
From Formulas to Fortran to Results: The 
AUTOMATED PROGRAMMER System 

Cmmputers have expanded the scope of 
problems that scientists and engineers are 
willing to tackle. A complex system of equa-
tions that mav defv solution in closed form , , 
can often be put on a computer and solved 
numerically. Similarly, a more tractable 
problem &at might have been solved for 
only a few cases can be examined in detail. 

However, one may not feel that comput-
ers save a lot of work when the task of 
converting equations into computer code is 
actually confronted. For example, suppose 
you have developed a complex series of 
equations to model some system. You 
would like to be able to provide values for 
die variables in your model and to  execute 
the model with ;nough data to get a reason-
able feel for the results. 

Now consider what you must do. You 
must either turn your efforts over to a 
computer programmer to translate them 
into the commands that the computer can 
use, or you can do the computer program-
ming yourself. I11 the former case, you may 
work with the programmer, but unless you 
are conversant with programming terms and 
the language being used, you must egective-
ly trust that the translation being accom-
plished is correct, that is, that the program-
mer cannot only program, but also under-
stand enough mathematics to properly 
translate your formulas. 

In the latter case, you spend time and 
eKort programming (and, inevitably, debug-
ging) that could be spent on doing work in 
your own field. You may also have to learn 
more about a language or applications pro-
gram than you really care to know. In either 
case, "small" errors may creep in that may 
not be noticed until after many sets of results 
have been generated. Clearly, neither of 
these choices is optimal. 

What is needed is some automated mech-
anism to convert the "language" of the 
profession (in this case, mathematics) into 
something that can be understood by the 
computer. This idea is not new; in fact, it 
has a name--executable s~ecifications.UII-
fortunately, there have been few successes in 
this endeavor to date. 

This is precisely the reason that applica-
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tions programs were created. They allow the 
user who lacks a detailed knowledge of 
computer programming to use the comput-
er. The tool (the computer) can be used 
without having to be an expert in creating 
tools (programming). Applications pro-
grams that most people are familiar with 
include spreadsheets, word processors, data-
base managers, and such; examples in math-
ematics include equation-solving and sym-
bolic-manipulation programs. A successful 
applications program should interact with a 
user knowledgeable in the problem domain 
without requiring that the user also be a 
computer scientist. 

It can be argued that many applications 
programs do not meet this goal. Many users 
have dealt with an applications program that 
failed and then generated a cryptic message 
such as "error 32," or some other similarly 
meaningless remark, or  have used a tool that 
recluired more customizing than anticipated 
and that required taking a crash course in 
computer programming just to use the tool. 
However, it is in precisely this area that 
the AUTOMATED PROGRAMMER (1) 
makes some significant progress. As the 
documentation for the AUTOMATED 
PROGRAMMER system states, 

The AUTOMATED PROGRAMMER 
System attempts to utilize, wherever possi-
ble, language forms for problem specifica-
tion which are traditional, and are directly 
executable, thus minimizing the need for 
speciali7~k.dprogramming. 

System Description 

The AUTOMATED PROGRAMMER 
is a complete system for entering, interpret-
ing, compiling (Z), and running applications 
of mathematics typically encountered in sci-
ence and engineering. The AUTOMATEI) 
PROGRAMMER approaches the ideal of 
an executable snecification in the sense that 
it allows the user to write mathematical 
equations in their familiar form and then 
automaticallv trallslates them into a ma-
chine-executable form. In order to do this, 
the AUTOMATED PROGRAMMER au-
tomatically interprets the two-dimensional 
lines on the computer screen; for example, 

integration symbols and limits are interpret-
ed directly (3). An example of input is 
shown in Fig. 1. It then converts such input 
into a programming language for which a 
compiler exists (4). This intermediate form 
(programming language) is then compiled. 
At the user's option, the generated object 
module can be stored in a library (from 
which it can be accessible to a link editor) or 
it can be immediately linked and executed. 
In the latter case, all of the intermediate 
steps are hidden from the user and so it 
appears that the two-dimensional mathe-
matical text produces output. 

The intermediate form mentioned above 
was not designed to be accessible to the user 
as it represents the initial translation of the 
user input into a programming language. 
However, a user may request that the inter-
mediate step be saved. I did this for the 
formula in Fig. 1. and examined the Fortran 
code produced from the screen image (Fig. 
2). I was surprised at how "tightly" the 
automatically generated code was written; 
for example, no use is made of the infamous 
GOT0 statement so characteristic of a 
quickly written Fortran program (5 ) .  For 
routines such as integration and differentia-
tion, there are default options; however, this 
process can be overridden by the user and 
other routines supplied by the user can be 
called. 

Why is it important to have a tool like 
this? The fairly complex mathematical 
expression in Fig. 1 can be compared with 
its Fortran implementation in Fig. 2. Al-
though these two expressions of the mathe-
matical formula are in a sense equivalent, the 
first one is easily recognizable and under-
standable by anyone with minimal mathe-
matical sophistication, whereas the second 
one is more difficult to decipher unless the 
user is well trained in Fortran. 

This small example illustrates another rea-
son for using the AUTOMATED PRO-
GRAMMER; it is self-documenting. The 
technical English and mathematical symbols 
used in the AUTOMATED PROGKAM-
MER are directly understandable without 
external documentation. In contrast, the 
Fortran implementation would require a 
large set of documentation files to explicate 
its purpose and use. Additionally, for those 
few cases when explanatory information is 
needed, the AUTOMATED PROGKAM-
MER allows comments to be inserted. 

This useful tool has some rather distinc-
tive and useful features, a few of which I list 
here: 

Implied multiplication. 
Automatic dimensioning for arrays. 
Two-dimensional "image" output for-

matting. 
Integrated two-dimensional text editor. 
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Implicit variable declaration. 
Subscripts and superscripts indicated 

normally. 
Unparenthesized function arguments. 
Standard mathematical symbols (sum, 

product, integral, and so forth). 
1)ouble-precision floating point arith-

metic. 
Menu-driven commands (may be over-

ridden by keyboard commands). 
Keyboard template for special-symbol 

generation. 

Comments and Evaluations 

In an earlier review of this product, Lo-
Sacco (5)mentioned the need for a security 
block to be placed 011 the serial port. The 
purpose of the hardware copy-protection 
key (securityblock) was to prevent unautho-
rized copying of the AUTOMATED PRO-
GRAMMER. Since that time the developers 
of this product have removed the require-
ment for the protection key and no longer 
ship it with the product. 

However, two other capabilities that Lo-
Sacco laments as not being present in this 
otherwise excellent system are still in the 
development stage and have not been imple-
mented. These are an internal facility for 
graphing output automatically and a mecha-
nism for inputting complex variables. The 
first of these perceived shortcomings is not 

Directory: C:\IIPVROCS Input File: DBLINT Output File: DBLINT 

FOR n=3 by 3 to 9 and ~2 to n2-2 and I=2(2)n read r,r,Y. if $ ( I then 

-
- i t j  

cos y + sln 
( i t j lx  3 

and print a,I.n, tw else y = e 3  - 1 1 ~ ~ 1COS I t 1 - J ~JL#print p,y. end. 
1 - I I I  

Fig. 1. Double integral to be evaluated by the AUTOMATED PROGRAMMER (supplied as 
demonstration program DR1,INT). 

an actual problem, however, because the 
AUTOMATED PROGRAMMER easily 
can call external graphing routines that the 
user provides. The second problem has been 
recognized by the developers and is being 
addressed in a future release. 

The language used in the AUTOMATED 
PlCOGRAMMER is very powerful and flex-
ible, yet remains simple. There is a very 
short learning curve for the AUTOMATED 
PROGRAMMER, since the language that 
you use is basically guided by the 
"WYSNVYG" principle, that is, "what you 

CONTINUE 
CONTINUE 
CONTINUE 
CALL AP$ERR(O) 
STOP 

IMPLICIT REAL*8(T) 
COMMON /APABWDKI/ 1MA~~~,~0051,~0058,~0059,~0064,V0065,V0066,V0068 

x V ~ O ~ ~ , V ~ ~ ~ O , V O O ~ ~ , V O ~ ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~  
~xTERNALAP$POW AP$INTGR,ARCTAN, SIN,COS,LOGBASEB,FOO78 ,F0080 
-*8 ~$POW,~$INTGR,ARCTAN,SIN,CO~,LOGBASEB,VOO~~,VOO~~,VOO~~~V 
x0064,V0065,V0066,V0067(0:79,0:9),~0068,~0069,V0070,V0071,V0072,V00 
x73,V0074.V0075,V0076,F0078,F0080
CALL AP$INIT(-1) 
IF (IMAGEL .EQ. 0) THEN 
IMAGEL = 1 
CALL APSRINITlV0067.800~ 

END 
REAL*8 FUNCTION F0078(V0077) 
IMPLICIT REAL*8(T) 
REAL*8 V0077 
REAL*8 V0078 

. , 
ENDIF 
DO 12009 V0071 = 0.3000D1,0.9000D1,0.3000D1 
TL2015 = (AP$POW(V0071,0,2000D1)-0.2000Dl) 
TI2015 = 0.2000Dl 
DO 12015 V0072 = TI2015,TL2015,SIGN(1.ODO,TL2015-TI2015) 
DO 12018 YO073 = 0.2000D1,V0071,0.200OD1 
WRITE (O,'(lx,/,l~,\)')'~nter 3 values -->' 
READ (INT(5),*)V0064,V0065,VOO66 
IF (((V0065/V0071) .LT. V0073)) THEN 
V0067(NINT(V0072),NINT(V0073)) = AP$INTGR(VO059,0.2000Dl, 
~ 8 0 )  
WRITE (6,12087)V0072.V0073,V0071,V0067(N1NT(V0072),N1NT(V0073)) 

12087 FORMAT ~lX,G15.8,1X,G15.8,1X,Gl5.8,1X,G15.8,1X) 
ELSE 
V0070 = ((((AP$POW(VOO5l,VOO72)*AP$POW(VOO73,O.3000O1))-(AP$POW(SI 
xN(VOO73),0.2000D1)*COS(V0073)))+0.1000D1)-(ARCTAN(V0073)/(O.lOOODl 
x-ABS(VOO73)))) 
WRITE (6,12108)V0073,V0070 

12108 FORMAT (lX,G15.8,1X,G15.8,1X) 

COMMON /APABWDKI/ 1MAGEL,V0051,V0058,V0059,V0064,VOO65,VOO66,VOO68 
x.v0069.v0070.v0071,v0072,v0073,v0074,v0075,v0076,V0067 
EXTERNAT,APSPOW ,AP$INTGR,ARCl1RN,SIN,C0S,I~OGBASEB,k0080 
HEAL"8 AP$POW,AP$INTCR,ARCl'AN SIN COS LOGBASER ~0051,V0058,V0059,V 

rnn64 vnn6~.vnn~~.von67,0:79,0I91. ~ ~ ~ G ~ , ~ o o ~ ~ , ~ ~ o ~ o , ~ o o ~ ~ , v o o ~ ~ , v o o  

see is what you get." If the mathematical 
formula is presented correctly on the termi-
nal screen, then it is right in the language of 
the AUTOMATED PROGRAMMER. 

One of the features of the AUTOMAT-
ED PROGRAMMER System that I found 
most useful was the ability to describe the 
output format with an image mechanism. 
This capabilityis best illustrated by a11 exarn-
ple; consider Fig. 3A, which is a program to 
calculate some current flow in an electrical 
circuit, given the voltage and resistance of 
each resistor. Note that the print command 

YO078 = 0.0 
YO068 = V0077 
T2044 = 0.0 
DO 12044 V0074 = ANINT(O.l00001),V0071 
T2043 = 0.0 
DO 12043 V0075 = ANINT(0.100001),V0071 
T2043 = T2043+(COS(V0069)+(AP$POW(SIN(V0068),(~0074+~0075))/((V007 
x4+V0075)*V0068))) 

12043 CONTINUE 
T2044 = T2044+T2043 

12044 CONTINUE 
T2074 = 1.0 
DO 12074 V0076 = ANINT(O.lOOOOl),(AP$POW(V0071,0.2000D1)-V0072) 
T2074 = ~2074*((AP$PO~(~0073,~0076)/~0076)+SQ~~(AP$POW((V0068+V006 
xg),(-V0076))))

12074 CONTINUE 
V0078 = ( (  (AP$POW(V0051,(-(V0066*V0068)) )/(V0069+V0071) )*~2044)/(( 
X(LOGBA~EB(VOO~~,VOO~~)+ARCTAN((AP$POW(VOO~~,VOO~~)/A~POW(V~~~~,(V 
x0071-0.1000~1)))))/(SQRT((V0072/(V0073+(V0065/V0069))))+((V0072+(V 
xOO69/VOO73))/VOO68)))+T2074)) 
F0078 = V0078 

10078 CONTINUE 
RETURN 
EN0 
REAL.8 FUNCTION F0080(V0079) 
IMPLICIT REAL*8(T) 
-*8 V0079 
REAL*8 V0080 

COMMON /APABWDKI/ I M A G E L , v ~ ~ ~ ~ , v ~ ~ ~ ~ , v O O ~ ~ , V O O ~ ~ , V ~ ~ ~ ~ , V O O ~ ~ , V O O ~ ~  
~ , V O ~ ~ ~ , V O O ~ O , V O O ~ ~ , V ~ ~ ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~ , V O O ~ ~  
EXTERNAL AP$POW,AP$INTGR,ARCTAN,SIN,COS,LOGBRSEB,FOO~~ 
REAL*8 AP$POW,AP$INTGR,ARCTAN,SIN,COS,LOGBASEB,VOO~~,VOO~~,VOO~~,V 

x0064,V0065,V0066,V0067(0:79,0:9),V0068,~0069,V0070,V0071,V0072,V00 
x73,V0074,V0075,V0076,F0078 
V0080 = 0.0 
vnnfiq = v n n 7 4.-"--
V0080 = A P $ I N T G R ( V O O ~ ~ , O . ~ O O O O ~ , S Q R T ( ( V ~ ~ ~ ~ / V ~ ~ ~ ~ ) ) , F ~ ~ ~ ~ )  
FOO8O = V0080 

10080 CONTINUE 
RETURN 

x,V0069,V0070 
REAL*8 V0051 
x0069,V0070,V0071,V0072,V00 
DATA V0051/0.2718281828459 

Fig. 2. Fortran code produced by the AUTOMATED PROGRAMMER for the double integral in Fig. 1. 
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A 	 B 
Directory: C:WPWROCS 	Input File: ClRWIlZ Output File: Circuit calculations - current through resistors when voltage = 5 .00  

Resistor Ohms Amps 

1 .  6 .30  0 . 6 6  
2 .  3 .40  0 . 2 4blom 3 .  9 . 1 0  0 .09  
4 .  2 . 5 0  0 . 3 3  

5 UOLTS 


~ ' 1 1 1 1 1 1 1 y 

fomat head Resistor Ohns Ln s 

fornat data &,I WiEJ El&: 

read v,r1,r2,r3,r4~ 	&. il= % , U=Ril, i2= $- ,i3=\ ,i4=$ . 
"2 r3. r4 

print inage I,rl,il,v,r2,i2,r3,~3,q,i4~ 

print 'Circuit calculations - current through resistors when voltage = ' ~6.2). references to A (without any subscript) will 
skip I, print fornat head. for krl to 4 print foruat data k,rk,ik, be treated as the matrix A. Similarly, the 
Fig. 3. (A) Program for calculating currents in a11electrical network. (6)Output for a given problem. vector Vi in its unsubscripted form V will be 

treated as the vector V. 
This feature allows a user to write such 

includes an image which describes how the feature is shown in Fig. 4A, which shows a things as A + B to mean the matrix sum of 
output should appear on the screen or print- simple "program" to compute a discrete the matrix A and the matrix B. Combining 
er. It includes a pictorial representation of range of integrals. In an ordinary computa- this with the implied and alternative forms 
the circuit diagram. Without this capability, tional system, the user might expect to see for multiplication that the AUTOMATED 
as in an ordinary computational system for a the output presented in a tabular form with PROGRAMMER supplies, the symbols AB 
problem of this nature, the output may perhaps some label describing what these or A*B or A .  B all mean matrix multiplica- 
appear as a list of the resistor numbers values mean. An example of the output of tion. Furthermore, if s is some scalar value, 
showing their value in ohms and their com- the "program" is shown in Fig. 4B. Note then A + s adds s to each element in A. 
puted amperages in amperes when given the that labels are not necessary because the Built-in operations for matrices are similarly 
initial value of the voltage. image capability allows the user to see the powerful, such as A', which yields the ma- 

This tabular form of output is usually neat successive values of the discrete range dis- trix transpose of A, and A-', which yields 
and well labeled. However, when the output played in the output in their respective the matrix inverse of A. Also, writing det A 
is given in this form, there remains a transla- positions within the formula as well as the yields the determinant of A. 
tion process; namely, associating the result- computed value; the output is two-dimen- I have only mentioned a few of the many 
ant values with the proper resistors on the sional, visually appealing, and meaningful. very powerful features in the AUTOMAT- 
circuit diagram. The output from this pro- Another powerful feature of the AUTO- ED PROGRAMMER System. The user 
gram is shown in Fig. 3B. The top portion MATED PROGRAMMER is complete will find that the transformation of the 
of this output is the typical display that a support for vector and matrix arithmetic. solution to a problem into something that is 
user might expect to see from an "ordinary" Any one-dimensional array can be treated as machine processable need no longer be a 
computation. Compare and contrast this a vector; any two-dimensional array can be difficult or error-prone operation. 
portion of the output with the bottom treated as a matrix. For example, if an array 
portion of the same output. It displays the is identified as Aij in a formula, then the 
same data computed by the same program, AUTOMATED PROGRAMMER will System Description 
but this time the image feature is used to automatically dimension it as a two-dimen- 
show precisely which value is associated sional array as noted earlier. Subsequent The AUTOMATED PROGRAMMER 
with which resistor directly on the diagram. 
It is readily apparent which style of output is A 
more readable and understandable. Directory: C : W P W R N S  Input File: IllllCET Output File: 

The user is free to design any sort of e-2x2sin2x dx = ~3.83397.10-~ 
image for any problem to be solved. The 

only limit is the imagination of the user. 

This capability is a boon to the people that for k2 to 4 print image int k,k,k, $ e-h2 sin% dx. 

use this AUTOMATED PROGRAMMER 

System in that output cannot only be com- (e-"sin3x dx = 11.~~428~ls-4 

puted, but designed to appeal to the eye of 

the user, leaving little chance for improper 

understanding of the meaning of the output jnage jnt (e-$sinr rx = 

or lack of proper association of the output 

data to the problem domain. 	 ~ ~ e - & ~ s i n %dx = I~,WIIU~I@-~ 

Another example of the power of this Fig. 4. (A) Program for evaluating a11 integral. (B) Output in two-dimensional format. 
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requires at1 IBM PC, XT, AT, PSI2, or 
compatible; a hard disk; at least CGA.com. 
patible graphics; 512-kilobyte memory; PC-
DOS; and a Fortran compiler. The math co-
processor for the PC is recommetlded, al-
though it is not required. The cost of the 
system is $495.00 (7). 

The program is delivered on four floppy 
disks. It comes with a PC-size binder h r  the 
160-page user's manual. System installation 
is handled automatically through a .BAT 
batch file and is quite simple. Telephone 
cotlsultation is provided for registered users. 

The AUTOMATED PROGRAMMER 
generates Fortran code that is compatible 
with three Fortran compilers. The user must 
supply either the Ryan-McFarland Fortran 
(version 2. lo) ,  Lahey Fortran (version 
2.22), or Microsoft Fortran (version 4.01). 
There are some very minor differences in the 
way each compiler translates the code pro-
duced by the AUTOMATED PKOGRAM-
MER, and these differetlces are explained it1 
the documetltatiotl that accompatlies the 
AUTOMATED PROGRAMMER. 

Conclusion 

As a tool for mathematically sophisticated 
users in the scientific-engineerk-mathe-
matical domain, the AUTOMATED PRO-
GRAMMER is unlike any other product 
that I have seen. It approa~hesthe ideal of 
the executable specification, yet is simple 
and easy to use. Although the developers 
themselves state that the AUTOMATED 
PROGRAMMER is not an automatic nu-
merical analyst or an automated problem 
solver, if a problem can be posed in the 
standard symbols and technical English of 
the mathematical domain then it can be 
solved by the AUTOMATED PROGRAM-
MER with considerablv less effort on the 
part of the user. The low purchase price of 
this system is easily recovered by the benefits 
which it provides.~~motlgthese benefits are: 

Increased reliability, attributed to in-
creased readability and understandability. 

Increased maintaitlabilitv due t i  the 
lack of necessity of hand translation from the 
problem-domain hrmulation to the solu-
tiotl-domain formulation. 

Itlcreased productivity without the need 
to become a computer professional as well as 
a domain expert. 

Savitlgsitl time due to the automatiotl 
of what is now a hand-crafted labor-inten-
sive process. 

REFERENCES AND NOTES 

1. AUTOMATED PKOGKAMMER, KGK Automat-
ed Systems, 114 The Colony, Hartsdale, NY 10530. 

2. The user must supply the compiler. 
3. Actually, in the file created by the AUTOMATED 

1'KOGRAMMER editor. 
4. Currently only Fortran is supported, but other inter-

mediate forms may be available soon. The C interme-
diate form is in prototype and an Ada form is 
planned. 

5. Actually, it is the interpretation of the mathematical 

expression by the AUTOMATED PROGRAMMEK 
and demonstrates the "tightness"of the intermediate 
code. 

6 .  F. IaoSacco,SIAM N e w s  1988, 9 (July 1988). 
7. The program was tested on a Zenith 248 system 

(80286 processor, AT class), with 640 kilobytes of 
memory, no math coprocessor, a 20-megabyte hard 
drive, and EGA-compatiblegraphics. 

Chaos on Computers 
Chaos appears in areas as diverse as popu-

lation dynamics, structural mechanics, and 
economics. However, describing the chaotic 
behavior of notllitlear systems is somewhat 
like describing good food-there is no sub-
stitute for first-hand experience. Part of this 
is itltritlsic: the study of chaos is the art of 
teasing complex and varied responses from 
simple equations. It is best done with nu-
merical methods, and the personal computer 
is a good laboratory for exploration. 

Chaos Demonstrations (version 1.0), 
written for the IBM PC by J. C. Sprott, a 
physics professor at the University of Wis-
consin, is designed for users of different 
backgrounds, from the museum goer on 
through to the advanced undergraduate lev-
el (1). The opening menu offers 18 different 
physical or mathematical systems, each por-
traying a handful of fi~ndanlentalconcepts. 
Explatlatory windows are provided for each 
demonstration, along with options for plot-
ting different variables or changing the con-
stants it1 the equatiotls. The computation 
can be stopped and restarted, and the 
cctracMuntrack"function permits observing 
trajectories either as single moving points or 
as tracings. Some of the demonstrations 
convert the dynamics into sound. Colors can 
be changed to give the best retlditiotl while a 
calculation is mltling. 

Examples from physics, ecology, and pure 
mathematics cover a lot of ground here. The 
nonlinear forced pendulum, for instance, 
takes us back to the playground swing. A 
sinusoidal hrcitlg function is like the pump-
ing legs, coupling energy into the motion of 
the swing. The pumping can either match 
the natural frequency or work against it or 
move the bob in more mysterious ways. 
Normal views of the petldulurn are given, 
but there are also phase-spaceplots (velocity 
versus position) and the Poincark section 
(velocity at x = 0 versus the velocity at the 
previous x = 0 crossing). The right choice 
of frecluetlcy and amplitude of kick offers a 
concrete view of chaos. 

Other entrees introduce new flavors of 
chaos. The tlonlitlear oscillator (a variant of 
Duffing's equation with cubic restoring 

David F. Voss, Scirncr, 1333 I3 Street, NW, Washing 
ton. DC 20005. 

force) shows a progression from periodic 
motion to period doubling, and the11 to 
chaos-the limit cycles are colorful and 
sharp on the higher resolution monitor. 
Another selection illustrates the Van der Pol 
oscillator, which has found application in 
the study of electronic circuits, lasers, and 
the pulsating stars called Cepheids. The 
motion of planets under the gravitational 
influence of stars is here too, from simple 
Kepleriatl ellipses to wild orbital gyrations. 
The motion around two fixed stars is arrest-
ing: the orderly progression of point masses 
from a celestial starting gate quickly be-
comes an orbital free-for-all.Another demon-
stration shows the frantic dance of charged 
particles in a magnetic quadn~poletrap. 

The Lorenz attractor, the predator-prey 
problem, and the logistic equation are all 
treated well, as are the Matldelbrot and Julia 
sets, the Weierstrass function, and the 
Henon Map. The dessert menu includes 
some programs that simply demonstrate the 
beauty of fractal geometry. An odd bestiary 
of fractal stlowflakes, ferns, and Sierpinksi 
gaskets is provided along with a look at 
diffiision-limited aggregation. The selec-
tions on random-walk diffi~siotl,noise, and 
C~r~way'sgame of life, however, seem to 
have been added as an afterthought, but 
they are not unwelcome. 

Although the explanatory screens are 
helpful, and despite the above criticism of 
cookbooks, the user would do well to refer 
to one of the available texts (2). The soft-
ware is most effective with the higher resolu-
tion afforded by the EGA (enhanced graph-
ics adapter), but it will filnctiotl with a CGA 
(computer graphics adapter). A math co-
processor is recommended, and the faster 
80286 or 80386 computers are best for 
handling the combined load of calculation 
and graphics. 
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and Chaos (Wiley, New York, 1986); 13.-0.Peitgen 
and 1'. Richter, T h e  Urnuty qf 1:rnctnl.i (Springer-
Verlag, New York, 1986). 

SCIENCE, VOI,. 246 


