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exposed nucleus is very active in response to 
the direct insolation. Because the activity 
will continue for many rotations, the polar 
region is expected to lose more materiaithan 
other regions. Evidence for such erosion 
may be found in the depressed "broad cen- 
tral plain" described by Keller et al .  (16) 
(although the limb profile shows no depres- 
sion at the region of activity). 

The enhanced activity at the polar region 
is likely to extend over the entire solar 
circumpolar area, with the rotation pole 
lying at the center of the active area. Because 
Giotto obtained images only from the ap- 
proach direction, there are no data on the 
extent of the polar active zone on the other 
face of the nucleus. However, comparison of 
the observed active region with the expected 
circular shape of the active polar zone sug- 
gests that the pole lies near the limb of the 
nucleus, consistent with other values for the 
rotation axis. Any nutation will affect the 
insolation at the solar circumpolar regions, 
and the 7.4-day modulation of the coma 
activity may be related to the effects of 
nutation, causing the position of a source 
region to alternate between inside and out- 
side the solar circumpolar zone. 
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A Relation to Describe Rate-Dependent 
Material Failure 

The simple relation - A = 0, where is a measurable quantity such as strain 
and A and or are empirical constants, describes the behavior of materials in terminal 
stages of failure under conditions of approximately constant stress and temperature. 
Applicable to metals and alloys, ice, concrete, polymers, rock, and soil, the relation may 
be extended to conditions of variable and multiaxial stress and may be used to predict 
time to failure. 

T HE PREDICTION OF DEFORMATION 

and failure of materials from funda- 
mental relations that are based on 

physically observable internal parameters 
(such as vacancies, crystalline structure, dis- 
location structure, and microcracks) can 
rarely be directly or easily accomplished. In 
practice, it is therefore necessary to consider 
empirical propositions, some of which nev- 
ertheless have striking if incompletely un- 
derstood generality. Such a proposition for 
the terminal stages of rate-dependent mate- 
rial failure is 

casting of specific new phenomena and in 
the solution of practical problems such as 
failure prediction. Such matters may be of 
importance to public safety; for example, at 
Vaiont, Italy, thousands died in a flood 
wave induced by the failure of a reservoir 
slope that could have been anticipated by 
Eq. 1 (1). Other potential applications in- 
clude the failure of structural components, 
volcanic eruption forecasting, and the pre- 
diction of earthquakes (2). 

Equation 1 is derived from experimental 

where A and a are the constants of experi- 
ence and fl is an appropriate measurable 
quantity. The dot refers to differentiation 
with respect to time. Quantities that can be 
represented by Cl include strains for deform- -2 

ing alloys, metals, polymers, concrete, soil, N- 

rock, or ice. Fields of potential application ,@ - 
of Eq. 1 include materials science, various s 

g 
branches of engineering, and the earth sci- :C 

ences. Although the question needs to be c' - 
explored further, Eq. 1 may also apply (at 2 B 4 

least approximately) to predominantly rate- ! 
independent applications, such as some cas- 8 

es of fatigue (rate-independent repeated 5 
loading). 

Additional relations may be deduced from 
Eq. 1, valid for several different groups of -6 

observables. Such equivalent cases include 
numerous independently discovered empiri- 
cal or quasi-deterministic equations that de- 
scribe time-deformation relations of creep to 
failure, and to a certain extent such cases 

k2 ' 1  E-0.63 = 0 
Haney clay 

Creep rate, h (%/unit time) 

provide validation for the basic proposition. Fig. 1. The relation betyeen creep acceleration 

The equation can also be used in the fore- and Creep velocity (a) in terminal stages of 
creep of an alloy (Nimonic 80A) in tension and a 
soil I ~ a n e y  clay) in compression (5, 6). Unit time 

College of Earth and Mineral Sciences, Pennsylvania is hours for Nimonic 80A and minutes for Hmey 
State University, University Park, PA 16802. clay. 
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observations of a linear relation between the 
logarithms of first and second derivatives of 
n. Insofar as I am aware, this correlation 
was first noted by the Japanese engineer T.  
Fukuzono in monitoring the movement of 
experimental slope failures caused by mono- 
tonic load increase (3). Perceiving that this 
application represented an interesting case 
of a farther reaching phenomenon, Voight 
derived further expressions and proposed 
that the relation reflected a general physical 
law governing diverse forms of material 
failure for conditions of constant stress and 
temperature (4). For the expression 
!2 = e = strain, for example, the final stages 
of failure under constant stress and temp- 
erature conditions for an alloy in tension or 
a soil in compression (5, 6 )  conform to 
proportionality benveen the logarithm of 
creep acceleration and the logarithm of 
creep velocity (Fig. 1). 

Integrating Eq. 1 ~ i v e s  expressions for 
rate fi. For a = 1 and R = ho at time t  = to, 

f i  = fi0 @(I-to) (2) 
For a f 1, 

A = [A(a - l ) ( t f  - t)  + hfl-a]l'(l-a) 
(4) 

for a > 1, where t f  is time of failure and hf 
is rate at failure. 

Expressions for Q arise from double inte- 
gration of Eq. 1. For example, for a > 1, 
a # 2, from Eq. 4, 

Such equations can be normalized by the 
product of initial rate and rupture life, h o t  f. 
For a > 1, a f 2, and hf assumed to be 
infinite, a simplified form is recovered: 

With the approximation hf assumed to be 
infinite, 

gives an upper bound (but frequently use- 
ful) solution. For the common case a = 2, 
further simplification arises: 

One may estimate values of A and a from 
a plot such as Fig. 1 or from solving a set of 
simultaneous equations such as Eq. 3, using 
rates observed to the current time. At least 
four obseniations of R are generally neces- 
sary, yielding three rates. More points im- 
prove the quality of the solution, and confi- 
dence estimates may be evaluated through 
nonlinear statistical regression techniques. 
Of course, such "constants" apply strictly to 
the time increments over which observa- 
tions have been collected and may not neces- 
sarily apply to data at subsequent times if 
changes occur in the dominant mechanism 
of deformation or in the conditions of load- 
ing. Such "constants" may therefore appear 
to change over time. Although the predic- 
tive method indicated here will often pro- 
vide a useful guideline to the expected life, 
the accuracy of the method is ultimately 
determined by the precision and frequency 
of the observations and by the regularity of 
the observed phenomena. 

One may also determine failure life graph- 
ically, using a curve of reciprocal rate against 
time. The reciprocal rate 

decreases continuously with time and is 
upwardly convex for a > 2 and concave for 

Table 1. Estimates of experimental constants. 

a < 2. Experience suggests that a is fre- 
quently nearly 2, and for such cases the 
inverse cun7e is nearly linear (3). Failure 
occurs when the inverse value bf-' is ob- 
tained, usually very near the point of inter- 
section of the reciprocal rate curve with the 
time axis. In practice, changes in mechanism 
or loading conditions may cause recogniz- 
able changes in the reciprocal rate curve. 
Nevertheless, this method may be applied 
even when such complications are present. 
Other useful graphical relations include the 
logarithm of rate against the logarithm of 
time preceding failure, and, for a = 1, the 
natural logarithm of rate against time. 

Small changes in stress may have a consid- 
erable influence on tf .  This influence may be 
explored by considering constant load uni- 
axial creep tests, which comprise most of the 
available creep data. In the lower stress levels 
that characterize engineering practice, fail- 
ure is associated with material damage and 
strains are relatively small. Under such cir- 
cumstances the stress changes due to change 
in cross-sectional area may be neglected. The 
minimum creep rate t, corresponding to a 
given nominal stress u can be expressed in 
the form 

where 6, is the minimum rate attached to an 
arbitrary stress u, and m is an experimental 
constant (8). Equations 2 through 4 and 
derivative expressions may be accordingly 
adjusted for changes in stress; for example, 
from Eq. 3, for a f 1: 

Similarly, Eq. 6 may be rewritten 

System 

Aluminum 
Monel 
Titanium 75A; iodide titanium 
Ferritic steels 
Austenitic steels 
Mg (2% Re) 
Zr (Fe, Cu, V, 0.4% Mo) 
Zr (Fe, Cr, V, 0.7% Mo) 
Ni (6.2% Al) 

Number 
of data rn"X a 

Alloys and rnetals 
0.85 1.85 -5.7 
0.92 1.92 -11 
0.87 1.87 -6.7 
0.85 1.85 -5.7 
0.93 1.93 -13 
0.74 1.74 -2.8 
1.01 2.01 100 
0.97 1.97 -32 
0.91 1.91 -10 

Temperature 
range (K) 

Refer- 
ences 

(33) 
(13) 
(13) 
(13) 
(13) 
(15) 
(14 
(15) 

B. Voight analysis, 
figure 2 of (1 5 )  

Soils where A* and A are introduced for conve- Mixed mineral soils 46 0.9 1.9 -11 Room 
nience (7) ;  A = ( a  - l ) / ( a  - 2). Haney clay (undisturbed) 

(18)  

At any arbitrary t  = t,, where h = h,, t f  Isotropic triaxial 8 1.11 2.11 10 Room 
7 1.09 2.09 12 

(-5) 
can be calculated by manipulation of Eq. 4: KO triaxialt 

KO plane straint 7 1.07 2.07 15 
h , l - a  - Ail-a 

t f  - t ,  = *Slope of the ~Monkn~an-Grant relation. tKo in soil mechanics is the ratio of horizontal to vertical effective stresses 
A(a  - 1) (7)  

during sample consolidation prior to creep loading; for the tests considered, Ko = 0.55 (5 ) .  

I3 JANUARY 1989 REPORTS 201 



with t, = t,(u/u,)". For variable stress his- 
tories, failure life may then be approximated 
by a life fraction rule of the type 

where ti is the time over which ui is applied 
and ti is the rupture time corresponding to 
the constant stress ui (7). 

Next I consider several established rela- 
tions to describe failure life that are encom- 
passed by Eq. 1. The first case involves the 
Rabotnov approach to the Kachanov rela- 
tions, t = f (u ,  w) and (s = g(a ,  w), where f 
and g are fimctions and w is a dimensionless 
state variable, regarded in some sense as a 
measure of material deterioration (10). 

For uniaxial tests the growth laws have as 
their simplest form 

bib, = (uiu,)"(l - O)-q (15) 

(s/(s* = ( U / U * ) ~ ( ~  - ( 16) 

where m, q, v, v, h,, b,, and u, are material 
constants (11). For A = (u + l)i(u - q + l), 
the integrated form coincides with the sim- 
plified form (Eq. 13) derived from Eq. 1, 
for ho = 6, and A = (a  - l ) i (a  - 2). 
These Rabotnov-Kachanov equations are 
thus exactly equivalent to this special case, 
for a # 2 and for hfl-" assumed sufficiently 
small to be justifiably neglected. 

Experimental results suggest that for 
steady conditions the effective strain rate 
may be dependent on the effective stress i?, 
and the rate components bij may be propor- 
tional to components of the stress deviator 
So (12). If, in the tertiary region of increased 
rates, the ratio of strain components remains 
approximately constant, the Rabotnov-Ka- 
chanov equation may be generalized for 
multiaxial states of stress (1 1). These equa- 
tions also apply to Eq. l as a special case. 
Such equations do not account for anisotro- 
py that may accompany significant develop- 
ment of cracking or porosity. 

The second special case involves the rela- 
tion between tf and b,, known for decades 
and most frequently described by the Monk- 
man-Grant equation (13), 

where C is a constant. This is replicated by 
setting fl = E, setting b = b, at t = to = 0, 
and neglecting hf. -", giving from Eq. 4 

The Monkman-Grant expression is therefore 
equivalent to Eq. 1 for df large and a > 1, 
where a = mu + 1 and A = l lC(a  - 1). 
Because Monkman-Grant type plots typical- 
ly use total rupture life rather than time in 
tertiary creep (13-15), an adjustment in the 
time scale may be necessary for the calcula- 
tion of equivalent constants. Slope changes 
seem minor in the few cases examined. 

In the third special case, the general em- 
pirical Saito expression (1 6), 

may be recognized as equivalent to Eq. 4, 
such that E = [A(a - 1)11" - ", n = 

l l ( a  - 1) = llmff, for the case of negligible 
hf' - "and a > 1. 

The fourth case, the exponential idealiza- 
tion of tertiary creep, is Hlso equivalent to 
Eq. 1 for a = 1, as illustrated by Eq. 2. 
Additional equivalent cases have been recog- 
nized, for example, expressions of DobeS 
and Milicka (15) and Sandstrom and Kon- 
dyr (17). 

Experimental data for a host of metals and 
alloys (13-15) suggest a in the range 1.74 to 
2.01, with a mean value about 1.9 (Table 1). 
Data for various soils (5, 16, 18) typically 
suggest a = 1.9 to 2.1. Although confi- 
dence limits are thus far poorly understood, 
the value of a appears to be relatively con- 
stant for a given material, independent of 
consolidation conditions, load level, or type 
of loading. Such "constants" may, however, 
vanr over time if dominant microstructural 
mechanisms of deformation change, as by 
aging (precipitate growth), microcracking, 
or change in flow mechanism. The effects of 
such changes are roughly accumulated in m", 
the Monkman-Grant exponent of Eq. 17, 
upon which is based much of Table 1; but 
such effects would appear in different pro- 
portions for observations at different times. 
Indeed, in some cases, mechanisms of tertia- 
ry creep may commence almost with the 
inception of loading; in such cases the math- 
ematical relations of tertiary creep may re- 
quire that primary creep be simultaneously 
analyzed. 

Carefully monitored experimental slope 
failures in loam and sand (Z), induced by 
artificial precipitation on slopes of 30" to 
40" (representing effective stress increase 
rather than constant stress), suggest a = 2.0 
to 2.2. Natural landslides (full-scale field 
shear tests) analyzed by Voight commonly 
gave a nearly 2, as did various line length 
changes and tilt measurements about an 
expanding volcanic dome (4). Values of 
a # 2 also occur. For example, slope failures 
analyzed by Voight encompassed the range 
1 5 a < 3, and tertiary creep compression 
of ice and frozen sand gave a = 1 (17). 

Nevertheless, for a variety of materials 

characterized by diverse microstructural 
processes (20), a frequently approaches the 
value 2, under both laboratory and field 
conditions. This is important to theory be- 
cause the term a - 1 appears often as an 
exponent or as a multiplier in equations 
derived from Eq. 1, and the relations simpli- + for a = 2. Often, at least, there may be 
only one free parameter in Eq. 1. 

Some insight into a = 2 may be gained 
by rearranging Eq. 1 as follows: 

If A and a are constants, then either a = 2 
or A contains time units necessary for di- 
mensional homogeneity. The tendency of a 
toward 2 may imply some underlying funda- 
mental principle. Following suggestions of 
an anonymous reviewer, I now explore fur- 
ther illustrations and some limitations re- 
garding a specimen subjected to constant 
load P and (unlike previous examples) af- 
fected by reduction in cross-sectional area F, 
from an initial area Fo. From incompressibil- 
ity (a reasonable approximation), F = Fo 
exp (-F), where natural strain F = S-dFIF. 
True stress u is related to the nominal stress 
uo by u = PIF = uo exp (F). 

Applying the Norton relation (Eq. l l ) ,  
we have 

where io is the rate before area reduction. 
Differentiation gives 

which coincides with Eq. 1 for n = E, A 
= m, and a = 2. If, however, the nominal 
extension E = e' - 1 is used for the above 
case, the form is changed through change of 
variable. It therefore appears that choice of a 
dimensionless variable for Cl is not itself 
sufficient to ensure the form of Eq. 1. 
Likewise, setting fl = F yields a differential 
equation different in form from Eq. 1. 

Further, for the case of constant load rate 
P, Eq. 11 gives 

the latter not identical to Eq. 1. However, 
for large time (not necessarily implying large 
strain), tk >>I, and the form of Eq. 1 (Eq. 
22) is recovered. 

A new relation (Eq. 1) thus summarizes 
concisely a directly observed regularity. Nu- 
merous data from many sources conform to 
the relation. Numerous separate long-stand- 
ing relations then emerge as equivalent cas- 
es, and one obtains insight into some limita- 
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tions and extensions of these relations (21). 
Equation 1 offers some practical advantages, 
including provision for finite values of 
strain, strain rate, and strain acceleration at 
failure, as well as simplicity and ease of 
manipulation. Theory permits the deduction 
of time of failure, which may be applied in 
the interest of public safety. 
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theory for constant stress and temperature, can be 
written in the form B = ~ t - ' ,  where B and b are 
constants. This may be expressed as 
pE = ~ [ h ( a - 1 1  - I , where D is a derived constant. 
This conforms to Eq. 1 if b ( a  - 1) - 1 = 0, imply- 
ing for a about 2, a value for b of about unity. J. K. 
Mitchell, R. G. Campanella, and A. Singh [Proc. 
Am.  Sac. Civil Eng. 9 4  (SMl), 249 (1968)l report- 
ed 0.75 < b < 1 for tests for soils, implying that Eq. 
1 may have a theoretical basis in rate process theory 
for primary creep. 

22. I thank two anonymous reviewers for perceptive and 
extremely helpful comments. 
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Observation of Individual DNA Molecules 
Undergoing Gel Electrophoresis 

Individual DNA molecules undergoing agarose gel electrophoresis were viewed with 
the aid of a fluorescence microscope. Molecular shape and orientation were studied in 
both steady and pulsed electric fields. It was observed that (i) DNA macromolecules 
advanced lengthwise through the gel in an extended configuration, (ii) the molecules 
alternately contracted and lengthened as they moved, (iii) the molecules often became 
hooked around obstacles in a U-shape for extended periods, and (iv) the molecules 
displayed elasticity as they extended from both ends at once. A computer model has 
been developed that simulates the migration of the molecules in a rotating-field gel 
electrophoresis experiment. 

T HE ADVENT OF PULSED-FIELD GEL 

electrophoresis (PFGE) has allowed 
the separation of very large DNA 

fragments with relative ease (1-3), but the 
underlying molecular dynamics responsible 
for size separation have remained obscure. 
The prevalent model for describing DNA 
macromolecular motion, known as biased 
reptation (4) ,  asserts that a very long DNA 
strand must snake its way through gel pores 
with one end leading and with the rest of the 
molecule following the same path. The path 
chosen by the head is assumed to be a semi- 
random walk, biased by the electric field 
force. The molecule is represented as a set of 
charged beads connected by freely orienting 

links. The gel pores are represented as a 
segmented tube surrounding the chain. 

Deutsch (5 )  has recently published a series 
of computer simulations based on a new 
model also using a chain of beads but repre- 
senting the gel as a lattice of point obstruc- 
tions. Com~uter  simulations based on these 
two models give different pictures of molec- 
ular motion. Unfortunately, direct experi- 
mental evidence concerning molecular ori- 
entation during electrophoresis, from fluo- 
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