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Dendrites, Viscous Fingers, and the Theory of 
Pattern Formation 

There has emerged recently a new theoretical picture of 
the way in which patterns are formed in dendritic crystal 
growth and in the closely analogous phenomenon of 
viscous fingering in fluids. Some interesting questions 
that arise in connection with this theory include: How 
broad is its range of validity? How do we understand 
dynamic stability in systems of this kind? What is the 
origin of sidebranches? Can weak noise, or even micro- 
scopic thermal fluctuations, play a role in determining the 
macroscopic features of these systems? 

T HE THEORY OF PAlTERN FORMATION IN NONLINEAR DISSI- 

pative systems has taken some surprising turns in the last 
several years. One of the most interesting developments has 

been the discovery that weak capillary forces act as singular pertur- 

bations which lead to beautifully delicate and very nearly identical 
selection mechanisms both in dendritic crystal growth and in the 
fingering patterns which emerge when a viscous fluid is displaced by 
a less viscous one. It now appears likely that important progress has 
been made, but pieces of the puzzle still seem to be missing. 

For most of us, dendritic crystal growth brings to mind pictures 
of snowflakes. Materials scientists may think also about metallurgical 
microstructures, which provide very practical reasons for research in 
this field; but it is the snowflake that most quickly captures our 
imaginations. Kepler's 1611 monograph "On the Six-Cornered 
Snowflake" ( I )  is often cited as the first published work in which 
morphogenesis-the spontaneous emergence of patterns in na- 
ture-was treated as a scientific rather than a theological topic. At a 
time in which the existence of atoms was merely speculation, Kepler 
mused about hexagonal packings of spheres, but concluded that the 
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problem was beyond his reach. Its solution would have to be left for 
future generations. In fact, scientists have waited more than three 
centuries before finding much hint of an answer to the question that 
Kepler posed. 

One part of the answer, of course, is the understanding of 
crystalline symmetries and their relation to atomic structure. Anoth- 
er part is our modem statistical theory of the fluctuations and 
dissipative processes that ultimately govern pattern formation. But it 
is only in very recent years that we have begun to understand how 
these irreversible pnxesses can amplify weak anisotropies and even 
very small noisy fluctuations in such a way as to produce intricate 
patterns in ostensibly featureless systems. 

In the pattern-forming systems of interest here, we are dealing 
with dynamic pmesses, not just molecular structures or macroscop- 
ic forms. Unlike D'Arcy Thompson (2) (who could describe and 
measure but not explain) or Nakaya (3) (who produced one of the 
world's most complete and beautiful catalogues of snowflakes), we 
now have the experimental and analytic tools that we need to find 
out, for example, how the growth rate of a dendrite and the spacing 
between its sidebranches are determined by the temperature and 
composition of the solidifying substance. We may even have most of 
the tools-if not yet the infonnatio-that we need to understand 
the growth of biological forms. Ofthe analytic tools, the two which 
seem most essential are the theory of morphological instabilities in 
systems far from equilibrium, and the computer, which enables us to 
explore quantitatively the nonlinear behavior of such systems. [For 
both of these we must pay tribute to the remarkable insights of 
Turing (4).]  The work to be described here arises largely from the 
modem interplay between physical insight, mathematical analysis, 
and numerical methods. 

In this article, I shall review briefly the recent history of the 
dendrite (5) and viscous fingering problems and shall attempt to 
communicate at least the general flavor of recent developments, 
specifically, the so-called "solvability theory" (6). As an illustration 
of this theory, I shall describe Couder's remarkable bubble effect, 
which, by seemingly turning fingers into dendrites, provides an 
excellent illustration of the singular perturbation in amon. I shall 
condude with some conjectures about the range of validity of the 
solvability theory and its implications for our understanding of more 
complex dynamical effects such as sidebranching. 

Dendritic Solidification of a Pure Substance 
In the conventional thermodynamic model of the solidification of 

a pure substance from its melt, the fundamental rate-controllii 
mechanism is the diffusion of latent heat away from the interface 
between the liquid and solid phases. The latent heat that is released 
in the transformation warms the material in the neighborhood of the 
solidification front and must be removed before further solidi6ca- 
tion can take place. This is a morphologically unstable process which 
characteristically produces dendrites, that is, treelike or snowflake- 
like structures. In a typical sequence of events, an initially featureless 
crystalline seed immersed in an undercooled melt develops bulges in 
crystallographically preferred directions. The bulges grow into 
needleshaped arms whose tips move outward at constant speed. 
These primary arms are unstable against sidebranching and the 
sidebranches, in turn, are unstable against t k h e r  sidebranching, so 
that each outward growing tip leaves behind itself a complicated 
dendritic structure like that shown in Fig. 1. 

The dimensionless thermal diffusion field in this model for 
convenience is chosen to be 

where T, is the temperature of the liquid infinitely far from the 
growing solid, and the ratio of the latent heat L to the specific heat c 
is an appropriate unit of undercooling. The field u satisfies the 
diffusion equation 

where D is the thermal diffusion constant, which can be taken to be 
the same in both liquid and solid phases. The remaining ingredients 
of the model are the boundary conditions imposed at the solidifica- 
tion front. First, there is heat conservation: 

V" = - [rn.Vu] (3) 

where A is the unit normal directed outward from the solid, v, is the 
normal growth velocity, and the square brackets denote the disconti- 
nuity of the flux across the boundary. In these units, the left-hand 
side of Eq. 3 is the rate at which latent heat is generated at the 
boundary and the right-hand side is the rate at which it is being 
diffused away. The physically more interesting boundary condition 
is the statement of local thermodynamic equilibrium, which deter- 
mines the temperature us at the two-phase interface: 

Fig. 1. Primary dendrite of succinoniaile (a transparent plastic crystal with 
cubic symmcay) growing in its undercooled melt. Note the smooth 
paraboloidal tip, the secondary sidebranching oscillations emerging behind 
the tip, and the beginnings of tertiary saucnue on the well-developed 
secondaries. (Photograph courtesy of M. E. Glicksman.) 

where 

and TM is the melting temperature. A is the dimensionless under- 
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Fig. 2. Schematic illustration of a Hele-Shaw experiment adapted from a 
photograph by J. Maher. The inviscid fluid is entering from the left and the 
viscous fluid (shown shaded) is being pushed to the right. The motion is 
effectively two-dimensional, constrained by narrowly separated glass plates in 
the plane of the figure. As shown here, the flow takes place in a channel of 
width 2W. The initially irregular pattern formed by the instability of the 
interface between the two fluids is developing into a single finger of width 
2X w. 

cooling, a measure of the driving force for the processes that we are 
considering. The second term on the right-hand side of Eq. 4 is the 
Gibbs-Thomson correction for the melting temperature at a curved 
surface: K is the sum of the principal curvatures and do = ~ C T ~ I L ~  is 
a length, ordinarily of order angstroms, which is proportional to the 
solid-liquid surface tension y. The latter quantity and, accordingly, 
do may be functions of the angle of orientation of the interface 
relative to the axes of symmetry of the crystal. In particular, for a 
cubic crystal in the (1, 0, 0) plane, do is proportional to (1  - acos 
40), where 0 is the angle just mentioned and a is a measure of the 
strength of the anisotrophy. 

Viscous Fingering 
The hydrodynamic analog of dendritic solidification is the finger- 

ing instability that occurs when one causes an inviscid fluid to drive 
a viscous one through a porous medium. The two-dimensional 
version of this situation (7) is a Hele-Shaw cell in which the two 
immiscible fluids are constrained to move between narrowly separat- 
ed parallel plates. The configuration is shown schematically in Fig. 
2. The invading inviscid fluid can be visualized as playing the role of 
the growing solid, and the more viscous fluid that is being pushed 
away is like the melt. The analog of the thermal field u is the pressure 
P, which can be taken to be constant in the "solid" and to satisfy 
Laplace's equation in the "melt." Here is the main difference 
between fingering and solidification; the Laplace equation is not the 
difision equation. The velocity of the viscous fluid in the porous 
medium is given by Darcy's law to be simply proportional to -VP; 
thus the expression for the velocity of the interface between the two 
fluids is precisely the analog of the conservation law, Eq. 3. Finally, 
the interfacial tension y causes the pressure at the interface to be 
reduced by an amount proportional to y K, in exact analogy to the 
thermodynamic boundary condition, Eq. 4. There is, however, no 
crystalline anisotrophy associated with this y. Directional informa- 
tion can be provided only by the interaction between the long- 
ranged pressure field and the walls of the container, or else by 
adding to the model-"by hand," so to speak-some anisotropy of 
the medium through which the fluids are moving. 

Pattern Selection 
There are sharply defined problems of pattern selection associated 

with both of these models. In solidification, it is known that the 

growth rate v and the tip radius p of a dendrite are determined 
uniquely by the undercooling A. In the hydrodynamic case, specifi- 
cally, the two-dimensional Saffman-Taylor (7) experiment in which 
a steady-state finger forms in a long channel, the ratio h of the width 
of the finger to the width of the channel is determined uniquely by 
the flow speed. In both cases, surface tension appears at first glance 
to be a negligible perturbation; the length do is orders of magnitude 
smaller than other characteristic lengths. However, the omission of 
surface tension in either problem leads to continuous families of 
solutions and, thus, to no explanation whatsoever of the experimen- 
tally observed selection principles. It turns out that surface tension is 
playing an especially subtle role in these processes. 

In the case of the dendrite, if one neglects surface tension 
altogether, one arrives at Ivantsov's paradox (8). Instead of there 
being a unique growth velocity v and tip radius p at a fixed A, as 
required by experiment, there exists a continuous family of steady- 
state, shape-preserving solidification fronts-paraboloids of revolu- 
tion-that satisfy the Ivantsov relation 

A = p e p [ d y y  (6) 

wherep = pvI2D is the thermal PCclet number. The tips of dendrites 
often do look very paraboloidal, and quantitative experiments 
generally indicate that the Ivantsov relation, Eq. 6, is satisfied. But 
obviously some essential ingredient of the theory is missing. 

Over a decade ago, Miiller-Krumbhaar and I (9)  explored the idea 
[originally suggested by Oldfield (lo)] that the missing element of 
the theory might have something to do with stability of the growth 
form. We performed many complicated calculations, but what was 
left in the end was a relatively simple conjecture that has since been 
confirmed remarkably well by experiment. In the simplest possible 
terms, our conjecture was that the tip radius p might scale like the 
Mullins-Sekerka (11) wavelength A, = 2 ~ ( 2 ~ d d v ) " ~ .  Note that A, 
is the geometric mean of the microscopic capillary length do and the 
macroscopic diffusion length 2Dlv; it is of roughly the right 
magnitude to characterize dendritic structures. A planar solidifica- 
tion front moving at speed v is linearly unstable against sinusoidal 
deformations whose wavelengths are larger than h,. Therefore, we 
reasoned, a dendrite with tip radius p appreciably greater than A, 
must be unstable against sharpening or splitting. The dynamical 
process that leads to the formation of the dendritic tip might 
naturally come to rest at a state of marginal stability, that is, at a state 
for which the dimensionless group of parameters 

is a constant, independent of A. Moreover, if we take the idea 
literally and set p equal to h,, then the value of this constant should 
be a* = ( 1 1 2 ~ ) ~  =0.025. The assumption a = a* = constant is 
consistent with a wide range of experimental observations (12) 
(when convective effects are eliminated or otherwise taken into 
account) and the specific value a* = 0.0195 for succinonitrile-by 
far the most carefully studied material-is quite close to the naYve 
prediction. 

What, then, is wrong with the marginal stability theory? It seems 
that its mathematical foundation has been knocked from under it by 
the discovery that the Ivantsov family of solutions does not survive 
in the presence of surface tension (13-17). A nonvanishing do, no 
matter how small, reduces the continuum of solutions to, at most, a 
discrete set; and the existence of any solution whatsoever depends 
on there being some angular dependence of the surface tension, that 
is, a nonvanishing anisotropy strength a. Thus, the stability calcula- 
tion that Miiller-Krumbhaar and I thought we were performing was 
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unfounded because the family of steady-state solutions whose 
stability we suppody  were testing did not exist. 

All is not lost, however, because the mathematics immediately 
suggests an alternative selection mechanism, albeit one that has 
little of the intuitive appeal of marginal stability. A natural guess is 
that the selected dendrite is the one for which a stable solution 
exists. In more formal language, we guess that the condition for 
solvabity of the steady-state equations is equivalent to a condition 
for the existence of a stable fixed point with a large basin of 
attraction in the space of configurations of this dynamical system. If 
this conjecture is correct, orderly, steady-state dendritic growth does 
not occut at all in isotropic materials. In suitably anisotropic 
systems, a growing body of analytic and computational evidence 
suggests that there is a denumerably M t e  set of solutions, and 
that only the fastest (and thus sharpest) of these solutions can be 
dynamically stable. The hypothesis that this unique solution exists 
and that it describes the tip of a dynamically selected dendrite has 
come to be known as the "solvability theory." 

Special Features of the Solvability Theory 
This is not the place for a detailed exposition of the mathematics 

of the solvability theory, but there are several features that do need 
to be mentioned. In the limit of small PCclet number p, the 
controlling group of parameters in the theory is the same quantity a, 
defined in Eq. 7, that appeared in the stability analysis. This happens 
because one is looking for a small surface tension-induced correc- 

Fig. 3. Hele-Shaw experiment in which the inviscid fluid enters through a 
central orifice and forms fingers that move radially outward. One of these 
fingers has trapped a small bubble at its tip. As a result, it is growing stably at 
constant speed and is emitting sidebranches. (Photograph courtesy of Y. 
Couder.) 

tion to the shape of the Ivantsov parabola and, in computing this 
c o r d o n ,  one encounters an equation quite similar to the one 
which arises linear stabity theory. [As shown by Pomeau and 
coworkers (14, linearization is not a necessary ingredient of the 
argument for solvabity.] To be precise, u enters the theory as a 
singular perturbation; it describes the strength of the curvature 
effect in Eq. 4 and, accordingly, multiplies the highest derivative in 
the equation for the shape correction once one has reduced this 
equation to dimensionless form. 

There is a very nice way to visualize the effect of this perturbation. 
In practical numerical calculations (1&20), and also in the analytic 
approaches that have been applied successfully to this problem (14, 
17), one can generally assure the existence of some kind of solution 
by relaxing a boundary coridition-most commonly the condition of 
smoothness at the tip. Suppose one allows the tip to have a cusp of 
outer angle 8 and then, either numerically or analytically, computes 
what value 8 must have in order to achieve a solution at a given 
value of a. Because 8 must vanish for a physically acceptable 
solution, a formally exact statement of the solvability condition is 

We may think of @ as a measure of how close we have come to 
finding a solution at an arbitrary value of u. The special values of u 
for which Eq. 8 is satisfied are denoted ~ * ( ~ , a ) .  

If one tries to compute 8 by expanding it in powers of u, one 
finds that 8 vanishes at all orders, a result that would be consistent 
with the original expeaation of a continuous family of solutions. If 
the calculation is performed more carefully, however, the answer- 
it small p and zero anisotropy a-has  the form 

This function has an essential singularity at u = 0 and no possible 
expansion about that point. It is extremely small for small u, but it 
does not vanish exactly unless o = 0. Thus, an arbitrarily small 
amount of isotropic surface tension destroys all solutions. For small, 
positive anisotropy a, however, the function 8(u)  has the same 
form as Eq. 9 for large u but oscillates rapidly in the limit u -, 0. 
The lvgcn value of u at which 8 passes through zcro occurs at u = 
u* a ", the latter approximation being valid only in the limit of 
very small a. 

The solvabity theory for the Sai3nan-Taylor (21-23) problem is 
strikingly similar to the analysis for the dendrite. In this case, the 
system is automatically in the limitp + 0 becausep = vpl2D and the 
diffusion equation, Eq. 2, reduces to the Laplace equation in the 
limit D + a. The parameter u is replaced by the dimensionless 
group of parameters urn: 

where y is the surface tension, b the spacing between the plates, p. 
the viscosity, U the speed of the finger, 2 W the width of the channel, 
and 2A W the width of the finger. All other essential ingredients of 
the solvability function BsT(u,A) defined in analogy to @(a, p -* 0, 
a )  are the same except that the function (1 - a cos 48) is replaced by 
a function of 9 and A. It then turns out that the boundary-related 
quantity A - 112 plays a role in this problem that is closely 
analogous to that played by the anisotropy strength a for the 
dendrite. For A < 112, looks like 8 in Eq. 9 and there are no 
solutions of ern = 0. For A < 112, on the other hand, oscillates 
for small values of usT, and the physically meanin@ solution of the 
solvability condition has the form uiT (A - 112)~ .  The 
convergence of A to the value 112 at small UST (large U) is consistent 
with experiment (7). 
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The picture summarized above-an apparently accurate analytic 
description of a mechanism for selecting steady-state configurations 
in two different nonlinear dissipative systems-seems elegant and 
mathematically compelling. The mathematics looks especially sound 
in view of recent work of Combescot et a l .  (22) in which a nonlinear 
formulation originally suggested by Kruskal and Segur (24) has been 
developed into an amazingly complete solution of the viscous 
fingering problem. There remains the possibility, however, that the 
solvability theory might be mathematically correct but physically 
irrelevant-that real systems might simply ignore these steady-state 
solutions and find other, perhaps oscillatory or even irregular, states 
of motion. With this possibility in mind, let us consider some of the 
evidence regarding the validity-r lack thereof-f the solvability 
theory. 

Dendritic Growth Rates 
First, there is the question of whether the solvability theory really 

agrees with experiment for the dendrites and, if so, what is its range 
of validity? Experiments (12) indicate that the parameter a, as 
predicted, is a A-independent constant at small A (apart from 
corrections at very small A where convection in the melt becomes 
important). The solvability theory also provides a natural explana- 
tion for the previously unexplained fact that free dendrites grow 
only in directions parallel to crystalline axes of symmetry; lack of 
symmetry precludes the existence of solutions in other directions. 

The trouble is that we do not know yet whether the values of a* 
predicted by the theory agree quantitatively with those found 
experimentally. At the moment, the available evidence seems incon- 
clusive, and we are waiting both for new measurements and for 
more extensive, three-dimensional calculations. A particularly worri- 
some aspect of the situation is that the theory predicts a strong 
dependence of u* on the anisotropy strength a; specifically, u* is 
predicted to be proportional to a7I4 in the limit a  -t 0 and to be 
roughly linear in a  for most of its accessible range of values (19, 25, 
26). No such strong dependence on anisotropy has so far been 
confirmed experimentally. 

In my opinion, it is most likely that the solvability theory will turn 
out to be a correct description of a large but limited class of relatively 
simple dendritic phenomena. It may break down in complex 
situations where competing processes such as thermal and solutal 
diffusion might produce time-dependent behavior that would be 
invisible in the present steady-state theory. I t  may also break down 
at large crystalline anisotropies where the solvability calculations 
become extremely difficult and perhaps intrinsically impossible. 
Almost certainly, the solvability theory will fail at small anisotropies, 
and the a7i4 law will turn out not to be physically meaningful. The 
last conjecture is based on considerations of stability that deserve a 
few paragraphs of their own. I shall return to that topic shortly. 

Couder's Bubbles 
A second category of evidence regarding validity of the solvability 

theory is the bubble effect discovered by Couder and co-workers 
(27), which indicates that something very much like solvability is 
occurring in variants of the Saffman-Taylor problem. For both the 
dendrite and the Saffman-Taylor finger, physically acceptable solu- 
tions require O = 0, that is, the structure is not allowed to have a 
cusplike discontinuity at its tip. However, if one were able to 
perturb the system in such a way as to fix O at some nonvanishing 
positive value, then the mathematics tells us that dendrites should 
exist in the absence of anisotropy and that viscous fingers should 

occur with relative widths A less than 112. Couder et a l ,  have 
produced such perturbations of the fingers by attaching small 
bubbles to their tips, and in this way have succeeded in observing 
anomalously small values of A. Their results for the dependence of A 
on the channel width W (a function whose form should not depend 
on details of the flow in the neighborhood of the tip) are in excellent 
agreement with the solvability theory (23). Moreover, in the 
circularly symmetric geometry where radial fingers ordinarily suffer 
tip-splitting instabilities, they have shown that fingers with bubbles 
a t  their t k s  behave verv much like dendrites, complete with 
sidebranches! A picture of such a finger-behaving like a dendrite- 
is shown in Fig. 3. 

Stability and Sidebranching 
Perhaps the most dramatic of the conceptual developments 

stemming from the solvability theory is a growing understanding of 
the dynamics of panern-forming systems. In particular, we are 
beginning to understand the stability of dendritic tips and the 
manner in which perturbations of these tips may be amplified to 
form complex arrays of sidebranches. 

Note the following apparent paradox. It has been known for some 
time that, in the absence of surface tension (u  = 0), Ivantsov's 
needlelike solutions of the solidification problem are manifestly 
unstable (9) .  In fact, the a = 0 problems for both the dendrite and 
the viscous finger are not even dynamically well defined because 
interfaces destabilized arbitrarily rapidly at arbitrarily short-length 
scales. On the other hand, the most complete stability analyses 
performed to date (28) indicate that the tips of fingers and dendrites 
remain linearly stable at all nonzero values of a = a". How can it 
happen that an indefinitely small amount of surface tension can so 
completely change the behavior of this system? 

The answer to this question, and to several others of related 
interest, can be seen in the result of a simple calculation. It will be 
convenient to describe this calculation in terms appropriate to the 
dendrite; the analogous result for the viscous finger is slightly 
different in technical aspects that need not concern us here. 

In principle, the correct way to study stability of a moving, open- 
ended system like the dendrite is to look at its response to a localized 
perturbation, for example, a short pulse of heat applied near the tip. 
The analysis that is needed for this purpose is similar to that used by 
Zel'dovich and colleagues to study the stability of flame fronts (29). 
To linear order in the deviation from a steady-state solution 
determined by solvability, we find that this pulse generates a wave- 
packet-like deformation whose center moves away from the tip as 
shown schematically in Fig. 4. More precisely, the center of the 
wavepacket stays at a fixed position along the side of the dendrite as 
viewed in the laboratory frame of reference, while the tip grows at 
constant speed away from the perturbation. 

This wavepacket has several important properties (30-32). First, 
its amplitude A(s) continues to grow as its center moves away from 
the tip. More specifically, 

A(s) = exp [;,442 - ( a ) l i 4 ]  

where s is the distance measured along the front from the tip of the 
dendrite to the center of the packet. Equation 11 is an asymptotic 
estimate valid for s %- p. Second, the packet spreads and stretches in 
such a way that, as it grows, it acquires a sharply defined wavelength 
that increases slowly with distance from the tip. Finally, although 
this deformation grows as it moves, it leaves the tip of the dendrite 
unchanged after a sufficiently long time. That is, any point on the 
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Fig. 4. Schematic illustration of two 
stages in the growth of a localized 
sidebranching deformation. An ini- 
tial noisy pulse is indicated at the tip 
of an otherwise unperturbed parabol- 
ic needle crystal. At a later time, the 
tip has regained its shape and has 
moved beyond the point of perturba- 
tion, leaving behind it a smooth 
wavepacket that will grow into side- 
branches. 

solidification front at a fixed distance from the tip ultimately will 
return to its original position after the wavepacket has passed. This 
is the sense in which the front is stable despite the fact that 
sidebranches continue to grow. 

A crucial aspect of Eq. 11 is its singular dependence on u*, which 
is reminiscent of the u-dependence of the solvability function in Eq. 
9. We immediately can see from this how the crossover occurs from 
stability at a* > 0 to manifest instability at a* = 0; as u* becomes 
small, perturbations become increasingly amplified before leaving 
the neighborhood of the tip. We also can see why the solvability 
theory is likely to break down at small anisotropy strength a. If 
taken literally at arbitrarily small a, the theory predicts arbitrarily 
small values of u* and, according to Eq. 7, tip radii p that are much 
larger than the stability length h,. Intuition tells us that such tips 
should be unstable. According to Eq. 11, the linear instability is 
controlled because the perturbation moves away from the tip but 
not until it has grown by an amount which may be large enough to 
carry it beyond the limits of validity of the linear theory. It seems 
likely, therefore, that dendrites with small crystalline anisotropies are 
nonlinearly unstable. Whether or not dendritic behavior occurs in 
such situations is unknown at present. Perhaps such systems find 
stable oscillatory modes of growth, or perhaps sufficiently isotropic 
materials always form chaotic patterns when they solidify in under- 
cooled melts. 

The above considerations lead naturally to a theory of sidebranch- 
ing. Until quite recently, most workers in this field had assumed that 
the tip of a real dendrite must be weakly-perhaps marginally- 
unstable against some oscillatory mode of deformation, and that this 
oscillation must generate the train of sidebranches that seems always 
to be observed in these systems. Couder's fingers with bubbles at 
their tips, when driven fast enough, quite definitely do oscillate and 
emit coherent trains of sidebranches. As mentioned above, however, 
neither the theorists nor the experimentalists have found any 
evidence for oscillatory tip modes in the purely thermal dendrites 
that we have been considering. 

One possibility that is suggested by the properties of the wave- 
packet described above is that dendritic sidebranches are generated 
by the selective amplification of noise (30, 32-34). In order to 
construct a satisfactory theory of sidebranching, it seems that we 
need only to identify the pulses that generate wavepackets with the 
ambient noise-perhaps just the thermal fluctuations-in the solidi- 
fying material. If we look at some fixed distance behind the tip, say, 
at the point where Initially very small deformations have grown out 

of the linear regime and are big enough to be visible, then it turns 
out that only a relatively narrow band of wavelengths has been 
selected from the original broad-band perturbation. This is what is 
meant by selective amplification; small, noisy perturbations near the 
tip produce large deformations away from the tip that look very 
much like sidebranches. One can even estimate the noise tempera- 
ture required to generate the sidebranches that are seen experimen- 
tally. Purely thermal noise seems too small according to present best 
estimates, but only by about one order of magnitude. The important 
lesson is that the dendrite is an extremely sensitive and selective 
amplifier of weak fluctuations in its environment. 

Snowflakes 
In conclusion, let us return to Kepler and ask what we now might 

tell him about snowflakes. We know that snowflakes, at least those 
that seem aesthetically attractive to us, are flat, hexagonal, ice crystals 
that have grown under conditions in which dendritic instabilities 
have taken place at the six corners. (The actual growth mechanisms 
for real ice crystals are more complex than any I have described in 
this article, but I do not think that these technical differences are 
relevant to the main points that I want to make.) We understand 
why these dendritic arms of snowflakes can grow only along the six 
preferred crystalline axes, and we know that their precise behavior- 
their growth rates, their thicknesses, the spacings of their side- 
branches, and so on-are extremely sensitive to small changes in the 
temperature and humidity of the vapor out of which they are being 
formed. Because these conditions are very nearly uniform across the 
millimeter or less that is occupied by a growing snow crystal, the six 
branches of a single snowflake will be nearly-but usually not 
quite-identical to one another. On  the other hand, because the 
atmosphere in a snowstorm is generally turbulent on scales of meters 
and more, each tiny crystal encounters a different sequence of 
growth conditions. Thus, no two crystals, not even if they have 
started from neighboring seeds, are likely to be identical to one 
another. Of all the new ideas we have learned recently about pattern 
formation, I think it may be this quantitative understanding of the 
close relationship between instability and diversity that will turn out 
to be the most important. 
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Unity in Function in the Absence of Consensus 
in Sequence: Role of Leader Peptides in Export 

Passage of proteins across membranes during export from 
their site of synthesis to their final destination is mediated 
by leader peptides that paradoxically exhibit a unity of 
function in spite of a diversity of sequence. These leader 
peptides act in at least two stages of the export process: at 
entry into the pathway and subsequently during translo- 
cation across the membrane. How selectivity is imposed 
on the system in the absence of a consensus among the 
sequences of leader peptides is the main issue discussed 
here. 

IOLOGICAL MEMBRANES NOT ONLY DEFINE THE BOUND- 

aries between cells and their environments, but also bring 
about essential separation of functions within cells by estab- 

lishing internal compartments. Thus, the main role of membranes, 
for which the hydrophobic center of the lipid bilayer is responsi- 
ble, is that of a barrier to the passage of water-soluble molecules. 
However, membranes cannat be inviolate barriers, since besides 
being selectively permeable to small molecules and ions, they must 
also allow passage of selected proteins in order to maintain function- 
al organelles and to mediate secretion. 
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Common Themes in Protein Export 
The transfer of polypeptides across membranes is thus fundamen- 

tal to life. Studies of such transfer in a number of different systems 
have revealed significant similarities, suggesting that there is a single 
basic mechanism on which secondary system-specific differences are 
imposed. The passage of polypeptides across the membranes of the 
endoplasmic reticulum during secretion in eukaryotes and the 
export of proteins from the cytoplasm to the periplasm and outer 
membrane in gram-negative bacteria such as Escherichia coli are so 
alike that each of the two systems appears able to recognize and 
transfer the proteins handled by the other: thus, findings established 
in investigations of eukaryotic secretion are usually directly applica- 
ble to export from E. coli and vice versa. Here our discussion is based 
predominantly on information obtained from studies of the latter. 

Models for Export 
As has long been known, polypeptides that are exported from 

bacteria or that are secreted from eukaryotic cells transiently carry at 
their amino termini stretches of amino acids (designated signal or 
leader sequences) that play a critical role in these processes (1, 2). In 
spite of intensive investigation over many years, we are not yet in a 
position to make definitive statements concerning the function of 
these sequences at the molecular level. Nevertheless, there has been 
no shortage of informed speculation about their role. Two early 
models that attributed radically different roles to leader sequences, 
the signal hypothesis (3)  and the membrane trigger hypothesis (9, 
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