
From Formulas to Fortran to Results: The
AUTOMATED PROGRAMMER System

Cmmputers have expanded the scope of
problems that scientists and engineers are
willing to tackle. A complex system of equa-
tions that mav defv solution in closed form , ,
can often be put on a computer and solved
numerically. Similarly, a more tractable
problem &at might have been solved for
only a few cases can be examined in detail.

However, one may not feel that comput-
ers save a lot of work when the task of
converting equations into computer code is
actually confronted. For example, suppose
you have developed a complex series of
equations to model some system. You
would like to be able to provide values for
die variables in your model and to execute
the model with ;nough data to get a reason-
able feel for the results.

Now consider what you must do. You
must either turn your efforts over to a
computer programmer to translate them
into the commands that the computer can
use, or you can do the computer program-
ming yourself. I11 the former case, you may
work with the programmer, but unless you
are conversant with programming terms and
the language being used, you must egective-
ly trust that the translation being accom-
plished is correct, that is, that the program-
mer cannot only program, but also under-
stand enough mathematics to properly
translate your formulas.

In the latter case, you spend time and
eKort programming (and, inevitably, debug-
ging) that could be spent on doing work in
your own field. You may also have to learn
more about a language or applications pro-
gram than you really care to know. In either
case, "small" errors may creep in that may
not be noticed until after many sets of results
have been generated. Clearly, neither of
these choices is optimal.

What is needed is some automated mech-
anism to convert the "language" of the
profession (in this case, mathematics) into
something that can be understood by the
computer. This idea is not new; in fact, it
has a name--executable s~ecifications.UII-
fortunately, there have been few successes in
this endeavor to date.

This is precisely the reason that applica-

Fbrida Institute of Technology, Ilcpanrnent of Corn-
p ~ ~ t c rScience, Mclbour~~c,FL 32901.

tions programs were created. They allow the
user who lacks a detailed knowledge of
computer programming to use the comput-
er. The tool (the computer) can be used
without having to be an expert in creating
tools (programming). Applications pro-
grams that most people are familiar with
include spreadsheets, word processors, data-
base managers, and such; examples in math-
ematics include equation-solving and sym-
bolic-manipulation programs. A successful
applications program should interact with a
user knowledgeable in the problem domain
without requiring that the user also be a
computer scientist.

It can be argued that many applications
programs do not meet this goal. Many users
have dealt with an applications program that
failed and then generated a cryptic message
such as "error 32," or some other similarly
meaningless remark, or have used a tool that
recluired more customizing than anticipated
and that required taking a crash course in
computer programming just to use the tool.
However, it is in precisely this area that
the AUTOMATED PROGRAMMER (1)
makes some significant progress. As the
documentation for the AUTOMATED
PROGRAMMER system states,

The AUTOMATED PROGRAMMER
System attempts to utilize, wherever possi-
ble, language forms for problem specifica-
tion which are traditional, and are directly
executable, thus minimizing the need for
speciali7~k.dprogramming.

System Description

The AUTOMATED PROGRAMMER
is a complete system for entering, interpret-
ing, compiling (Z), and running applications
of mathematics typically encountered in sci-
ence and engineering. The AUTOMATEI)
PROGRAMMER approaches the ideal of
an executable snecification in the sense that
it allows the user to write mathematical
equations in their familiar form and then
automaticallv trallslates them into a ma-
chine-executable form. In order to do this,
the AUTOMATED PROGRAMMER au-
tomatically interprets the two-dimensional
lines on the computer screen; for example,

integration symbols and limits are interpret-
ed directly (3). An example of input is
shown in Fig. 1. It then converts such input
into a programming language for which a
compiler exists (4). This intermediate form
(programming language) is then compiled.
At the user's option, the generated object
module can be stored in a library (from
which it can be accessible to a link editor) or
it can be immediately linked and executed.
In the latter case, all of the intermediate
steps are hidden from the user and so it
appears that the two-dimensional mathe-
matical text produces output.

The intermediate form mentioned above
was not designed to be accessible to the user
as it represents the initial translation of the
user input into a programming language.
However, a user may request that the inter-
mediate step be saved. I did this for the
formula in Fig. 1. and examined the Fortran
code produced from the screen image (Fig.
2). I was surprised at how "tightly" the
automatically generated code was written;
for example, no use is made of the infamous
GOT0 statement so characteristic of a
quickly written Fortran program (5) . For
routines such as integration and differentia-
tion, there are default options; however, this
process can be overridden by the user and
other routines supplied by the user can be
called.

Why is it important to have a tool like
this? The fairly complex mathematical
expression in Fig. 1 can be compared with
its Fortran implementation in Fig. 2. Al-
though these two expressions of the mathe-
matical formula are in a sense equivalent, the
first one is easily recognizable and under-
standable by anyone with minimal mathe-
matical sophistication, whereas the second
one is more difficult to decipher unless the
user is well trained in Fortran.

This small example illustrates another rea-
son for using the AUTOMATED PRO-
GRAMMER; it is self-documenting. The
technical English and mathematical symbols
used in the AUTOMATED PROGKAM-
MER are directly understandable without
external documentation. In contrast, the
Fortran implementation would require a
large set of documentation files to explicate
its purpose and use. Additionally, for those
few cases when explanatory information is
needed, the AUTOMATED PROGKAM-
MER allows comments to be inserted.

This useful tool has some rather distinc-
tive and useful features, a few of which I list
here:

Implied multiplication.
Automatic dimensioning for arrays.
Two-dimensional "image" output for-

matting.
Integrated two-dimensional text editor.

I DECEMBER 1989 SOFTWARE REVIEWS I169

Implicit variable declaration.
Subscripts and superscripts indicated

normally.
Unparenthesized function arguments.
Standard mathematical symbols (sum,

product, integral, and so forth).
1)ouble-precision floating point arith-

metic.
Menu-driven commands (may be over-

ridden by keyboard commands).
Keyboard template for special-symbol

generation.

Comments and Evaluations

In an earlier review of this product, Lo-
Sacco (5)mentioned the need for a security
block to be placed 011 the serial port. The
purpose of the hardware copy-protection
key (securityblock) was to prevent unautho-
rized copying of the AUTOMATED PRO-
GRAMMER. Since that time the developers
of this product have removed the require-
ment for the protection key and no longer
ship it with the product.

However, two other capabilities that Lo-
Sacco laments as not being present in this
otherwise excellent system are still in the
development stage and have not been imple-
mented. These are an internal facility for
graphing output automatically and a mecha-
nism for inputting complex variables. The
first of these perceived shortcomings is not

Directory: C:\IIPVROCS Input File: DBLINT Output File: DBLINT

FOR n=3 by 3 to 9 and ~2 to n2-2 and I=2(2)n read r,r,Y. if $ (I then

-
- i t j

cos y + sln
(i t j lx 3

and print a,I.n, tw else y = e 3 - 1 1 ~ ~ 1COS I t 1 - J ~JL#print p,y. end.
1 - I I I

Fig. 1. Double integral to be evaluated by the AUTOMATED PROGRAMMER (supplied as
demonstration program DR1,INT).

an actual problem, however, because the
AUTOMATED PROGRAMMER easily
can call external graphing routines that the
user provides. The second problem has been
recognized by the developers and is being
addressed in a future release.

The language used in the AUTOMATED
PlCOGRAMMER is very powerful and flex-
ible, yet remains simple. There is a very
short learning curve for the AUTOMATED
PROGRAMMER, since the language that
you use is basically guided by the
"WYSNVYG" principle, that is, "what you

CONTINUE
CONTINUE
CONTINUE
CALL AP$ERR(O)
STOP

IMPLICIT REAL*8(T)
COMMON /APABWDKI/ 1MA~~~,~0051,~0058,~0059,~0064,V0065,V0066,V0068

x V ~ O ~ ~ , V ~ ~ ~ O , V O O ~ ~ , V O ~ ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~
~xTERNALAP$POW AP$INTGR,ARCTAN, SIN,COS,LOGBASEB,FOO78 ,F0080
-*8 ~$POW,~$INTGR,ARCTAN,SIN,CO~,LOGBASEB,VOO~~,VOO~~,VOO~~~V
x0064,V0065,V0066,V0067(0:79,0:9),~0068,~0069,V0070,V0071,V0072,V00
x73,V0074.V0075,V0076,F0078,F0080
CALL AP$INIT(-1)
IF (IMAGEL .EQ. 0) THEN
IMAGEL = 1
CALL APSRINITlV0067.800~

END
REAL*8 FUNCTION F0078(V0077)
IMPLICIT REAL*8(T)
REAL*8 V0077
REAL*8 V0078

. ,
ENDIF
DO 12009 V0071 = 0.3000D1,0.9000D1,0.3000D1
TL2015 = (AP$POW(V0071,0,2000D1)-0.2000Dl)
TI2015 = 0.2000Dl
DO 12015 V0072 = TI2015,TL2015,SIGN(1.ODO,TL2015-TI2015)
DO 12018 YO073 = 0.2000D1,V0071,0.200OD1
WRITE (O,'(lx,/,l~,\)')'~nter 3 values -->'
READ (INT(5),*)V0064,V0065,VOO66
IF (((V0065/V0071) .LT. V0073)) THEN
V0067(NINT(V0072),NINT(V0073)) = AP$INTGR(VO059,0.2000Dl,
~ 8 0)
WRITE (6,12087)V0072.V0073,V0071,V0067(N1NT(V0072),N1NT(V0073))

12087 FORMAT ~lX,G15.8,1X,G15.8,1X,Gl5.8,1X,G15.8,1X)
ELSE
V0070 = ((((AP$POW(VOO5l,VOO72)*AP$POW(VOO73,O.3000O1))-(AP$POW(SI
xN(VOO73),0.2000D1)*COS(V0073)))+0.1000D1)-(ARCTAN(V0073)/(O.lOOODl
x-ABS(VOO73))))
WRITE (6,12108)V0073,V0070

12108 FORMAT (lX,G15.8,1X,G15.8,1X)

COMMON /APABWDKI/ 1MAGEL,V0051,V0058,V0059,V0064,VOO65,VOO66,VOO68
x.v0069.v0070.v0071,v0072,v0073,v0074,v0075,v0076,V0067
EXTERNAT,APSPOW ,AP$INTGR,ARCl1RN,SIN,C0S,I~OGBASEB,k0080
HEAL"8 APPOW,APINTCR,ARCl'AN SIN COS LOGBASER ~0051,V0058,V0059,V

rnn64 vnn6~.vnn~~.von67,0:79,0I91. ~ ~ ~ G ~ , ~ o o ~ ~ , ~ ~ o ~ o , ~ o o ~ ~ , v o o ~ ~ , v o o

see is what you get." If the mathematical
formula is presented correctly on the termi-
nal screen, then it is right in the language of
the AUTOMATED PROGRAMMER.

One of the features of the AUTOMAT-
ED PROGRAMMER System that I found
most useful was the ability to describe the
output format with an image mechanism.
This capabilityis best illustrated by a11 exarn-
ple; consider Fig. 3A, which is a program to
calculate some current flow in an electrical
circuit, given the voltage and resistance of
each resistor. Note that the print command

YO078 = 0.0
YO068 = V0077
T2044 = 0.0
DO 12044 V0074 = ANINT(O.l00001),V0071
T2043 = 0.0
DO 12043 V0075 = ANINT(0.100001),V0071
T2043 = T2043+(COS(V0069)+(AP$POW(SIN(V0068),(~0074+~0075))/((V007
x4+V0075)*V0068)))

12043 CONTINUE
T2044 = T2044+T2043

12044 CONTINUE
T2074 = 1.0
DO 12074 V0076 = ANINT(O.lOOOOl),(AP$POW(V0071,0.2000D1)-V0072)
T2074 = ~2074*((AP$PO~(~0073,~0076)/~0076)+SQ~~(AP$POW((V0068+V006
xg),(-V0076))))

12074 CONTINUE
V0078 = (((AP$POW(V0051,(-(V0066*V0068)))/(V0069+V0071))*~2044)/((
X(LOGBA~EB(VOO~~,VOO~~)+ARCTAN((AP$POW(VOO~~,VOO~~)/A~POW(V~~~~,(V
x0071-0.1000~1)))))/(SQRT((V0072/(V0073+(V0065/V0069))))+((V0072+(V
xOO69/VOO73))/VOO68)))+T2074))
F0078 = V0078

10078 CONTINUE
RETURN
EN0
REAL.8 FUNCTION F0080(V0079)
IMPLICIT REAL*8(T)
-*8 V0079
REAL*8 V0080

COMMON /APABWDKI/ I M A G E L , v ~ ~ ~ ~ , v ~ ~ ~ ~ , v O O ~ ~ , V O O ~ ~ , V ~ ~ ~ ~ , V O O ~ ~ , V O O ~ ~
~ , V O ~ ~ ~ , V O O ~ O , V O O ~ ~ , V ~ ~ ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~
EXTERNAL APPOW,APINTGR,ARCTAN,SIN,COS,LOGBRSEB,FOO~~
REAL*8 APPOW,APINTGR,ARCTAN,SIN,COS,LOGBASEB,VOO~~,VOO~~,VOO~~,V

x0064,V0065,V0066,V0067(0:79,0:9),V0068,~0069,V0070,V0071,V0072,V00
x73,V0074,V0075,V0076,F0078
V0080 = 0.0
vnnfiq = v n n 7 4.-"--
V0080 = A P $ I N T G R (V O O ~ ~ , O . ~ O O O O ~ , S Q R T ((V ~ ~ ~ ~ / V ~ ~ ~ ~)) , F ~ ~ ~ ~)
FOO8O = V0080

10080 CONTINUE
RETURN

x,V0069,V0070
REAL*8 V0051
x0069,V0070,V0071,V0072,V00
DATA V0051/0.2718281828459

Fig. 2. Fortran code produced by the AUTOMATED PROGRAMMER for the double integral in Fig. 1.

SCIENCE, VOL. 246

A 	 B
Directory: C:WPWROCS 	Input File: ClRWIlZ Output File: Circuit calculations - current through resistors when voltage = 5 .00

Resistor Ohms Amps

1 . 6 .30 0 . 6 6
2 . 3 .40 0 . 2 4blom 3 . 9 . 1 0 0 .09
4 . 2 . 5 0 0 . 3 3

5 UOLTS

~ ' 1 1 1 1 1 1 1 y

fomat head Resistor Ohns Ln s

fornat data &,I WiEJ El&:

read v,r1,r2,r3,r4~ 	&. il= % , U=Ril, i2= $- ,i3=\ ,i4=$.
"2 r3. r4

print inage I,rl,il,v,r2,i2,r3,~3,q,i4~

print 'Circuit calculations - current through resistors when voltage = ' ~6.2). references to A (without any subscript) will
skip I, print fornat head. for krl to 4 print foruat data k,rk,ik, be treated as the matrix A. Similarly, the
Fig. 3. (A) Program for calculating currents in a11electrical network. (6)Output for a given problem. vector Vi in its unsubscripted form V will be

treated as the vector V.
This feature allows a user to write such

includes an image which describes how the feature is shown in Fig. 4A, which shows a things as A + B to mean the matrix sum of
output should appear on the screen or print- simple "program" to compute a discrete the matrix A and the matrix B. Combining
er. It includes a pictorial representation of range of integrals. In an ordinary computa- this with the implied and alternative forms
the circuit diagram. Without this capability, tional system, the user might expect to see for multiplication that the AUTOMATED
as in an ordinary computational system for a the output presented in a tabular form with PROGRAMMER supplies, the symbols AB
problem of this nature, the output may perhaps some label describing what these or A*B or A . B all mean matrix multiplica-
appear as a list of the resistor numbers values mean. An example of the output of tion. Furthermore, if s is some scalar value,
showing their value in ohms and their com- the "program" is shown in Fig. 4B. Note then A + s adds s to each element in A.
puted amperages in amperes when given the that labels are not necessary because the Built-in operations for matrices are similarly
initial value of the voltage. image capability allows the user to see the powerful, such as A', which yields the ma-

This tabular form of output is usually neat successive values of the discrete range dis- trix transpose of A, and A-', which yields
and well labeled. However, when the output played in the output in their respective the matrix inverse of A. Also, writing det A
is given in this form, there remains a transla- positions within the formula as well as the yields the determinant of A.
tion process; namely, associating the result- computed value; the output is two-dimen- I have only mentioned a few of the many
ant values with the proper resistors on the sional, visually appealing, and meaningful. very powerful features in the AUTOMAT-
circuit diagram. The output from this pro- Another powerful feature of the AUTO- ED PROGRAMMER System. The user
gram is shown in Fig. 3B. The top portion MATED PROGRAMMER is complete will find that the transformation of the
of this output is the typical display that a support for vector and matrix arithmetic. solution to a problem into something that is
user might expect to see from an "ordinary" Any one-dimensional array can be treated as machine processable need no longer be a
computation. Compare and contrast this a vector; any two-dimensional array can be difficult or error-prone operation.
portion of the output with the bottom treated as a matrix. For example, if an array
portion of the same output. It displays the is identified as Aij in a formula, then the
same data computed by the same program, AUTOMATED PROGRAMMER will System Description
but this time the image feature is used to automatically dimension it as a two-dimen-
show precisely which value is associated sional array as noted earlier. Subsequent The AUTOMATED PROGRAMMER
with which resistor directly on the diagram.
It is readily apparent which style of output is A
more readable and understandable. Directory: C : W P W R N S Input File: IllllCET Output File:

The user is free to design any sort of e-2x2sin2x dx = ~3.83397.10-~
image for any problem to be solved. The

only limit is the imagination of the user.

This capability is a boon to the people that for k2 to 4 print image int k,k,k, $ e-h2 sin% dx.

use this AUTOMATED PROGRAMMER

System in that output cannot only be com- (e-"sin3x dx = 11.~~428~ls-4

puted, but designed to appeal to the eye of

the user, leaving little chance for improper

understanding of the meaning of the output jnage jnt (e-$sinr rx =

or lack of proper association of the output

data to the problem domain. 	 ~ ~ e - & ~ s i n %dx = I~,WIIU~I@-~

Another example of the power of this Fig. 4. (A) Program for evaluating a11 integral. (B) Output in two-dimensional format.

I DECEMBER 1989 	 SOFTWARE REVIEWS 1171

requires at1 IBM PC, XT, AT, PSI2, or
compatible; a hard disk; at least CGA.com.
patible graphics; 512-kilobyte memory; PC-
DOS; and a Fortran compiler. The math co-
processor for the PC is recommetlded, al-
though it is not required. The cost of the
system is $495.00 (7).

The program is delivered on four floppy
disks. It comes with a PC-size binder h r the
160-page user's manual. System installation
is handled automatically through a .BAT
batch file and is quite simple. Telephone
cotlsultation is provided for registered users.

The AUTOMATED PROGRAMMER
generates Fortran code that is compatible
with three Fortran compilers. The user must
supply either the Ryan-McFarland Fortran
(version 2. lo) , Lahey Fortran (version
2.22), or Microsoft Fortran (version 4.01).
There are some very minor differences in the
way each compiler translates the code pro-
duced by the AUTOMATED PKOGRAM-
MER, and these differetlces are explained it1
the documetltatiotl that accompatlies the
AUTOMATED PROGRAMMER.

Conclusion

As a tool for mathematically sophisticated
users in the scientific-engineerk-mathe-
matical domain, the AUTOMATED PRO-
GRAMMER is unlike any other product
that I have seen. It approa~hesthe ideal of
the executable specification, yet is simple
and easy to use. Although the developers
themselves state that the AUTOMATED
PROGRAMMER is not an automatic nu-
merical analyst or an automated problem
solver, if a problem can be posed in the
standard symbols and technical English of
the mathematical domain then it can be
solved by the AUTOMATED PROGRAM-
MER with considerablv less effort on the
part of the user. The low purchase price of
this system is easily recovered by the benefits
which it provides.~~motlgthese benefits are:

Increased reliability, attributed to in-
creased readability and understandability.

Increased maintaitlabilitv due t i the
lack of necessity of hand translation from the
problem-domain hrmulation to the solu-
tiotl-domain formulation.

Itlcreased productivity without the need
to become a computer professional as well as
a domain expert.

Savitlgsitl time due to the automatiotl
of what is now a hand-crafted labor-inten-
sive process.

REFERENCES AND NOTES

1. AUTOMATED PKOGKAMMER, KGK Automat-
ed Systems, 114 The Colony, Hartsdale, NY 10530.

2. The user must supply the compiler.
3. Actually, in the file created by the AUTOMATED

1'KOGRAMMER editor.
4. Currently only Fortran is supported, but other inter-

mediate forms may be available soon. The C interme-
diate form is in prototype and an Ada form is
planned.

5. Actually, it is the interpretation of the mathematical

expression by the AUTOMATED PROGRAMMEK
and demonstrates the "tightness"of the intermediate
code.

6 . F. IaoSacco,SIAM N e w s 1988, 9 (July 1988).
7. The program was tested on a Zenith 248 system

(80286 processor, AT class), with 640 kilobytes of
memory, no math coprocessor, a 20-megabyte hard
drive, and EGA-compatiblegraphics.

Chaos on Computers
Chaos appears in areas as diverse as popu-

lation dynamics, structural mechanics, and
economics. However, describing the chaotic
behavior of notllitlear systems is somewhat
like describing good food-there is no sub-
stitute for first-hand experience. Part of this
is itltritlsic: the study of chaos is the art of
teasing complex and varied responses from
simple equations. It is best done with nu-
merical methods, and the personal computer
is a good laboratory for exploration.

Chaos Demonstrations (version 1.0),
written for the IBM PC by J. C. Sprott, a
physics professor at the University of Wis-
consin, is designed for users of different
backgrounds, from the museum goer on
through to the advanced undergraduate lev-
el (1). The opening menu offers 18 different
physical or mathematical systems, each por-
traying a handful of fi~ndanlentalconcepts.
Explatlatory windows are provided for each
demonstration, along with options for plot-
ting different variables or changing the con-
stants it1 the equatiotls. The computation
can be stopped and restarted, and the
cctracMuntrack"function permits observing
trajectories either as single moving points or
as tracings. Some of the demonstrations
convert the dynamics into sound. Colors can
be changed to give the best retlditiotl while a
calculation is mltling.

Examples from physics, ecology, and pure
mathematics cover a lot of ground here. The
nonlinear forced pendulum, for instance,
takes us back to the playground swing. A
sinusoidal hrcitlg function is like the pump-
ing legs, coupling energy into the motion of
the swing. The pumping can either match
the natural frequency or work against it or
move the bob in more mysterious ways.
Normal views of the petldulurn are given,
but there are also phase-spaceplots (velocity
versus position) and the Poincark section
(velocity at x = 0 versus the velocity at the
previous x = 0 crossing). The right choice
of frecluetlcy and amplitude of kick offers a
concrete view of chaos.

Other entrees introduce new flavors of
chaos. The tlonlitlear oscillator (a variant of
Duffing's equation with cubic restoring

David F. Voss, Scirncr, 1333 I3 Street, NW, Washing
ton. DC 20005.

force) shows a progression from periodic
motion to period doubling, and the11 to
chaos-the limit cycles are colorful and
sharp on the higher resolution monitor.
Another selection illustrates the Van der Pol
oscillator, which has found application in
the study of electronic circuits, lasers, and
the pulsating stars called Cepheids. The
motion of planets under the gravitational
influence of stars is here too, from simple
Kepleriatl ellipses to wild orbital gyrations.
The motion around two fixed stars is arrest-
ing: the orderly progression of point masses
from a celestial starting gate quickly be-
comes an orbital free-for-all.Another demon-
stration shows the frantic dance of charged
particles in a magnetic quadn~poletrap.

The Lorenz attractor, the predator-prey
problem, and the logistic equation are all
treated well, as are the Matldelbrot and Julia
sets, the Weierstrass function, and the
Henon Map. The dessert menu includes
some programs that simply demonstrate the
beauty of fractal geometry. An odd bestiary
of fractal stlowflakes, ferns, and Sierpinksi
gaskets is provided along with a look at
diffiision-limited aggregation. The selec-
tions on random-walk diffi~siotl,noise, and
C~r~way'sgame of life, however, seem to
have been added as an afterthought, but
they are not unwelcome.

Although the explanatory screens are
helpful, and despite the above criticism of
cookbooks, the user would do well to refer
to one of the available texts (2). The soft-
ware is most effective with the higher resolu-
tion afforded by the EGA (enhanced graph-
ics adapter), but it will filnctiotl with a CGA
(computer graphics adapter). A math co-
processor is recommended, and the faster
80286 or 80386 computers are best for
handling the combined load of calculation
and graphics.

REFERENCES AND NOTES

1. Chaos Demonstrations, Wisc-Ware, 1210 West
Dayton Street, Madison, WI 53706, (800) 543-
3201 [$50; also availabledirectly from the author at
the University of Wisconsin, (608) 262-3595].
Minimum system requirements: IRM PCIXTIATI
PS-2 or compatible; 256 kilobytes of random-access
memory; one floppy drive; CGA or HGA graphics;
and MS-DOS (or PC-UOS) 2.0 or higher.

2. J . Thompson and H. Stewart, Nonlinear Dynnmicc
and Chaos (Wiley, New York, 1986); 13.-0.Peitgen
and 1'. Richter, T h e Urnuty qf 1:rnctnl.i (Springer-
Verlag, New York, 1986).

SCIENCE, VOI,. 246

