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Quantifjring the Information 
Content of Lattice Images 

Quantitative information may be extracted from local 
areas of images that consist of one or more types of unit 
cell. Fourier-space analysis, real-space intensity analysis, 
and real-space vector pattern recognition are discussed. 
The pattern recognition approach efficiently exploits the 
available information by representing the intensity distri- 
bution within each unit cell of the image as a multidimen- 
sional vector. Thus, the amount and the effect of noise 
present are determined, statistically significant features 

are identified, and quantitative comparisons are made 
with model images. In the case of chemical lattice images, 
the position of a vector can be directly related to the 
atomic composition of the unit cell it represents, allowing 
quantitative chemical mapping of materials at near-atom- 
ic sensitivity and resolution. More generally, the vector 
approach allows the efficient and quantitative extraction 
of information from images, which consist of mosaics of 
unit cells. 

A LARGE ARRAY OF TECHNIQUES, SUCH AS ELECTRON MI- between &,37Ga0.63A~ barriers. T o  the eye, a sophisticated but 
croscopy, tunneling microscopy, x-ray microscopy, light qualitative image processor, the presence of two different materials 
microscopy, and tomography, produce data in the form of is obvious. The purpose of this article is to discuss ways in which 

images made up of collections of unit cells. As an example, consider 
Fig. 1, a (chemical) lattice image of a GaAs quantum well contained The authors are at AT&T Bell Laboratories, Holrndel, NJ 07733. 
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quantitative information may be extracted from images consisting of 
mosaics of unit cells. There are well-established (curve-fitting) 
procedures by which this may be accomplished in one dimension. 
Approaches to the quantitative analysis of (two-dimensional) im- 
ages are still under development. Attempts at the quantitative 
analysis of lattice images have only recently begun (1-1 1). Both in 
the physical and in the biological sciences, the efficient analysis of 
the local information content of images is fundamental to the 
quantitative description of a wide range of phenomena. 

The information content of an image is contained in its spatial 
frequency spectrum or alternatively in the set of patterns that 
combine in a mosaic to form the image. In practice, the information 
content is degraded by the presence of noise. The quantitative 
analysis of the information content thus requires three steps: (i) the 
assessment of the amount and the effect of noise present; (ii) the 
identification of statistically significant features; and (iii) quantita- 
tive comparison with a template. A primary virtue of an image is 
that it yields spatially resolved information. Thus, whether these 
msks are carried out in Fourier or real space, the retention of spatial 
resolution, that is, the local analysis of the information content, is of 
paramount importance. 

In a chemical lattice image, the local composition of the sample is 
reflected in the local frequency content of the image or alternatively 
in the local patterns that make up the image (5, 6). Because of this 
immediate interpretation of the local information content of chemi- 
cal lattice images, and for concreteness, we illustrate our discussion 
primarily by reference to such images. 

The outline of the article is as follows. After briefly describing the 
experimental details, we discuss Fourier-space analysis, highlighting 
its limitations for the quantitative analysis of the local information 
content of images. It is shown that even a semi-quantitative Fourier 
analysis requires the injection of real-space information. We then 
treat real-space intensity analysis, arguing that, although such an 
analysis lends itself more readily to the local analysis of the informa- 
tion content, it is not particularly adept at discriminating between 
noise and signal. On the other hand, a vector pattern recognition 
approach efficiently exploits the available information to discern 
noise from signal and allows a quantitative evaluation of the results. 
In the case of chemical lattice images, the local information thus 
extracted can be related to the local composition of the sample. 
Indeed, the combination of chemical lattice imaging and vector 
pattern recognition allows the mapping of the composition of 
materials at the atomic level. To establish this in practical cases, we 
discuss the effects of sample imperfections and recording nonlineari- 
ties and outline some applications of our approach. Lattice images 
thus contain a wealth of information, which can be efficiently and 
quantitatively extracted, and in some cases directly related to the 
atomic structure or composition of the sample. 

Growth direction - chemical map of the sample (9). 

Experimental Methods 

We present here both experimental and simulated lamce images. 
The experimental lattice images were obtained from samples pre- 
pared by chemical thinning or cleavage, and examined with a JEOL 
4000EX high-resolution transmission electron microscope, operat- 
ing; at 400 kV. They were read directlv into a frame buffer or 
reiorded photographically and subsequently digitized. A Silicon 
Gra~hics IRIS Workstation. modified to contain three frame buffers 
and an arithmetical logical unit, was used for the analysis of 
experimental images and also for image simulation. The simulated 
lamce images were obtained by a standard multislice algorithm (12). 

Fourier Analysis 
Fourier analysis decomposes a given function into sine and cosine 

functions, each of which extends over all space. Fourier analysis of 
an image proceeds with the calculation of its Fourier spectrum and 
the subsequent reconstruction of the image from a subset of its 
Fourier components. In microscopy terms, an apemue or mask is 
introduced in Fourier space, through which the image is recon- 
structed. Inherent in this procedure is the loss of a part of the 
frequency spectrum and thus a degradation in spatial resolution. The 
analysis of an image in terms of a single Fourier component is 
tantamount to the complete loss of spatial resolution. It is thus 
necessary to choose masks with care. In the case of lattice images, the 
most commonly used Fourier mask is a circular aperture of sdicient 
radius to retain the lamce periodicity. This is functionally equivalent 
to a low-pass filter and has an effect on the lattice image that is 
mainly cosmetic and difficult to quantify. Even a semiquantitative 
Fourier analysis of images requires the use of complicated masks and 
a sophisticated evaluation of the results. In general, Fourier analysis 
is not a suitable means of extracting quantitative information from 
local areas of images. By treating a particular example below, we 
outline a possible approach to Fourier analysis, highlighting its 
difficulties and limitations. 

Consider the chemical lattice image of Fig. 1. The "localn 
frequency content of the image reflects the "localn sample composi- 
tion. In particular, with increasing Al content the 2.8 A (200) 
periodicity component of the image of A1,Gal-,As increases, and 
the 2 A (220) content diminishes [see (5)] .  For a local composition 
analysis, it is necessary to determine the relative amplitudes of the 
(200) and (220) Fourier components at every point in the image 
(Fig. 2A). At the simplest level, one may wish to identify a 
demarcation line, an interface across which the Al content and thus 
the (200) frequency component exceed a predetermined value. 

Because each Fourier component extends over all space, the use of 
a mask that allows only the (200) or the (220) component to pass 
would destroy all spatial resolution. However, one can retain spatial 
resolution at a tolerable level by reconstructing an image through a 
mask that removes either the (220) or the (200) component (5) 
(Fig. 2, B and C). In principle, a point on the original unfiltered 
image can then be identified as lying on one or the other side of the 
interface, according to whether the intensity at the corresponding 
point in the (200) filtered image (Fig. 2B) is larger or smaller than 
that at the same point in the (220) filtered image (Fig. 2C). 
However, the filtering disturbs the harmonic content of the images, 
leading to artificial periodicities not previously dominant, and also 
enhances the effect of noise. It is thus not possible to proceed as 
simply as suggested above. 

It is necessary to decide whether the (200) or the (220) amplitude 
is larger only at the lattice sites. To identify these sites, one can 
introduce a threshold for a switch from zero to full intensity, thus 
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reducing the original image to two intensity levels. The choice of 
this threshold is dictated by the success with which lattice sites can 
be located and is determined by trial and error. Nevertheless, two 
level images such as Fig. 2D can be obtained, which identify the 
lattice sites with reasonable success. Such an image may be used to 
reduce the number of points at which a comparison between the 
(200) and (220) amplitudes is to be made. This partially alleviates the 
problems introduced by the artificial peridcities due to filtering. The 
d t s  of the comparison between (200) and (220) amplitudes are 
shown in Fig. 2E; blue represents a dominant (200) component, 
yellow a dominant (220) component, and black those regions where 
no decision has been made or no decision has been possible. 

Additional information may at this stage be used; the shape of the 
image unit cell is frequently knowri from simulation (7, and general 
structural constraints are ofien present (5). For example, any 
compositional grading is likely to occur at or near the interface, and 
it is most unlikely that a cell of AlGaAs is entirely surrounded by 
GaAs. These constraints allow one to reach a decision about the 
color of a "black" area by considering the color of its neighbors (Fig. 
2, F and G), resulting in Fig. 2H. The final color map produced can 
now be used to identify the interface shown in Fig. 21. However, 
this type of analysis is unsatisfactory because it fails to quantif) the 
amount and the effect of the noise present, cannot identify which 
features are statistically sigtllficant, and is at best semiquantitative. 

Generally, an image is valuable because it can reveal deviations 
fkom perfection. Such imperfections have rich frequency spema, 
which can be severely compromised by Fourier filtering. Thus, even 
when intelligently applied, Fourier analysis degrades the very infor- 
mation it is designed to extract. It is telling that the injection of real- 
space information is required to bring Fourier analysis to a reason- 
able conclusion (5, 7). 

Fourier space and is thus incompatible with Fourier filtering. 
Information can be directly extracted in real space, where the task of 
quantifying the local information content becomes well formulated. 

The simplest approach consists of the analysis of the intensity 
variations in the image. Usually, the image is divided into small 
regions, the total intensity in each region or cell is measured, and the 
measurements are evaluated statistically. Several statistical properties 
may be used, with the variance being the most commonly chosen 
parameter. This approach allows the quantitative determination of 
the amount of noise, as well as its spatial distribution, and can lead 
to ready identification of statistically significant features. However, 
it does not make efficient use of the available information and is not 
adept in discriminating between noise and signal. 

Consider again the chemical lattice image of Fig. 1. Each of the 
GaAs and &.37Ga().6& image unit cells consists of a 2.8 A by 2.8 A 
square. The GaAs cell consists of five white blobs placed at the 
comers and the center of each square, whereas the !d0.~7Ga().6& 
cell lacks the central white blob (Fig. 3, insets). A simple intensity 
analysis may thus proceed with the measurement of the total 
intensity in the central region of each unit cell, normalized to the 
average of the total intensities contained in the four comer blobs. In 
the absence of noise, GaAs and &.37G~.6& unit cells would be 
respectively characterized by values of 1 and 0 for the "normalized" 
intensity at the center of the cell, and the collection of cells making 
up a region of each material would produce Bbc t i on  distributions 
around these values (Fig. 3). 

In reality, noise is always present. The actual intensity distributions 
for the GaAs and &.3&.6& layers of Fig. 1 substantially overlap 
(see Fig. 3). Thus, the correct identification of a particular unit cell as 
&b or &.3&a0.63h is d ~ % ~ O U S  becaw m d y  any h of 
noise can change the measured intensity sufficiently to cause confusion 
between cells of Gab and &.37Ga~.63A~- 

Real-Space Analysis 
Fourier analvsis of images is difficult. because the task of extract- 

Vector Pattern Recognition 
" 

ing the local information content of the image is ill posed in Fourier When a single intensity value is used to characterize a cell, 
space. The term "localn in real space implies lack of localization in information regarding the intensity distribution within the cell is 

Flg. 2. (A) Image of the GaAs- 
Ab.3,Gao.63As interface, with its 
Fourier transform. (B) Image re- 
constructed by blocking out the 2 
A (220) periodicity. (C) Image re- 
constructed by blocking out the 2.8 
A (200) periodicity. (D) Original 
image (A) reduced to two intensity 
I d .  This reduces the number of 
areas for which a comparison be- 
tween the (200) intensity and the 
(220) intensity has to be made. The 
threshold level between black and 
white was determined by mal and 
error. (E) Result of a comparison 
between (200) and (220) intensi- 
ties. The (200) is dominant in the 
blue regions, the (220) in the yel- 
low reiions. and no decision has - 

assigned a color according to the 
color of its neighbors, and the pro- 
cess is repeated iteratively to obtain 
the color mask shown in (H). (I) 

the (200) inteisity exceeds ascertain 
&hold, whose'value is difficult to quantify. 
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l 
the center of each 'unit 
cell. Theoretically, this 
intensity is 0 in 
Ga0.sg.b and 1 in GaAs 
(see.-+, where the 
noise has been removed 
by averaging over many 
unit cells). In practice, 
noise broadens the in- 
tensity distributions for 

and 4.37-.6& 
so much that they over- 
lap substantially. 

not exploited. In one dimension this is analogous to attempting to 
identifi a c w e  from the area under it. which would vield an infinite , 
number of possibilities. Below, we describe a simple procedure that 
exploits the available information more Illy. 

The task is carried out in several steps. First, perfect models or 
templates are adopted from simulation or developed from the data; 
these models or templates serve to identifl the ideal image of each 
unit cell type. When the template is extracted from the experimental 
data, it is obtained by averaging over many unit cells to eliminate the 
effect of noise. For example, several unit cells of Fig. 1 not lying at 
the interface are averaged to produce the templates for GaAs and 
&.37Ga0.6& shown in Fig. 4. Second, an image unit cell of a 
particular size is adopted and divided into an n x n array of pixels, at 
each of which the intensity is measured. Typically n = 40, and thus 
1600 intensitv measurements are made within each unit cell. Third. 
each unit cei  is represented by a multidimensional vector, who& 
components are the n2 (usually 1600) intensity values obtained from 
the cell. The ideal imaee unit cell for each material is now represent- " 
ed by a template, which in turn is represented by a vector Rt. For 
example, the ideal image unit cells of GaAs and &.37Ga0.63A~ are 
characterized by the two vectors RtGaAs and R t ~ b  3*,a~s, respec- 
tively (Fig. 4). 

Next, the amount of noise present in the experimental image is 
deduced from the angular distributions of the real (that is, noisy) 
unit cell vectors has and R A ~ ~ , ~ ~ ~ , ~ A ~  about their respective 
templates. The noise in Fig. 1 is such that, away from the interface, 
the has and RAbJFao.&, form similar normal distributions 
around their respective template vectors RtGaAs and Rt~hfiGao.aAs. 
The standard deviation u of each distribution quantifies the noise 
present in the images of GaAs and &.37Ga0.6& (Fig. 4). Assum- 
ing Gaussian noise, a unit cell is different from a given template, 
with an error ~robabilitv of less than three Darts in lo3. if its vector 
is separated from the template vector by more than 3u. The centers 
of the distributions for the GaAs and &.37Ga()6& unit cells shown 
in Fig. 1 are separated by 12u, which means that each unit cell of 
GaAs and &,37Ga()6& can now be correctly identified with total 
confidence. A representation of the results of the vector pattern 
recognition analysis of Fi . 1 is shown in Fig. 5. The image is 
divided into 2.8 A by 2.8 1 cells, each of which is placed at a height 
representing the angular position of its vector. 

We have now outlined a sim~le a ~ ~ r o a c h  that can be used to 
I I I  

evaluate quantitatively the local information content of images made 
up of mosaics of unit cells. This method exploits all the available 
information to determine the amount of noise Dresent. is so~histi- 
cated in discriminating between noise and signal, identifies statisti- 
cally significant features, and allows quantitative comparison with 
templates. Below, we discuss how, in the case of chemical lattice 
images, the local information content is related to the local composi- 
tion of the sample. 

Flg. 4. Schematic representation of the vector pattern recognition proce- 
dure. First, many unit cells are averaged m produce the noise-free images. 
Each image unit cell is divided into a 40 x 40 pixel array, at each of which 
the intensity is measured. Next, a 1600-component vector, with the mea- 
sured intensities as components, represents each nok-free unit d or 
template. One determines the noise in the image by measuring the angular 
deviation of the real unit cell vectors h m  their templates. The confidence 
with which a given unit cell can be regarded as =rent from a template is 
given by its distance in standard deviations h m  the template as determined 
by normal statistics. This simple procedure uses all the available information 
in the image and &ciently discriminates between noise and signal. Thus, 
although in an intensity (scalar) analysis the GaAs and Ab.3Fao.s& 
distributions overlap (Fig. 3), the centers of distributions are now 120 apart. 

1 Fig. 5. Analyzed image of the chem- 
ical interface shown in Fig. 1. The 
imaee is divided into unit cells 2.8 1( 

1 sq& the height of each of which 
represents the angular position of its 
vector with respect to the template 
vectors Rtods and Rt4., FA. 
YdlowsIpfieswith,n 3n O&O&, 
blue within 3u of Rt% . The 
other colors are 3 m 5, e y a n d  7 
to 9a bands. 

Interpretation of Results: Response Function 
A lattice image is locally analyzed to gain information about the 

local atomic potential of the sample. Under general dynamical 
(multiple) scattering conditions, the electron wave function at a 
point on the exit face of the sample need not reflect the sample 
projected potential at that point. The emerging electron wave is 
further convoluted with the aberrations of the lens before fbrrning 
the image. It is not possible to determine generally how the locd 
details of a lattice image are related to the local atomic potential in 
the sample (13). 

In chemical imaging, we are concerned with the way in which a 
compositional inhomogeneity is imaged under conditions appropri- 
ate fbr chemical sensitivity, and with how the pattern recognition 
algorithm extracts infbrmation from a chemical lattice image. As the 
Al content of homogeneous AIXGat-,As is changed from 0 to 0.37, 
the vector R t ~ , G a , , ~ ~  rotates linearly from RtGas to RtAb.3,~ao,a~s. 
Thus, in homogeneous material, the composition of a unit cell can 
be directly dediced from the angular pos;tion of its vector R with 
respect to the templates. In practice, noise can cause R to deviate 
h m  the plane containing the templates RtGaAs and Rt%,3FB0,a~s, 
and the projection of R on this plane yields the composition. The 
confidence levels associated with such measurements depend on the 
amount of noise present and can be deduced from normal statistics. 

In an inhomogeneous sample, this simple procedure requires 
justification. The problem can be formulated as follows. Given a 
"chemical impulse" of a specific shape, such as a column of Al atoms 
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imbedded in GaAs (a 6 function), an abrupt interface (a 8 function), 
or a diffuse interface (say, an error function), what is the shape of the 
impulse on the analyzed chemical image? Or, alternatively, what 
region of the sample contributes to the information content of an 
image unit cell? By reciprocity, these two formulations are equiva- 
lent. 

We determine the effect of the response function (14) by analyz- 
ing images of samples containing various impulses, simulated under 
conditions appropriate for chemical imaging (5 ,6) .  The appropriate 
conditions are chosen from a bank of simulated images that contain 
the particular impulse under consideration. For example, the simu- 
lated images of an abrupt GaAs-&.3+~.63As interface (8 function) 
(Fig. 6) show that in this case the appropriate conditions corre- 
spond to sample thickness and lens defocus values of -100 and 
--250 & respectively. [These conditions produce a clear change 
from (200) to (220) periodicity across an interface in samples that 
are not too thick, at a defocus that lies between Gaussian and 
Scherzer. Dynamical and instrumental aberration effects are thus 
minimized. Typically, acceptable chemical images can still be o b  
tained when conditions deviate from optimum by up to 20%. 
However, such deviations are accompanied by easily detectable 
changes in the images. Larger deviations can complicate image 
interpretation.] 

Figure 7A is a simulated chemical image of individual columns of 
A1 imbedded in GaAs (8-function impulses), and Fig. 7B shows the 

analyzed image. Figure 8 shows the simulated (A) and analyzed (B) 
images of an abrupt GaAs-&,37G~.63As interface (8-function 
impulse). The input and output profiles when a "soft" error function 
interface is simulated and analyzed are shown in Fig. 9. In every 
case, the discrepancy between the input impulse and the output 
profile is smaller than the noise present in the best experimental 
images. This remains true even when the sample thickness and lens 
defocus deviate by up to 20% from values optimum for chemical 
imaging. (Because a unit cell in the vicinity of the impulse is 
different from a "bulk" unit cell of the same average composition, its 
vector R does not in general lie on the plane defined by the 
templates for the homogeneous materials. In such cases, we use the 
projection of R onto the plane defined by the bulk templates.) The 
close agreement between the shape of the input impulse and that 
deduced by the pattern recognition algorithm establishes that, under 
our chemical imaging conditions, nonlocal effects due to dynamical 
scattering and the response function of the lens are unimportant 
(13)- 

The response function is also affected by the unit cell size adopted 
in the pattern recognition procedure. In general, larger unit cells 
contain more complicated patterns, which are more difficult to 
mimic by random effects. They thus allow a more efficient discrimi- 
nation between noise and signal. However, increasing the unit cell 
size degrades the spatial resolution. The appropriate unit cell size is 
that whose further reduction yields no new, statistically significant 

Fig. 6. Simulated images of an abrupt GaA~-&,~f i%.~~As  interface, where the sample thickness and lens defocus are varied. Under "sm 
conditions (Schener defocus --450 A), GaAs and &.37G%.63As produce very similar images. On the other hand, under chemically sc 
(defocus --250 A) the GaAs and &,37G%.63As images are distinctly different. 

lcturally sensitiven 
znsitive conditions 
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Fig. 7. Simulated image (A) and analysed image (B) of a series of 8 functions Fig. 8. (A) Simulated ima e of an abrupt GaAs-&.37Gao.6 As interface, for 
of Al, imbedded in GaAs. For comparison, a layer of AlAs is also simulated a lens defocus of -250 f and a sample thickness of 85 h. (B) Analyzed 
and analyzed. image of (A). 

information. For the images treated in this article, the optimum unit 0.4 Fig. 9. Error function input profile 
cell size lies between a 2.8 A square and a 3.9 A square. (solid line) and the composition at 

each atomic plane, determined by To summarize, under appropriate chemically sensitive conditions, 3 analyzing the simulated image of the 
nonlocal effects due to dynamical scattering and lens aberrations are 

0.2 profile. The error bars indicate varia- 
negligible. The response function is essentially determined by the tions due to the fact that the center 
periodicity of the chemically sensitive reflection, which in the case of O of a unit cell cannot be located to 
the zinc blende structure is the (200) periodicity. This means that in better than a pixel. A best fit to the 

determined points produces an out- 
this structure, the composition of a region one-quarter of the crystal 

Distance put profile, which completely over- 
unit cell in cross section and -15 unit cells high can be directly laps with the input profile and thus 
determined. cannot be displayed. 

Effect of Sample Geometry 
The change of composition from GaAs to Alo.37Gao.sAs causes a 

rotation of 12u in RtAIXGa,-,As. In a typical sample -15 atoms thick, 
the compositional change corresponds to the replacement of -5 Ga 
atoms with Al. Naively, therefore, the replacement of a single Ga 
atom with Al causes a rotation of -2.40 in the angular position of 
the unit cell vector. The analyzed chemical images thus appear to be 
sensitive to changes at the atomic level. However, the thin foils used 
for lattice imaging are not perfect at this level, and the effects of 
depattures from perfection must be considered. Geometrical imper- 
fections occur because samples are wedge-shaped and have surfaces 
that are most likely stepped on the atomic scale. Moreover, inhomo- 
geneous materials can thin or oxidize nonunifody, producing 
samples with local variations in thickness. The actual effect of 
geometrical imperfections on the data depends, of course, on the 
degree of imperfection. We address below the consequences of the 
geometrical imperfections that we have encountered in our samples. 

The effect of large, gradual changes in the sample thickness are 
directly reflected in the statistical analysis of the data; as the 
thickness deviates fiom optimum for chemical imaging, the GaAs 
and AlGaAs image unit cell vectors approach each other, reducing 
the confidence with which they can be distinguished. This is the case 
both for experimental and for simulated images. Thus, gradual but 
significant (-50 A) thickness changes across the field of view simply 
degrade the information content of the image. 

Local variations in thickness can sometimes cause systematic 
errors, as, for example, in the case of an interface between two layers 
that differ in thickness in the direction of the electron beam. Analysis 
of simulated images shows that when the different layers, say, GaAs 
and AlGaAs, have different thicknesses, the deduced composition 
differs from the true value by an amount that depends on the 
thickness difference. The largest thickness differences we have 
encountered (-20 A in regions - 100 A thick) occur between GaAs 
and AlAs layers and are due to different thinning and oxidation 
rates. Simulations show that the error 'introduced by this thickness 
difference is less than the effect of noise, a conclusion that applies 

both to abrupt thickness changes across the interface and to 
thickness gradng in the interfacial region. The small effect of these 
thickness changes indicates that the chemical image essentially 
measures the difference in the electron scattering factor between a 
group I11 column and its immediate group V neighbors. This 
finding is in agreement with our previous conclusions regarding the 
absence of "nonlocal" effects. 

Effect of Photographic Recording 
Nonlinearities 

So far, we have related the intensity distribution to the local 
sample composition (or structure). However, the processes by 
which the intensitv is recorded can be nonlinear. and the recorded 
and the actual intensity distributions are in general different. We 
now investigate the effect of recording nonlinearity on our vector 
pattern recognition analysis. 
- ~e~resent-the nonlin;arity as a function g = g(0, where I is the 
intensity to be recorded. Thus an actual intensity I is recorded as 
[g(o x I]. For a unit cell with an actual intensity distribution 
2 = (al; . . ., ap), the measured intensity distribution is 
Rm = [g(al)al, . . ., g(ap)ap]. Thus, the of the nonlinearity 
can be represented by the equation Rm Ra, where is a 
diagonal matrix with the g(ai) as rotates and changes 
the length of the vector Ra to produce Rm. Since our analysis utilizes 
only the angular position of a vector and nt+ot its length, we are 
concerned only with the rotational effect of G. In particular, if the 
nonlinearity changes the angular separation between the template 
vectors by less than noise, it can be ignored. 

Consider a most unfavorable procedure, where an image is 
recorded on a negative, enlarged i d  printed, copied, enlarged and 
printed again, and read into the computer by a video camera, from a 
priit or a slide. In a typical case, we measure an angle 0,,,,-0.29 
rad between the templates drawn from the experimental h a s .  The " 
corresponding angle between the simulated templates Bsim is -0.31 
rad. The simulated image resides, of course, as a series of numbers in 
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Flg. 10. Composition profile across 
a single HgCdTe-CdTe interface. 
The composition has been deter- 
mined atomic plane by atomic plane. 
The error bars are comparable with 
the compositional fluctuations due 
to random alloy statistics. 

the computer and is directly accessed by the pattern recognition 
program. It is thus unaffected by recording nonlinearities. Let 
6 = (Osi, - OeXpt), and denote the standard deviations of the experi- 
mental unit cell distributions about two templates as ul and u2. We 
typically find 6/ul-6/u2-0.4. That is to say, recording nonlineari- 
ties change the angular separation of the template vectors by an 
amount that is negligible compared to the noise present in experi- 
mental images. 

Applications 
The approach we have outlined can be used to extract quantitative 

information from local areas of images that consist of mosaics of 
unit cells. In particular, local deviations from perfection can be 
quantitatively identified. This may have applications in a variety of 
techniques, where statistically different cells of an image are to be 
found and compared with model cells. 

In electron microscopy and tunneling microscopy, the approach 
we have outlined finds immediate application in judging the success 
of a fit between simulated and experimental images. A simulated 
template may be quantitatively compared with an experimental 
image, and any differences evaluated by statistical analysis of the 
noise present. Here we have used the angular position of the vector 
for analysis. Other properties of the vectors, such as their (vectorial) 
difference, may be equally well used. Such quantitative procedures 
may help put structure determination by lattice imaging more on a 
par with x-ray techniques. 

In the case of chemical lattice images, the local information 
content of the image can be directly related to the local composition 
of the sample on the atomic scale. Thus, chemical interfaces, such as 
those present in pseudomorphic heterostructures, can be directly 
imaged and the interfacial configuration related to other properties 
of the system. Similarly, the composition profile across an interface, 
or around an inhomogeneity such as a precipitate, can be measured 
with atomic plane resolution (Fig. 10). One can determine the 
composition of a given atomic plane by averaging over a number of 
unit cells on that plane. By following the development of the 
composition profile across an interface as it is annealed, one can 
directly measure extremely small interdiffisivities cm2/s) 
(15) in regions that are up to 14 orders of magnitude smaller than 
those needed by other techniques of similar sensitivity. Such a local 
analysis of interdiffision has shown that the stability of an interface 
in a bulk sample can depend sensitively on its position with respect 
to the surface (16). For example, the interdiffision coefficient can 

increase by two orders of magnitude, as the interface depth in the 
(bulk) sample is changed from 7000 to 100 A. The local analysis of 
interdiffision also yields information about the local native defect 
concentrations, essentially atomic plane by atomic plane. 

More generally, many materials, particularly those of current 
interest such as semiconductors and superconductors, are highly 
inhomogeneous and far from equilibrium; the A1 concentration 
across a GaAs-AlGaAs inteiface changes by orders of magnitude 
within a few lattice constants. The combination of chemical lattice 
imaging and vector pattern recognition makes possible the study of 
the relaxation of such solids at the atomic level, allowing access to 
hitherto unexplored areas of solid-state physics and chemistry. 

The simple pattern recognition procedure we have described 
shows that lattice images contain a wealth of information, which can 
be extracted and evaluated quantitatively. Our approach allows 
efficient exploitation of the data, quantitative assessment of the effect 
of noise, identification of statistically significant features, and quan- 
titative comparison with templates. In the case of chemical lattice 
images, the local information content can be directly related to the 
local composition of the sample, leading to the chemical mapping of 
materials at the atomic level. In the case of structural lattice images 
and tunneling micrographs, it should lead to a more quantitative 
approach to structure determination by microscopic techniques. In 
images of biological samples, it may allow a quantitative analysis 
of similarities and differences between different cells or micro- 
organisms. 
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