
table are based on one bat tested four times and 
one bat tested twice. 

Discrimi- At Time window (hours) 
nation 
level (mS) 0.2-2.2 2.2-4.2 7.5-9.5 24-26 

Fine 1 100 75 0 0 
2 100 75 0 0 

Interme- 4 75 0 0 0 
diate 6 100 0 0 0 

16 100 0 0 0 
Coarse 36 0 0 0 0 

criminations may not require the AC. (iii) 
The stimuli used in the earlier studies had no 
direct biological significance to the animals 
tested, whereas those we used are informa- 
tion-bearing elements for mustached bats. 
(iv) The species differed. 

Much is known about the biosonar behav- 
ior of the mustached bat (21) and about the 
comcal computational maps that encode par- 
ticular types of biosonar information, such as 
a target's relative size and range and the bat's 
relative velocity (1). The present selective 
inactivation studies forge a crucial link be- 
tween these maps and the biosonar behavior. 
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ACh Receptor-Rich Membrane Domains Organized 
in Fibroblasts bv Recombinant 43-Kildalton Protein 

Neurotransmitter receptors are generally clustered in the postsynaptic membrane. The 
mechanism of clustering was analyzed with fibroblast cell lines that were stably 
transfected with the four subunits for fetal (a, P, y, 6 )  or adult (a, P, E, 6 )  type mouse 
muscle nicotinic acetylcholine receptors (AChRs). Immunofluorescent staining indi- 
cated that AChRs were dispersed on the surface of these cells. When transiently 
transfected with an expression construct encoding a 43-kilodalton protein that is 
normally concentrated under the postsynaptic membrane, AChRs expressed in these 
cells became aggregated in large cell-surface clusters, colocalized with the 43-Modal- 
ton protein. This suggests that 43-kilodalton protein can induce AChR clustering and 
that cluster induction involves direct contact between AChR and 43-kilodalton 
protein. 

A CRUCIAL STEP IN SYNAPSE FORMA- 

tion is the aggregation of neuro- 
transmitter receptors in the postsyn- 

aptic membrane. In mammalian muscle and 
electric organ of the marine ray Torpedo, for 
example, the postsynaptic membranes con- 
tain about lo4 AChR molecules per square 
micrometer (I) ,  whereas nonsynaptic por- 
tions of the membrane are virtually devoid 
of AChRs. Although the precise colocaliza- 
tion of pre- and postsynaptic specializations 
at a synapse clearly involves interactions 
between nerve and muscle, muscle fibers are 
capable of aggregating AChRs even in the 
absence of nerves (2). A synapse-associated, 
intracellular, 43-kD peripheral membrane 
protein isolated from AChR-rich mem- 
branes of Torpedo electroplaque (3) has 
been indirectly implicated in this latter pro- 
cess. Exposure of electroplaque membranes 
to pH 11 releases this 43-kD protein and 
other peripheral proteins from the mem- 
brane and also causes an increase in lateral 
(4) and rotational (5 )  mobility of AChR 
molecules. The 43-kD protein is concentrat- 
ed in AChR-rich membranes where it is 
present in equimolar amounts with AChR 
(6). Finally, chemical cross-linking experi- 
ments reveal a close association between 
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43-kD protein and the p-subunit of the 
AChR (7). 

The availability of cDNA clones for the 
43-kD protein (8,  9) permitted us to study 
directly its role in AChR cluster formation 
by coexpression with cDNAs for AChR 
subunits in fibroblast cell lines. Because the 
development of the neuromuscular junction 
is accompanied by a transition from fetal (a, 
p, r, 6) to adult (a, P, E, 6) AChR (10, 11), 
and by major changes in the morphology of 
the junctional AChR clusters (12), we deter- 
mined the effects of 43-kD protein on both 
receptor types. The quail fibroblast line, 
QT-6 (13), which expresses no detectable 
endogenous AChR (14), was transfected 
with expression constructs for each of the 
four subunit cDNAs of the fetal or  adult 
muscle AChR (15). Fibroblast clones select- 
ed on the basis of the cotransfected neomy- 
cin resistance gene were screened for cell- 
surface a-bungarotoxin binding sites and 
clones expressing fetal AChR (Q-F18) and 
adult AChR (Q-A33) were isolated. The 
functional integrity of AChR in the clones 
was determined by voltage-clamp studies on 
isolated membrane patches (16). Membrane 
patches excised from transfected cells 
showed currents elicited by ACh that were 
not blocked by 100 nM atropine (Fig. 1). 
The channels expressed in clone Q-F18 (15) 
showed a slope conductance of about 40 pS 
for inward current and a burst duration of 
about 5 to 10 ms. Q-A33 exhibited channels 
of larger conductance and briefer burst du- 
ration. Similar properties have been report- 
ed for fetal- and adult-type bovine AChRs 
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