
Are Neural Nets Like 
the Human Brain? 
N o t  necessarily, though they  are capable o f  astonishing feats, 
O n l y  a close inspection o f  the brdin wi l l  tell for sure 

CAN NEURAL NETS TELL US how the brain 
works? Not necessarily, says Francis Crick of 
the Salk Institute, adding a hefty dose of 
skepticism to the euphoria surrounding this 
new field. While these sophisticated models 
are capable of astonishing feats and brainlike 
computation, says Crick in the 12 January 
issue of Nature, they should not be confused 
with the real thing. 

"No one actually claims this is how the 
brain works," Crick told Science, "but there 
is a tacit assumption that it might be. There 
is a tendency to believe. Some people know 
perfectly well this is not how the brain 
works. Others know but tend to forget. And 
some don't realize how fully unbrainlike it 
is." Crick chides his colleagues for failing to 
look to the brain itself for answers. 

Neural nets are computer models inspired 
by the brain's own hardware. They consist 
of processors, or "units," that share many of 
the properties of neurons. (Indeed, they 
were called neurons until Crick beat his 
colleagues into submission.) Each unit re- 
ceives inputs, both excitatory and inhibi- 
tory, from a number of other units and, if 
the strength of the signal exceeds a given 
threshold, sends signals to other units. 

As in the brain, the action, so to speak, is 
in the connections among these units. The 
secret of how the brain works will not be 
found in a single neuron, Crick points out, 
but in how groups of neurons interact. So, 
too, in these models, where the properties of 
the network arise from the overall pattern of 
the interactions among units. Each of the 
many connections or synapses among units 
has its own strength, or weight-essentially, 
a multiplier-that can be adjusted as the net 
tackles new tasks. 

Not surprisingly, discussions of neural 
nets can easily bog down in the details of 
synaptic weights and their adjustment, but 
the underlying idea is that concepts and 
memories are embedded in the connections 
among neurons in the brain, and, by analo- 
gy, among the units in the model. 

One goal of this work with neural nets is 
to learn how the brain works and eventually 
to understand more complex processes like 
learning and memory. The other goal is 
simply to use these nets as tools to carry out 

complex analytical tasks. 
Perhaps their most striking attribute is 

that neural nets are capable of a form of 
learning. An example is NETtalk, a model 
that can learn to pronounce English. I t  was 
developed by Terrence Sejnowski, who just 
left Johns Hopkins University to join the 
Salk Institute, and Charles Rosenberg of 
Stanford University. 

NETtalk receives English text, processes 

"Some people know this 
is not how the brain 
works. Others know but 
tend to forget." 

it, and then sends a message, or output, to a 
machine that makes sounds. At first, writes 
Crick, the machine babbles like a baby, but 
as training progresses it begins to speak 
more intelligibly. At the end, it can produce 
passable speech 90% of the time. What is 
surprising is that the network does not have 
rules of ~ronunciation wired into it but 
rather picks them up along the way by 
example, much as a child would. 

NETtalk is just one application of a recent 
algorithm, called back-prop, that is at the 
center of the current excitement about neu- 
ral networks. Back-prop, short for back 
propagation of errors, refers to how the 
network corrects mistakes. It is known as 
supervised learning because there is a "teach- 
er," in this case the computer modeler, who 
can tell the system what to do. 

When the network makes a mistake-say, 
when an output unit sends the wrong sound 
to the machine in NETtalk-the "teacher" 
sends a signal to the output unit telling it to 
make a hard "c" rather than a soft "c." That 
correction message is then "back propagat- 
ed" through the entire network. The net 
then makes a small adjustment in the weight 
of all the connections, so that the next time 
it receives the same input, the output is 
closer to the correct one. As this process is 
repeated, the error is minimized. 

Similar back-prop models are being used 

to deduce the structure of a protein from its 
amino acid sequence, says Crick, and to 
distinguish shape from shading in images. 

What is different in NETtalk and other 
recent nets is not just the error correction 
procedure but the three-layered architecture 
it is used in, which more closely approxi- 
mates the structure of the brain than did the 
earlier nets. Early neural nets consisted of 
two layers of units, with a single set of 
connections between them. This new one 
has three layers: an input layer, an output 
layer, and a middle, or "hidden," layer. 

"That is what all the excitement is 
about-the layer in between," says Sej- 
nowski. "The brain has sensory receptors for 
input and motor neurons for output. But 
what makes life interesting is the interneu- 
rons in between, which allow animals to 
have complex behaviors." In neural nets as 
well, it is the hidden layer that holds the key 
to more complex computation. 

All of which is very exciting, Crick says, 
but it is probably not how the brain works. 
The obvious problem with back-prop, says 
Crick, is that feedback messages would have 
to go down the axon the wrong way. And it 
implies the existence of a "teacher," which in 
the brain would presumably be another set 
of neurons. "Such a set of neurons, if they 
exist, should have novel properties and 
would be worth looking for, but there is no 
sign of back-prop advocates clamoring at the 
doors of neuroscientists, begging them to 
search for such neurons," says Crick, getting 
to the crux of his criticism. 

"V\re just don't know how the brain 
works," says Crick, or if it uses something 
like back-prop. His major gripe is that neu- 
ral net researchers seem surprisingly disin- 
clined to find out. 

Instead of looking to neuroscience, he 
says, modelers-many of whom he suspects 
of being "frustrated mathematiciansn-seem 
all too intent on developing lofty general 
principles to explain human information 
processing. But nature may not work by 
grand principles, cautions Crick. "Evolution 
is a tinkerer. It is opportunistic; anything 
will do as long as it works." Instead of grand 
principles, it may prefer a series of slick 
tricks, says Crick. "Only a close inspection of 
the gadgetry will tell us." 

Sejnowski is not so quick to dismiss either 
lofty principles or admittedly oversimplified 
models if they can shed some light on the 
brain, which he considers "one of the big- 
gest challenges left in science. We need more 
frustrated mathematicians and more people 
who are testing ideas." 

He points out that "neural nets are pow- 
erful tools for studying complex systems," 
applicable to many areas, from economics to 
designing new computers. And in those 

27 JANUARY I 9 8 9  RESEARCH NEWS 4 8 1  



other applications, as Crick readily admits, 
Crick's criticisms do not apply. 

"Even if the brain makes no use of back- 
prop, there is no reason why we should not 
use it as a mathematical tool," says Sej- 
nowski. "Nature does not have calculus, but 
we use it to understand nature." 

The goal of much neural net research is to 
understand complex human performance, 
such as how people learn to play the flute. 
"Even the simplest models are providing 
insights into how that learning occurs," says 
Sejnowski. "So even if back-prop has noth- 
ing to do with it in the brain, the fact that 
we can create models with similar perfor- 
mance means you can use it to understand 
psychology." 

'This approach allows me to study aspects 
of the mind that can't be touched from the 
neuroscientist's approach," agrees David E. 
Rumelhart of Stanford University, a mathe- 
matical psychologist and one of the leading 
modelers in the field. The danger in that 
approach, says Crick, is that without a few 
reality checks in the brain, such investiga- 
tions may yield exquisite theories that have 
no correlauon with reality, like phlogiston, 
the early explanation of fire. 

Rumelhart concedes that some neural net 
researchers may not be paying enough atten- 
tion to neuroscience in developing their 
models. "Crick is nudging people like me, 
saying you can do better on the brain end. 
He is probably right." 

Crick's closing plea is, 'Why not look 
inside the brain, both to get new ideas and 
test existing ones?" such work is getting 
under way, if belatedly. The delay was not 
just because modelers and neuroscientists 
have been wearing blinders, says Sejnowski, 
but because the tools simply did not exist to 
test some of these ideas experimentally. Sej- 
nowski is setting up a computational neuro- 
biology lab at the Salk Institute with just 
that goal: to test some of the theoretical 
predictions in the nervous system. 

History gives some grounds for hope. In 
1949 Donald Hebb predicted a synaptic 
mechanism that would explain learning and 
memory. Neuroscientists have recently dis- 
covered a mechanism-the NMDA recep- 
tor-that behaves just that way. In his arti- 
cle. Crick calls on neural net researchers to 
de"elop models that embody the principle of 
the NMDA receptor. 

Sejnowski and his colleagues have just 
uncovered another synaptic mechanism, 
known as long-term depression, that also 
seems to be involved in memorv. "These are 
two examples of abstract ideas being tested 
in parts of the brain. They are harbingers of 
the progress that can be made once models 
andtheexperimental work come together." 

m LESLIE ROBERTS 

1nbreed.q Costs Swamp Benefits 
Inbreeding can have a variety of important genetic consequences, good and bad. For 
instance, a female that mates with a relative benefits because the offspring have 
additional copies of her genes (those she shares with the relative): and the closer the 
relationship, the greater the potential genetic benefit. However, the closest possible 
mating pairs-parent-offspring and sibling-sibling-are apparently rather rare in 
nature, an observation that is usually explained by the disadvantages of close matings. 
These disadvantages, collectively known as inbreeding depression, include reduced 
viability and fecundity of offspring. Biologists are therefore very interested in the 
effects of inbreeding, for genetic theory and in the practical consequences of 
maintaining captive populations. Until recently, however, there were very few good 
data on the effects of inbreeding in populations, but a study by Katherine Ralls and 
Jonathan Ballou of the National Zoological Park, Washington, D.C., and Alan 
Templeton of Washington University has now provided some. 

Two striking observations resulted from a survey of juvenile survival from parent- 
offspring and sibling-sibling matings in 40 captive populations belonging to 38 
species. First, in all but four of the populations there was some reduction in juvenile 
survival. Second, the variation in reduced survival was great, ranging from just a few 
percent to 100% in one case. The average reduction was 33%. This latter figure just 
happens to match the potential genetic advantage of parent-offspring and sibling- 
sibling matings, and so it might seem that the costs and benefits of such matings are 
finely balanced. 

Ralls and her colleagues note, however, that the figure for costs is probably too 
low. For instance, it measures only juvenile viability, but does not include increased 
embryonic death or survival of juveniles to maturity; nor does it take into account 
reduced fecundity or increased susceptibility to disease, both of which are known 
consequences of inbreeding. These extra costs would swamp the 33% genetic 
advantages of close inbreeding, and thus account for its virtual absence in natural 
populations. 

The disadvantages of inbreeding are assumed to result from the expression of 
deleterious recessive genes that occur in double doses. (In large, outbreeding 
populations these genes will usually occur only in single doses, and thus be masked.) 
If there is considerable variation among populations in the extent of such genes, then 
this could account for some of the variation in the severity of inbreeding depression 
observed by Ralls and her colleagues. A reduction in incidence of deleterious recessive 
genes can occur, for instance, if a population successfully goes through a bottleneck: 
the population crashes to a few individuals, genetic variance is greatly reduced, and 
deleterious recessives might be quickly lost through high mortality. There is 
considerable debate about the genetic effects of population bottlenecks, but it is clear 
that many populations would become extinct under such circumstances, an issue of 
particular interest to conservationists who must maintain small populations, either in 
natural habitats or in captivity. ROGERLEWIN 
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NO inbreeding here. Animals in natural populations avoid close genetic matings. 
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