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Ergodic Theory, Randomness, and "Chaos" 

Ergodic theory is the theory of the long-term statistical 
behavior of dynamical systems. The baker's transforma- 
tion is an object of ergodic theory that provides a para- 
digm for the possibility of deterministic chaos. It can now 
be shown that this connection is more than an analogy 
and that at some level of abstraction a large number of 
systems governed by Newton's laws are the same as the 
baker's transformation. Going to this level of abstraction 
helps to organize the possible kinds of random behavior. 
The theory also gives new concrete results. For example, 
one can show that the same process could be produced by 
a mechanism governed by Newton's laws or by a mecha- 
nism governed by coin tossing. It also gives a statistical 
analog of structural stability. 

E RGODIC THEORY AROSE OUT OF AN ATTEMPT TO UNDER- 

stand the long-term statistical or probabilistic behavior of 
dynamical systems such as the motions of a billiard ball or the 

motions of the earth's atmosphere. The theory focused on certain 
mathematical objects called abstract dynarnical systems or measure- 
preserving flows. The idea here is to abstract out the statistical 
properties and ignore other properties of the dynamical system. 
Thus two systems are considered the same when viewed as an 
abstract system (we call these isomorphic) if, after we ignore sets (or 
events) of probability zero, there is a one-to-one correspondence 
between the points in their phase spaces (see below) so that 
corresponding sets have the same probability and evolve in the same 

way (in other words, maintain the correspondences for all time) (1). 
If we preserved the topology instead of probabilities, we would be 
studying the qualitative theory of ordinary differential equations 
initiated by Poincart. 

Abstract dynamical systems are natural objects from the mathe- 
matical point of view, and they arise in many different contexts (even 
in areas as far afield as number theory); elucidating their structure is 
considered an important mathematical problem. Much of the work 
in ergodic theory has had little to do with its initial motivation, but 
recently certain problems, some of which had been unsolved for 
more than a decade, have been solved, and a group of results has 
been obtained that does relate to concrete systems such as the 
billiard system. These results, which I will refer to as isomorphism 
theory, center around a better understanding of a certain abstract 
dynamical system called the baker's transformation. This is a map of 
the unit square onto itself (Fig. 1). We first stretch the square, 
doubling its width and halving its height. We next stack the right 
half of the elongated rectangle above the left half (the shape is again 
a square). These two steps give the baker's transformation. If looked 
at properly the baker's transformation can serve as the mathematical 
model for coin tossing (this is easy to see), and in this sense is 
completely random while it is deterministic in the sense that every 
point moves in a definite way. 

The baker's transformation is often used as a paradigm for 
explaining the possibility of deterministic chaos (2, 3), that is, 
systems that evolve according to Newton's laws but nevertheless 
appear to be random. In recent years people have become increas- 
ingly aware of the ubiquity of this phenomenon. 
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Fig. 1. The baker's transformation. 

New results follow from isomorphism theory: 
1) At the level of abstraction of isomorphism there is a unique (4, 

5) system that is the most random possible. I will refer to it as the 
Bernoulli flow or Bt. 

Even though "most random" is not well defined, I will explain 
some precise results that will make the above statement clear. It is 
important, however, to identify isomorphic systems and, unless we 
do this, "most random" has no meaning. Because there is no agreed 
definition of "chaotic" in the literature on chaos, result 1 gives us 
something definitive to aim at when studying specific systems. 

2) If we look at Bt, in other words, a system isomorphic to Bt, at 
regular time intervals (for example, every hour on the hour), then 
this new system is isomorphic to the baker's transformation. 

3) There are systems that obey Newton's laws that are isomor- 
phic to Bt. A billiard system with one or several convex obstacles is 
an example (without the obstacle it is not chaotic). Other examples 
of Bt are geodesic flow on a manifold of negative curvature and the 
Lorenz attractor. Dissipative examples of Bt are provided by Smale's 
axiom A attractors. Isomorphism theory provides the only method 
so far for completely determining the statistical structure of specific 
chaotic systems, in other words, determining them up to isomor- 
phism. 

I conjecture that "most" chaotic systems that arise naturally are 
abstractly the same as Bt. This would mean that much of the 
diversity that we see arises from different ways of looking at the same 
abstract system. 

Isomorphism in general can be very hard to visualize-very 
different systems can be isomorphic-but this is the price we have to 
pay for the generality of our results. On the other hand, in special 
cases the theory produces isomorphisms that preserve some of the 
geometry as well as the statistical structure. I will explain these 
results in terms of two examples, both of which are isomorphic to 
Bt. 

The first is the motion of a billiard ball on a rectaneular table with " 
a convex obstacle. This example exhibits what people call determin- 
istic chaos. The second example is the random jumping of a point on 
the same table, the jumps being determined by flipping a biased 
coin. This is generally thought of as truly "random." 

In terms of these examples we have the following results: 
4) If we perturb the obstacle slightly in our billiard system, we 

get essentially the same collection of infinite trajectories. More 
precisely, the system and its perturbation are isomorphic and 
corresponding points are close, with high probability. This means 
that we cannot tell if we are looking at our original system through a 
"viewer" (6) that distorts slightly or at our perturbed system 
(through a viewer that does not distort at all), even if we look for all 
time. 

This result is surprising because effects of perturbing the obstacle 
are cumulative whereas the distortions produced by a viewer are not 
(the viewer does not interfere with the orbit, it-only misreads it 
slightly). 

5) If we design the random system carehlly (still using a biased 
coin), then this random system and the billiard system will have 
essentially the same trajectories even in the long run (the short-term 
approximation of trajectories is not hard). One can even reproduce 
the random system exactly by observing the billiard system through 
a specially constructed viewer offinite precision that does not distort 
very much. Note that the viewer, as before, is not random, and thus 

our random system could be produced by Newton's laws or by coin 
flipping. 

This article has a dual purpose. I would like to explain some 
results in ergodic theory by describing what they say in a simple 
concrete context. I also hope that these results will shed some light 
on the nature of chaos. For a more complete technical version of this 
article, see ( 7 ) ,  which is based largely on (8). 

The Phase Space of a Dynamical System 
Consider the example of a billiard ball moving on a rectangular 

table with a convex obstacle. The ball moves in a straight line at unit 
speed and bounces off the obstacle and the edges with the angle of 
reflection equal to the angle of incidence. 

The configuration of the system is completely determined by the 
position and velocity of the ball. The phase space is the set of all 
configurations of the system. Each point (configuration) in the 
phase space moves along a well-defined trajectory or orbit in the 
phase space. 

Phase space also has a probability structure: every reasonable (in 
other words, measurable) set in phase space is assigned a probabili- 
ty-the probability of finding the system in that set. The probability 
structure has the property that, as a set evolves in time, its 
probability does not change. 

Isomorphism and Abstract Dynamical Systems 
Definition: Two systems are isomorphic if (after we ignore sets 

of probability zero) there is a one-to-one correspondence between 
the points of their phase spaces, where corresponding sets have the 
same probability and orbits correspond to orbits in a time-preserv- 
ing manner. 

Isomorphism means "the same" relative to the structure we are 
interested in (here, the statistical dynamical structure) and abstracts 
out everything but this structure. We could think of an abstract 
system as an equivalence class under isomorphism or, more directly: 

Definition: An abstract system is a set of points that play the role 
of the phase space, in which each reasonable (Lebesgue measurable) 
subset has a probability (that does not change as the subset moves) 
and a rule that tells us where a point will move in t units of time (9).  
Isomorphic systems can be thought of as being the same abstract 
system (10). 

An application of isomorphism theory is that all our billiard 
systems with obstacles are isomorphic to each other and to Bt but 
not to the one with no obstacles. 

The classification of chaotic dynamical systems by their abstract 
system ran into difficulties because the abstract system could not be 
determined in any specific case. However, isomorphism theory gives 
criteria for determining if a specific dynamical system is isomorphic 
to Bt. This gives, essentially, the only cases of chaotic systems for 
which the abstract dynamical system associated with a specific 
system can be determined exactly. 

Stability 
Individual orbits of chaotic systems can be extremely unstable and 

nonreproducible. On the other hand, for many chaotic systems, we 
can prove that the system as a whole is stable. We will describe our 
result in the case of billiard balls with convex obstacles. 

Theorem 1. Pick a small 1 + a > 0. Suppose we change the 
position or curvature of the obstacle by a small amount (how small 
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depends on a). Then there is (after we ignore sets of probability 
zero) a one-to-one correspondence between points of the phase 
space so that, with probability 1 - a, corresponding points are 
closer than a ,  corresponding sets have the same probability, and 
orbits of the original system correspond to orbits of the changed 
system in a time-preserving manner. [To be completely accurate we 
may need a small rescaling of time, t -+ ct, 11 - cl < a ,  in one of the 
systems (5) .] 

Let me rephrase this in a more picturesque way. We can think of 
the above correspondence as being implemented by looking at our 
system through a viewer. In other words, when we look at the ball 
through the viewer, we see a slightly distorted position and velocity, 
the one that corresponds (via the above correspondence) to the 
position and velocity we are looking at. The viewer thus distorts 
each orbit by misreading it slightly. Our result says that the 
perturbed system is identical to the original system seen through our 
viewer, which distorts only slightly. (We get the same collection of 
orbits, and all joint probabilities are the same.) 

The interest in this result lies in the fact that changes introduced 
by changing the obstacles are cumulative, their effect builds up as 
time goes on, whereas the changes introduced by the viewer clearly 
do not build up. The viewer does not interfere with the orbit, it only 
misreads it slightly. 

Theorem 1 is delicate. For example, no matter how closely we 
approximate the obstacle by a polygon (a large change in curvature), 
any orbit of the original system and any orbit of the changed system 
will be D apart on average, where D is the average distance between 
points in the phase space (even if we rescale time). This means that, 
if we cannot distinguish points that are too close, we can change the 
system by an amount that is too small to see but still be able to 
observe the effect by looking at the system for a long time. 

Our results on stability are analogous to the structural stability 
results of Anosov and Smale. Both kinds of stability hold for smooth 
perturbations of axiom A systems. (These systems include most of 
the examples that can be analyzed rigorously.) The main differences 
are as follows: 

1) Our correspondence between phase spaces (the one in theo- 
rem 1) preserves probability whereas that of Anosov and Smale 
preserves the topology (homeomorphism). Note that a homeomor- 
phism can take a set of probability 1 to a set of probability zero. 

2) The structural stability correspondence moves all points by a 
small amount. Our correspondence moves most (except for a set of 
small probability) points by only a small amount. 

3) Our correspondence takes orbits to orbits with a constant 
rescaling of time ( t  -+ ct, c = 1). In structural stability the rescaling 
may differ from point to point (so corresponding sets may not 
evolve in the same way). 

Random Systems and Their Phase Space 
Following Kolmogorov, I will now introduce the analog of phase 

space for random processes. This will cast random processes and 
Newtonian systems in the same mathematical framework and allow 
for rigorous comparison. 

Let us do this for coin tossing. We describe the outcome of each 
coin tossing experiment (the experiment goes on for all time) as a 
doubly infinite sequence of heads (H's) and tails (T's). The phase 
space is the collection of these sequences. Each subset is assigned a 
probability. For example, the set of all sequences that are H at time 3 
and T at time 5 gets probability 114. The passage of time shifts each 
sequence to the left (what used to be time 1 is now time 0). 

Definition: The dynamical system or transformation I have just 
described is called the Bernoulli shift B[I,~,I,,, and may be identified 

with the baker's transformation. If instead of flipping a coin, we spin 
a roulette wheel with three slots of probability pl, p2, p3, we would 
get the Bernoulli shift B(pl,p2,p3). 

We identify B ( I , ~ , ~ ~ ~  with the baker's transformation as follows. We 
let H,T correspond to 0 , l  and split the two-sided infinite sequences 
into two one-sided infinite sequences such as . . . 1000.1101 - 
0.0001 . . . ,O. 110 1 . . . . These one-sided sequences give the dyad- 

ic expansion of the x and y coordimtes of a point in the square. The 
reader can check that under the correspondence I have just given 
between sequences of H,T and points in the square, coin tossing 
probabilities correspond to ordinary area and that the shift on 
sequences H,T corresponds to the baker's transformation defined in 
the introduction. 

The random process described in the introduction, called a semi- 
Markov process, gives rise to a dynamical system in the same way. 
The process can be defined as follows. We stay at one of a finite 
number of points xi on the billiard table for time ti and then jump to 
one of a pair of points according to a flip of a biased coin (the pair of 
points depends on xi). It can be shown that this new dynamical 
system is isomorphic to B,. 

We can think of the dynamical system that we get from a random 
process as an abstract model for the minimal mechanism capable of 
producing that process. If we start with a djinarnical system and 
make a measurement (which can be modeled as a function on the 
phase space), then we can think of the outcome of the measurement 
at various times as a sample path of a stationary process. 

The phase space model for a random process means, in some 
sense, that every random process could be produced by a determinis- 
tic mechanism. These mechanisms, however, are not governed by 
Newton's laws. A much harder problem, mathematically, is to show 
that the same system can arise both from Newton's laws and from 
processes based on coin flipping. 

Random Versus Deterministic Systems 
I will give an example of how the randomness of systems 

isomorphic to B, manifests itself in a more concrete way by 
comparing a system governed by Newton's laws, our billiard system, 
with a random system based on coin flipping, our semi-Markov 
system. 

Theorem 2. There exists, in theory, a nonrandom viewer that is as 
reliable as we want, and the viewer has the property that the billiard 
system with a convex obstacle seen through this viewer is identical 
(all joint probabilities are the same) to some semi-Markov system. 
Furthermore, we can still completely reconstruct the orbit we are 
looking at from the random orbit that we see. 

Technically the viewer is a measurable function from the phase 
space to the finite collection of points on the table. It is reliable in 
the sense that for most points in the phase space (position and 
velocity pairs) the position of the ball we are looking at is close to 
the position of the special point that we see. This viewer models 
finite precision measurements. 

In the billiard system, we can get as much information as we want 
about the state at time zero by making arbitrarily fine observations 
at time zero. The analogy of this with the viewer is that we make 
regular observations of fixed accuracy and we get as much informa- 
tion as we want about the state at time zero by making the sequence 
of observations go longer into the past and into the future. 

Theorem 2 says that the semi-Markov system can be thought of as 
being produced by Newton's laws. Theorem 2 holds for all systems 
isomorphic to B,. A sense in which B, is "the most random" is that 
theorem 2 only holds for systems isomorphic to B,. 

A common belief is that the appearance of randomness comes 
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Completely predictable Not completely predictable 
3 t Bernoulli 

Kor completely 
unpredictable 

Fig. 2. The kinds of chaotic behavior. 

Table 1. Predictability of finite precision observations at discrete time 
intervals (every hour on the hour). 

Class of flow Holds for Knowledge of the past tells us 

Completely predictable All observations Everything about the future 
Not completely Some observa- Not everything about the 

predictable tions future 
K All observations Arbitrarily little about fixed 

time in distant future 
Bernoulli All observations Vanishingly little about 

the long-term future 

from some microscopic random phenomenon, such as thermal 
agitation, which is magnified because of sensitivity to initial condi- 
tions. Theorem 2 says that we can get random-looking behavior 
without assuming any underlying randomness. However, we can 
still ask about the effect of adding some small underlying random- 
ness. It can be shown that in certain cases we cannot distinguish 
between randomness in the system and randomness in the device 
through which we view the system. The system that results from 
adding a small amount of randomness could be reproduced exactly 
(all joint probabilities are the same) if we were to look at the original 
system through a viewer that distorts randomly but not very much 
(with high probability). Such a viewer does not interfere with the 
process and its effect is not cumulative, whereas the effects of the 
original perturbation do accumulate, making this result somewhat 
surprising. [An exact statement and some cases where this holds are 
given in ( 7 ) . ]  

Bernoulli Flow B,, the Most Random Flow 
Possible 

Theorem 3. There is an abstract system that we call B, with the 
property that if we only look at it on the hour, then it is isomorphic 
to the Bernoulli shift, B(l/,,~,2,. If we were to look at B, on the minute 
instead of on the hour, we would get another Bernoulli shift; in fact, 
we get all Bernoulli shifts in this way. Any flow for which we can get 
a Bernoulli shift by discretizing time is isomorphic to B, after an 
appropriate rescaling of time (5). Thus Bt is "most random" in the 
sense that independent processes are the most random discrete time 
processes. 

A more definitive justification for calling B, "most random" 
comes from examining the predictability of measurements on a 
system isomorphic to B,. Recall that a measurement gives rise to a 
stationary process. We will say that measurements (with the same 
range) on different systems give rise to the same process if all joint 
probabilities are the same. 

Before discussing B,, I should point out that there is a class of 
systems that are the least random-where all measurements (even 
those of finite precision) are predictable in the sense that, if made at 
regular intervals of time, the past determines the future. We call 
these systems completely predictable. 

Isomorphism theory shows: 
Theorem 4. If a system has any observation that is not predict- 

able, then the set of processes arising from observations on the 
system includes all the processes that can arise from observations on 

B,. Furthermore, if a system is not isomorphic to B,, then it gives 
rise to some measurement that is more predictable (in a sense 
discussed in the next section) than any measurement on Bt. 

The following theorem, which is related to theorem 4, shows that 
B, is present, in some sense, in all chaotic systems and that it has a 
unique place among these systems. 

Theorem 5. Any system that is not completely predictable has Bt 
[with a possible rescaling (5, 11) of time] as a factor. Furthermore, 
the only factors of B, are B, (with a rescaling of time that slows the 
speed of B,). 

System a is a factor of system b if there is a many-to-one 
correspondence from the phase space of b to that of a, where 
corresponding sets have the same probability and evolve in the same 
way. In other words, we can make b isomorphic to a by lumping 
points together and treating these lumps as single points. Lumps 
must, of course, go into lumps under time evolution. 

One of the most important features of isomorphism theory is that 
it allows one to show that specific systems are isomorphic to B,. We 
have already encountered several such examples. A result of Pesin 
says that, when the phase space is three-dimensional, then essentially 
the only possibilities are completely predictable or B,. 

Theorem 6. Suppose we have a Hamiltonian system with a three- 
dimensional phase space, after fixing the energy. The phase space 
will then break up into possibly one but at most a countable number 
of invariant sets with the property that on each of these the system is 
either completely predictable or [after rescaling time (S)] isomor- 
phic to B, or isomorphic to a minor modification of B, (12). 

No one has been able to rigorously analyze the double pendulum 
(a pendulum with a joint in the middle) but Pesin's theorem says 
that it is either the most random possible or completely predictable. 
Computer studies make it highly unlikely that it is completely 
predictable. 

The Varieties of Chaotic Behavior 
At one extreme we have a single flow Bt, whereas at the other 

extreme we have the class of flows that are completely predictable 
(the billiard system with no obstacles is an example). The flows that 
are not completely predictable are generally considered chaotic. Not 
being completely predictable is essentially the same as having 
sensitivity to initial conditions, positive Lyapunov exponents, or 
positive entropy. 

A flow that is not completely predictable may have some predict- 
able and some non~redictable measurements. There is a subclass that 
is especially chaotic, the so-called K flows, where no measurement is 
predictable. 

It was once hoped that the general picture would be fairly simple, 
at least in discrete time. It had been conjectured that the only 
discrete-time K systems were the Bernoulli shifts and that every 
discrete system was the product of a K system and a completely 
predictable system (the Pinsker conjecture). The latter would mean 
that every stationary process could be realized as a function of the 
joint output of a completely predictable system and a K system (the 
two systems not interacting). 

Theorem 7. There exist systems that are not the product of a 
completely predictable system and a completely nonpredictable 
system. 

Theorem 8. There are K transformations that are not Bernoulli 
shifts and K flows that are not B, (Fig. 2). 

There are man" theorems to the effect that the K class is extremelv 
complicated. In particular, the fact that so many different systems are 
isomorphic to B, is not due to a lack of possible alternatives. These 
examples also show that there are chaotic processes that cannot be 
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closely simulated by more general semi-Markov processes (for 
example, if we jump to more than two points and replace coin 
flipping with a more complicated independent process). Thus, not 
all randomness can be understood in terms of coin flipping or 
independent processes (7). 

We can also characterize the different degrees of randomness by 
the predictability of observation made on the systems (Table 1).  I 
will not state these results precisely but refer the reader to (7) for the 
precise statement; Table 1 should give the reader a rough idea. 

Dissipative Systems 
The main example I used to illustrate our results was billiards, a 

conservative system. These results, however, apply to a large class of 
dissipative systems, those that satis9 axiom A. In this situation there 
is an invariant set in the phase space, the attractor. The attractor has 
an invariant probability structure and is exactly the kind of dynami- 
cal system I have been describing (it is even isomorphic to B,). The 
difference is that the probability of our system being on the attractor 
is zero. However, with probability 1, every trajectory of our system 
is asymptotic to a generic trajectory on the attractor, and thus the 
dynamics of the attractor still governs the observed long-term 
behavior of the system. 

I conjecture that the above situation is typical of dissipative 
systems. In particular, I conjecture that long-term statistical averages 
exist for dissipative as well as conservative systems. 

Historical Overview of Isomorphism Theory 
for Chaotic Systems 

Isomorphism theory for chaotic systems was initiated in 1958 
when Kolmogorov and Sinai (13) introduced the concept of entropy 
to ergodic theory and used it to solve a long-standing problem by 
showing that not all Bernoulli shifts were isomorphic. [They 
showed that the entropy of B(pl,p2,p3) was pl logpl + pz logpz + 
p3 log p3, and so forth, and that shifts of different entropy could 
not be isomorphic (13).] Sinai showed that a Bernoulli shift was a 
factor of anything not completely predictable (in discrete time) 
(14). 

On the concrete side, Adler and Weiss proved an isomorphism 
theorem for automorphisms of the 2-torus (15), and Sinai (16) and 
Anosov (17) showed that a large class of systems (including billiard 
balls with obstacles) were completely nonpredictable. Anosov also 
showed that these systems were stable in a topological rather than a 
statistical sense (structural stability) ( I  7). 

The first of the group of results discussed in this article came in 
1970 when Ornstein showed that Bernoulli shifts of the same 
entropy were isomorphic (18) by methods different from those of 
Sinai and those of Adler and Weiss. By a still different set of ideas 
Ornstein showed that the completely unpredictable class contained 
more than the Bernoulli shifts (19) and that not every transforma- 
tion was the direct product of a completely unpredictable and a 
completely predictable transformation (20). 

With the method used to prove the isomorphism theorem for 
Bernoulli shifts, Ornstein showed that Bernoulli shifts could arise in 
the context of real (continuous) time, that there was a unique 
Bernoulli flow (which strings together all of the Bernoulli shifis), 
that the only factors of B, are B,, and that B, is a factor of any system 
that is not completely predictable (21). 

The connection with concrete systems was made when Weiss and 
Ornstein showed that the geodesic flow on a surface of negative 
curvature is isomorphic to B, (22). Since then it has been shown that 

a large class of specific flows were isomorphic to B,. This was done 
by using the work of Sinai, Anosov, Pesin, and others (23) to check a 
criterion ( 8 )  that makes the isomor~hism theorem work. 

\ ,  

In many cases the isomorphisms produced by the theory do not 
move points very much and we get theorem 1, a statistical version of 
Anosov's result; on structural siability, and theorem 2 (7). 

There is a series of results (24), due mainly to Feldman, Rudolph, 
Thouvenot, Weiss, and Ornstein, that is a continuation of the 
abstract results mentioned above and that contains some of the 
deepest results in this subject. Unfortunately I do not have the space 
to describe them. 

There is also an area of finitarv codes that are a continuation of the 
result of Adler and Weiss but aie less directly related to the results of 
this article. The ones most closely related are (25). 
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Peptide and Protein Synthesis by Segment 
Svnthesis - Condensation 

The chemical synthesis of biologically active peptides and 
polypeptides can be achieved by using a convergent strate- 
gy of condensing protected peptide segments to form the 
desired molecule. An oxime support increases the ease 
with which intermediate protected peptides can be syn- 
thesized and makes this approach useful for the synthesis 
of peptides in which secondary structural elements have 
been redesigned. The extension of these methods to large 
peptides and proteins, for which folding of secondary 
structures into functional tertiary structures is critical, is 
discussed. Models of apolipoproteins, the homeo domain 
from the developmental protein encoded by the Antenna- 
pedia gene of Drosophila, a part of the Cro repressor, and 
the enzyme ribonuclease TI and a structural analog have 
been synthesized with this method. 

I N THIS ARTICLE WE DESCRIBE EFFORTS IN OUR LABORATORY 

to prepare models for biologically active peptides and polypep- 
tides in which we have focused our attention on secondary 

structural elements such as a helices and have, to a first approxima- 
tion, been able to neglect tertiary structure (1, 2). We then proceed 
to the question of whether the principles that we have developed for 
the design of secondary structural units in such molecules can be 
extended to the replacement of naturally occurring secondary struc- 
tural elements by redesigned units in proteins where folding to form 
tertiary structures is crucial. 

How to Construct Model Proteins 
One of the most p o w e h l  techniques for the construction of 

proteins has been the cloning of genes followed by the expression of 
the corresponding naturally occurring proteins in suitable host 
systems (3). To obtain modified protein structures, the techniques 
of site-djrected or cassette mutagenesis have been used to modify the 
gene structures. Alternatively, with the considerable progress that 
has been made in DNA synthesis, both natural and modified 
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proteins can be prepared through the expression of corresponding 
synthetic genes. 

In view of the power of the molecular biological methods, it is 
reasonable to ask whether chemical synthesis of proteins remains a 
viable alternative. The Merrifield solid-phase procedure ( 4 ) ,  in 
which the carboxyl terminus of the growing peptide chain is 
covalently anchored to a solid support, revolutionized peptide 
synthesis. When used in combination with purification techniques 
such as high-performance liquid chromatography (HPLC), the 
preparation of peptides 30 or 40 amino acids in length has become 
almost routine. However, when one proceeds to the stepwise 
synthesis of longer peptides and of small proteins in the range of 50 
to perhaps 150 amino acids in length, the problems that arise in the 
purification and characterization of materials often become formida- 
ble. Although small proteins up to about 150 amino acids in length 
have been synthesized with the stepwise solid-phase method (S), the 
purification of such materials has been difficult and the homogeneity 
of the resultant peptides has been difficult to establish. Furthermore, 
if a family of mutants or structural analogs of such small proteins are 
to be prepared by the solid-phase method, most of the molecule 
must be resynthesized for each mutant, unless the mutation is near 
the amino terminus. 

Nevertheless, the appeal of chemical methods for the preparation 
of small proteins remains high because such methods have flexibility 
that would be difficult or impossible to achieve by the molecular 
biological approaches. In particular, as we have already demonstrat- 
ed for the opioid peptide p-endorphin, through chemical synthesis it 
is possible to introduce nonpeptidic structural regions, to replace a 
right-handed helix by a left-handed helix, and to use unnatural 
amino acids (6 ) .  Also, isotopically labeled amino acids useful for 
spectroscopic studies can be introduced at specific locations in the 
peptide or protein molecule by chemical methodology (7). 

The classical approach to preparing peptides of 30 to 40 residues 
in length was to synthesize well-characterized protected peptide 
segments through solution-phase methods and then to couple the 
resultant segments in solution to make the desired product. Such a 
segment-condensation approach has been successfully applied to the 
synthesis of enzymes (8). Solution syntheses of the peptide segments 
allowed the purity of the growing peptides to be monitored at each 
stage of the synthesis, but the synthetic efforts were enormously 
tedious, limiting the number of peptides that could be constructed 
in a reasonable length of time. Furthermore, there was no assurance 
that the assembly of the protected peptide segments would proceed 
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