The Breaking of a
Mathematical Curse

A serendipitous discovery by a Columbia computer scientist
may make it much easier to integrate multivariate functions

THEORETICAL COMPUTER SCIENTISTS CALL IT
the “curse of dimensionality.” It’s the ugly
tendency of numerical algorithms to be-
come impossibly slow when they’re applied
to problems involving more than a few vari-
ables. Take integrals. Everybody remembers
them from calculus, where, in a simple form,
they are used to find the area under a curve.
With many more variables, integrals can be
used for far more complex purposes: solving
differential equations that describe the
weather, say, or doing the computations in
quantum field theory implied by Feynman
diagrams. These integrals usually can’t be
solved exactly—they’re too complex—but
the solutions can be approximated through
the use of computer algorithms. And that’s
where the curse of dimensionality comes in:
For straightforward algorithms, the amount
of computation required for a good ap-
proximation grows exponentially with the
number of variables.

Now Henryk Wozniakowski, a computer
scientist at Columbia University, has found
a highly efficient “average case” algorithm
that breaks the curse. By the standards of
computational complexity, Wozniakowski’s
algorithm requires little more effort to com-
pute integrals in a thousand variables than it
does in one or two—and it may

To do this they use a technical definition of
“average” that is analogous, for the set of
continuous functions, to the familiar, bell-
shaped normal-curve distribution for the set
of real numbers.

In this average-case setting, the complex-
ity of an approximate integration algorithm
is measured (roughly speaking) as the
number of sample points required to achieve
a given level of accuracy—approximating
the numerical answer to 8 decimal places,
say—for an “average” function. Alternatively,
the complexity can be measured as the aver-
age error incurred by using a given set of
sample points. The question then becomes:
Given that you want a certain average accu-
racy, how many sample points do you need to
use and where should they be located?

A natural, intuitive answer might be to
place points at equally spaced intervals on a
d-dimensional grid. And this is indeed the
best arrangement—but only in the most
limited case: that of one dimension, where
the “cube” is a line segment. For functions
of more than one variable, this approach
succumbs to the curse of dimensionality.
The number of points needed to keep the
average error less than e is roughly propor-
tional to 1 /e%. This means, for instance, that

them. Alternatively, you can tell it how
many points you’re willing to use, and it will
tell you where to put them to minimize the
average error. What breaks the curse is that
the number of points is almost independent
of the dimension, and is roughly propor-
tional just to 1/e. More precisely, it’s pro-
portional to (1/e)(log(1/e))@1/2,

The new algorithm offers an alternative to
the currently favored technique for numeri-
cal integration. Known as the Monte Carlo
method, it is, as the name suggests, a
gambler’s approach: Base your approxima-
tion on values of the function at points that
are chosen completely at random.
Wozniakowski’s algorithm may beat out the
Monte Carlo method because it typically
calls for fewer points to stay within a given
average error. However, Wozniakowski
notes, the comparison is somewhat mislead-
ing because the meaning of “average” is
different for the two approaches.

Numerical integration is a staple of scien-
tific and statistical computing, with applica-
tions ranging from computation chemis-
try—where theorists want to understand the
interactions among large collections of at-
oms—to geophysical exploration, where re-
searchers try to use ground-level measure-
ments to figure out things like where to drill
for oil. The savings resulting from efficient
algorithms can be enormous, especially as
greater accuracy is called for—and ultimately
Wozniakowski’s discovery may make those
savings possible.

Wozniakowski attributes the discovery to
a combination of luck and diligence. He was
working with Joe Traub, also of Columbia,
on a completely different problem concern-
ing the Monte Carlo method when he re-
alized that a certain mathematical

ultimately offer large savings of time
in many areas of scientific computa-
tion.

Wozniakowski’s achievement is
especially interesting because it
combines the serendipitous exploi-
tation of a result in a related field
with a bit of that good old motiva-
tor, cash on the barrel. But under-

sually we have to
sweat more, but that
wasn't the case for
this problem.

Henryk Wozniakowski

identity in effect translated the
problem of multivariate integration
into yet another problem known as
L, discrepancy. To Wozniakowski’s
delight, the L, discrepancy problem
had been solved, by Klaus Roth of
Imperial College in London. Woz-
niakowski had little more to do than
translate Roth’s solution back into

standing the story requires taking in
a little background. The precise problem he
took on was to approximate the integral of
a continuous function by sampling its values
at a finite set of points. (For theoretical
simplicity, the integration is restricted to the
d-dimensional “unit cube,” meaning that
there are d variables, each ranging in value
between 0 and 1.) However, it’s impossible
for any algorithm to guarantee a given level
of accuracy uniformly for all continuous
functions. Therefore, when they operate in
this realm, computer scientists look instead
at what happens for an “average” function.
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to maintain 8-place accuracy, the amount of
computation increases by a factor of 108
with each additional variable, which makes
integration in more than a few variables all
but impossible.

Wozniakowski’s result not only breaks
the curse of dimensionality, it actually finds
the best location for the sample points—in
any dimension. Tell his algorithm what di-
mension you want to work in and how
much average error you’re willing to toler-
ate, and it will reply by telling you how many
points you need and where you should put

terms of multivariate integration.
“Usually we have to sweat more, but that
wasn’t the case for this problem,” he says.

Traub jokingly adds that there might have
been a financial incentive. The two theorists
had often thought about the problem, but
had never seriously worked on it—mostly
because they thought it was too hard. Then,
on a whim, during a seminar presentation,
Traub offered a cash reward. A week later,
his colleague Wozniakowski had the answer.
“Just coincidence,” deadpans Wozniakowski.
In this case he may be right: The cash prize
was $64. ® BARRY A. CIPRA
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