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comparable frequencies of precise homolo- ers for PCR were synthesized on an Applied Biosys- and after 5 days the concentration was increased to 
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nisms with a microscope. 
In situ nucleic acid hybridization with 

isotopically or fluorescently labeled probes is 
widely used for the intracellular localization 
and quantitation of RNAs and genes (1). 
Isotopically labeled oligodeoxynudeotides 
bind to the rRNAs of intact, fixed cells and, 
together with autoradiography, can be used 

for the phylogenetic identification of orga- 
nisms (2). However, microautoradiography 
of such in situ hybridization probes requires 
long exposure to photographic emulsions. 
Moreover, the useM resolution is no less 
than about 1 pm because of the scatter of 
radioactive disintegrations. The abundance 
of cellular ribosomes, lo4 to loS per cell in 

Fig. 1. In situ hybridization of formaldehyde-fixed cells with fluorescently labeled oligcdeoxynucleo- 
tides complementary to 1 6 s  RNA sequences (7, 8). (A to E) Saccharomyces cerevisiae and Bacillus 
megatm'um. (F to H )  Proteuc vulgaris and son-killer bacterium. (A, D, and F) Phase-contrast microscopy. 
Epifluorescence microscopy shows the binding of the fluorescein-labeled universal probe (B), the X- 
rhodamine-labeled eukaryote probe (C), the fluorescein-labeled eukaryote probe (E), the X-rhodamine- 
labeled eubacteria probe (G) (also in E), and the fluorescein-labeled son-killer probe (H). 

rapidly growing bacteria, suggested that the 
binding of phylogenetic group-specific 
probes for the rRNAs might be viewed 
directly in the fluorescence microscope. 

One set of fluorescent probes that we 
developed for single-cell analysis consists of 
oligodeoxynudeotides that distinguish the 
three primary lines of evolutionary descent: 
the eubacteria, the eukaryotes, and the ar- 
chaebaaeria (3). The probes, 17  to 34 nu- 
deotides in length, are the complements of 
sequences that are characteristic of known 
16s rRNA sequences of each of the respec- 
tive lineages (2, 4). The oligodeoxynucleo- 
tides were synthesized (Applied Biosystems 
DNA synthesizer), and in the last stage an 
aminoethyl phosphate linker (5) was at- 
tached to the 5' end. The 5'-aminoethyl 
oligodeoxynucleotides were then coupled to 
fluors and purified (6). 

Cells fixed on microscope slides were hy- 
bridized in situ as described (2) with some 
modifications (7). Phase-contrast and epi- 
fluorescence microscopy (8) were used to 
show (Fig. 1, A to E) the specificities of the 
fluorescent probes that identify the primary 
kingdoms. A mixture of Bacillus megaterium 
(a eubacterium) and Saccharomyces cerevisiae 
(a eukaryote) was hybridized with a fluores- 
cein-labeled "universaln probe (that binds to 
the rRNA of all organisms that we have 
examined) and, simultaneously, with an X- 
rhodamine+labeled probe specific for eu- 
karyotes. Phase contrast microscopy (Fig. 
1A) reveals both cell types, as does epifluo- 
rescence microscopy with a fluorescein filter 
set (Fig. lB), because the universal probe 
binds to the rRNA of all cell types present. 
In the same field, the eukaryotes are exdu- 
sively identified with epifluorescence filters 
specific for the excitation and emission 
wavelengths of rhodamine (Fig. 1C). In a 
similar experiment, but with rhodamine- 
labeled eubaaeria and fluorescein-labeled 
eukaryote probes, we used double exposure 
to display both fluorescent dyes simulta- 
neously (Fig. 1, D and E). In other experi- 
ments (not shown) the specified archaebac- 
teria probe was similarly efficient in distin- 
guishing an archaebacterium (Methanosarcina 
acetivmans) from eubacteria (B. megaterium 
and Proteus vulgaris) and from a eukaryote 
(S. cerevisiae) . 

Oligodeoxynudeotide probes also can 
distinguish dosely related phylogenetic 
groups. For example, a probe was developed 
to identify a bacterium dubbed "son-killer" 
that is found in association with the parasit- 
oid wasp Nasonia vitripennis (9). A mixture of 
son-killer and its dosest known relative, 
Proteus vulgaris (lo), was hybridized simulta- 
neously with a rhodamine-labeled eubacteria 
probe and a fluorescein-labeled probe specif- 
ic for son-killer (lo), then viewed by phase 
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contrast (Fig. 1F) or by fluorescence at 
wavelengths-that discriminate between the 
fluors (Fig. 1, G and H) .  These avo closely 
related organisms (92% similarity in 16s 
rRNA sequences), differing morphological- 
ly only slightly in size and shape, are easily 
distinguished with the son-killer probe even 
where denselv packed on the slide. , L 

The sequential application of a panel of 
fluorescent probes, with incrementally finer 
specificities, could provide phylogenetic 
identification without resort to direct se- 
quence analysis of the rRNAs or their genes. 
The binding of a universal probe (Fig. 1B) is 
a positive control for the presence of detect- 
able target sequences; an oligonucleotide 
that is not com~lementan7 to the rRNA 
serves as a control for non-specific binding 
(below). This staining approach to phyloge- 
netic analysis should be particularlv useful in 
the stud? of natural microbial populations, 
where unknown, often uncultivatable orga- 
nisms are routinely encountered. A phyloge- 
netic characterization of an organism can " 
provide perspective on its biochemical na- 
ture because the organism is expected to 
share properties common to its phylogenetic 
group. 

The rRNA content of microorganisms is 
proportional to growth rate over a wide 
range (11). Therefore, the amount of a 
fluorescent, rRNA-targeted probe that 
binds to cells should reflect growth rates and 
metabolic activities. We auaitified bv means 
of microfluorimetry the binding of the fluo- 
rescent, universal probe to Eschevichia coli 
grown in media that support different 
growth rates (12). Background fluorescence 

resulting from nonspecific oligonucleotide 
binding. or autofluorescence of cells was 

u 

assessed with the same cultures by hybridiz- 
ing cells with a fluorescently labeled comple- 
ment of the universal probe (2). This latter 
probe should not bind specifically because it 
is not complementan to the rRNA of E .  
coli. 

The fluorescence intensity of single cells 
due to hybridization with the universal 
probe varies linearly with growth rate in 
parallel to measured and known values (11) 
for RNA per cell and for ratios of RNA to 
DNA content (Fig. 2). Only low nonspecif- 
ic fluorescence is observed in cells grown at 
each of the different rates and exposed to the 
probe that is not complementary to the 
rRNA. Thus, from a calibration of the ex- 
tent of probe binding as a function of 
growth rate for a particular organism, the 
growth rate of that organism can be estimat- 
ed in natural populations. 

Potential problems with the use of 
fluorescently labeled probes include high 
autofluorescent background and low stain- 
ing intensity of target cells. Potential solu- 
tions to autofluorescence include the bleach- 
ing of fixed cells before hybridization or the 
use of fluors with emission wavelengths that 
do not coincide with the autofluorescence. 
Weak fluorescence intensitv could result 
from a poor permeability of fixed cells to the 
oligonucleotide probes or to low cellular 
ribosome contents, a significant concern in 
slowly growing natural populations. All cell 
types that we have examined, including 
thick-walled Gram-positive bacteria and 
yeast spores, and a variety of Gram-negative 

Fig. 2. Fluorescence inten- 300 - 
sity per cell as a function 
of growth rate. Fluores- 
cence intensity per cell re- 
sulting from the binding " 
of the universal rRNA 3 
probe (@) or the nonspe- k 200 - 
cific control probe ( 0  0 ; measured RNA per cell o E: I 0 
(A), and RNA to  DNA E YE ratios (A) are plotted as a 3 z 
function of growth rate = .$ loo - 
(12). The ratios of RNA to 
DNA for E,  coli strain Blr 
were obtained from (11). 
Fluorescence intensity per 
cell was measured with an 
MRC-Lasersharp fluores- 0 -r 

w 
cence scanning confocal mi- 0 1 2 
croscope (MRC500, Bio- Growth rate (hour-') 
Rad), in conjunction with 
an Optiphot biological mi- 
croscope (Nikon). An argon laser operating at 455 nm was used as the excitation source. The raster size of 
the video image was 768 by 512 pixels. Mean pixel intensity per cell at each growth rate was determined 
from measurements on 25 individual cells in five randomly chosen microscopic fields. Values were 
reproducible from cell to cell and experiment to experiment. Standard deviations for fluorescence per ceU 
due to binding of the universal rRNA probe at each growth rate were, respectively: 10.6, 0.29 hour-'; 
16.6,0.7 hour-'; 15.9,0.85 hour-'; 11.8,1.22 hour-'; 13.7, 1.58 hour-'. The standard MRC500 image 
analysis s o h a r e  was used. Concentrations of RNA were determined by the orcinol method (15) and 
concentrations of cells by Petroff-Hausser counter. 

bacteria and eukanotic tissues, seem freely 
permeable to these short oligonucleotides 
after fixation. However, probes that are a 
few hundred nucleotides in length do not 
efficiently enter some types of fixed cells 
unless the cells are mildly digested with 
Iysozyme or proteinase K (13). Weak fluo- 
rescence in organisms containing relatively 
few ribosomes should be enhanced by the 
use of multiple probes or oligodeoxynucleo- 
tides labeled with multiple fluors. 
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Nucleotides in Yeast tRNAPhe Required for the 
Specific Recognition by Its Cognate Synthetase 

JEFFREY R. SAMPSON, ANTHONY B. DIRENZO, LINDA S. BEHLEN, 
OLKE C. UHLENBECIC 

An analysis of the aminoacylation kinetics of unmodified yeast tRNAPhe mutants 
revealed that five single-stranded nucleotides are important for its recognition by yeast 
phenylalanyl-tRNA synthetase, provided they were positioned correctly in a properly 
folded tRNA structure. When four other tRNAs were changed to have these five 
nucleotides, they became near-normal substrates for the enzyme. 

T HE ACCURATE INCORPORATION OF 

amino acids into proteins depends 
on the correct aminoacylation of 

each tRNA by its cognate aminoacyl-tRNA 
synthetase. How each synthetase recognizes 
its set of iso-acceptor tRNAs among all of 
the tRNAs in the cell remains urhown.  We 
have used a biochemical approach to identi- 
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fy nucleotides in yeast tRNAPhe (Fig. 1A) 
that are required for its specific recognition 
and subsequent aminoacylation by yeast 
Phe-tRNA synthetase (FRS). Anticodon 
loop replacement experiments established 
that substitution of any one of the anticodon 
nucleotides G34, A35, or A36 resulted in a 3- 
to 12-fold reduction of the rate of amino- 
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acylation with purified FRS (1). When yeast 
tRNATYr was modified to have a Phe antico- 
don by changing +35+ A35, it became a 
much better substrate for misacylation by 
FRS, yet still aminoacylated poorly when 
compared to tRNAPhe (2). These data sug- 
gested that although FRS, like many other 
synthetases (3) ,  requires the anticodon for 
the specific recognition of ~RNA'~", other 
features in tRNAPhe must contribute as 
well. A method that allours substitution of 
nucleotides elsewhere in the se- 
quence involves in vitro trailscription by T 7  
RNA polymerase (4). Although the wild- 
type tRl\APhe transcript lacked all of the 
modified nucleotides normally found in 
yeast tRNAPhe, it was a good substrate for 
FRS, thus allowing extensive structure-func- 

De arunent of Chemistry and B~ochemistry, University 
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Fig. 1. Three tRNAs [(A) yeast tE%"he, (0) S. pornbe t w h " ,  and (C) wheat germ tRNAPhe] that are active substrates for yeast FRS. The circled 
nucleotides are conserved in all cytoplasmic yeast tRNAs and the nucleotides in S. pombe tRNAPhe and wheat germ tRNAPhe that differ from yeast tRNAPhe 
are shaded. S. potnbe ~ R N A ~ ~ ~  aminoaqlates with the same kc,, and K,,, as yeast tRNAPhe (7),  nhcreas wheat germ tRNAPhe has the same kc,, and 1.3-fold 
lower h;, (6). 
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