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The phenomenon of gravitropism allows 
experimental manipulation of the rate of cell 
extension within the soybean hypocotyl 
without the application of exogenous auxin. 
Soon after a seedling is moved to a horizon- 
tal positon, the rate of extension increases 
on the lower side. This differential growth 
response continues until the apex regains a 
vertical orientation and symmetrical growth 
resumes (Fig. 2). Under the conditions used 
in this study, the gravitropic growth re- 
sponse is evident in most seedlings after 45 
min of horizontal gravistimulation. A sym- 
metrical distribution of SAUR hybridiza- 
tion about the major axis of the hypocotyl in 
seedl i i  incubated vertically is shown in 
Fig. 2. This distribution is maintained for at 
least 10 min of horizontal incubation. Seed- 
lings incubated horizontally for 20 rnin 
show a decreasing SAUR hybridization sig- 
nal on the upper right side of the seedling 
and an increase in signal on the lower side. 
By 45 min of gravistimulation, when hypo- 
cotyl bending is first clearly apparent, 
SAUR hybridization is weak on the upper 
side and a very strong signal is observed in 
the lower cortex. After 90 min in the hori- 
zontal position most seedlings have bent 
about 45 degrees and the strongest SAUR 
hybridization signal is along the lower side 
of the curved hypocotyl where cell extension 
is greatest. By 180 min, the apices of the 
seedlings regain a vertical position. In these 
seedlings SAURs are symmetrically dismb- 
uted in the vertically oriented portion of the 
hypocotyl while retaining a strongly asym- 
metric distribution in the horizontally ori- 
ented segment. The kinetics of this redism- 

Flg. 2. T i e  course of 
SAUR redistribution in re- 

10 min 

35S Ink 

bution are similar to those previously re- 
ported for the auxin-induced accumulation 
of SAURs in excised EHS (that is, a steady 
state appears to have been reached after 45 
min of gravistimulation). However, the de- 
cay of the SAUR hybridization signal on the 
upper side of the hypocotyl by 45 min is 
b t e r  than the decay of the signal in the 
excised organs. In excised EHSs, the mini- 
mum SAUR hybridization signal was ob- 
served after 4 hours of incubation in the 
absence of auxin (4), suggesting that these 
sequences turn over more rapidly under the 
gravistimulation conditions used here. 

Comparison of the autoradiographic and 
India ink-stained images (Fig. 2) shows that 
the differential SAUR hybridization signal is 
not due to uneven tissue printing. In other 
control experiments, we found that sense 
strand RNAs do not hybridize to tissue 
prints of uninduced or auxin-induced seed- 
lings (lo), and that the distribution of a 
non-auxin-inducible RNA (5A) is not al- 
tered during graviaopism (Fig. 2). Other 
experiments have shown that in gravistimu- 
lated organs, redistribution of the SAURs 
results in greater concentration on the lower 
side, regardless of the position of the cotyle- 
dons (10). 

The results presented here show that the 
redistribution of the SAURs, induced by 
gravistimulation, occurs before the onset of 
gravitropism (as observed with the unaided 
eye). The distribution of the SAURs indi- 
cates where the enhanced rate of cell exten- 
sion will occur. Tissue printing shows that 
the SAURs are expressed in the cortex and 
epidermal layers of the hypocotyl. In situ 

20 mln 

sponx to gravity. At each p-- 

time point, examples of ver- r! - ..- ',? w. .- 
tical control and horizontal- 1-G -A 3 5 ~  - 
ly gravistimulated seedlings bF are shown in their respective - - -9 Ink ""3 
orientations. For each seed- 
ling a tissue print autoradio- 
gram (3SS) and a stained im- 
age (Ink) is shown. India , 
ink stains proteins and com- 
plex carbohydrates and pro- 
duces an image of the tissue 
print; this indicates that all 
regions of the hypocoty1 are 
unifonnily blotted. For 
comparison with the SAUR 
hybridization patterns a scc- 
ond set of 180-min control 
and gravistimulated seed- 1 

lings hybridized with the 
non-auxin-responsive done w 
5A is shown at the lower 
right. Under the incubation h i  
conditions used here, the 
negative pvitropic re- r 
sponse is vistble after about 
45 min of gravistimulation (14). 

05 min 

8 0  min 180 min clone 5A 

hybridization studies can be used to define 
the exact cell types that express the SAURs 
in gravistimulated and unstimulated organs. 
The kinetics of the SAUR redistribution are 
in accord with our earlier results, which 
show that accumulation of these RNAs be- 
gins before auxin-induced cell extension in 
excised EHSs and that expression is strong- 
est in the rapidly elongating regions of 
soybean sterns (the EHS and the apical 
portion of the epicotyl) (4). Therefore, the 
expression of the SAUR genes is highly 
correlated with cell extension. However, the 
fungal toxin fusicoccin, which also induces 
cell extension in these organs, does not cause 
accumulation of the SAURs (4). Thus, any 
role of these sequences in cell extension 
could be specific to auxin-induced cell exten- 
sion. Our results suggest that auxin-regulat- 
ed gene expression has a role in the gravitro- 
pic response. This may be due to a redistri- 
bution of endogenous auxin (ll), or to 
altered sensitivity to auxin in gravistimulat- 
ed tissues (12), or to some other mechanism. 
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Gating of Retinal Transmission by Merent Eye 
Position and Movement Signals 

RATNESHWAR L a *  AND MICHAEL J. FRIEDLANDER? 

Vision in most vertebrates is an active process that requires the brain to combine 
retinal signals with information about eye movement. Eye movement information may 
feed forward from the motor control areas of the brain or feed back from the extrinsic 
eye musdes. Feedback signals elicited by passive eye movement selectively gate retinal 
outflow at the first relay, the dorsal lateral geniculate nucleus. The gating predomi- 
nantly facilitates retinogeniculate transmission immediately after eye movement and 
inhibits transmission when a new steady-state eye position is achieved. These two 
gating effects are distributed in a complementary fashion across the dorsal lateral 
geniculate nucleus such that the spatiotemporal activity profile could contribute to 
object detection and localization. 

contact lens and an intravitreal injection of 
tetrodotoxin (TTX) (10). 

Extracellular recordings made with fine- 
tipped micropipettes (7)  were obtained 
from 209 single X or Y ( I  I) neurons of the 
A layer of the left dorsal lateral geniculate 
nucleus (LGNd) (contralateral to the eye 
being visually stimulated but ipsilateral to 
the eye being moved). Thus, LGNd layer A 
received a modulated retinal signal only 
from the stationary eye. Two types of ex- 
periments were performed: a tonic eye posi- 
tion experiment in which the steady-state 
position of the left eye was varied (n = 133 
neurons) and a eye movement experi- 
ment in which a brief movement of the left 
eye occurred at various times before or after 

T HE EXTRAOCULAR MUSCLES (EOM) brief phasic movement of the left eye was the visual stimulus onset (n = 76 neurons). 
of mammals are richly innervated by randomly varied by a computer (9). The left A subset of the neurons that showed signifi- 
stretch receptors (1, 2) that, when eye was prevented from receiving visual cant changes in their visual response after 

activated, produce phasic bursts of activity stimulation by occlusion with an opaque eye movements (n = 12) was also tested for 
(2, 3) that may interact with visual signals in 
neurons in brain regions that receive mono- 
synaptic retinal input (4). Interaction of 
phasic eye movement signals from the EOM 
with retinal signals has also been reported in 
higher centers such as visual cortext ( 5 ) .  
However, information is not available on 
the effects of EOM-mediated tonic eye posi- 
tion changes and phasic eye movements on 
early visual processing in functionally identi- 
fied neurons with respect to their positions 
on the retinal map. Thus, it is not known 
how the nervous system could use such infor- 
mation to facilitate spatial localization of 
objects. This is of particular interest in light 
of reports that feed-forward signals may be 
sufficient to signal eye position during per- 
formance of certain oculomotor tasks ( 6 ) .  

We have examined the effects of passive 
changes in eye position and eye movement 
on retinogeniculate transmission in the cat. 
General surgical methods, anesthesia, and 
electrophpsiological recordings were as de- 
scribed (7 ,  8). The experimental procedure 
is shown in Fig. 1. The same visual stimulus 
was repeatedly delivered to the right eye 
while the steady-state position or time of a 
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Fig. 1. Experimental procedure. A 
(A) Schematic top view of the cat's 
eyes and relevant projection of the 
retinas to the LGN (animal looking LGN 

toward bottom of figure). The loca- 
tions of the medial rectus (MR) 
and lateral rectus (LR) muscles and 
their tendons of insertion (TI) on 
the globe of the left (moving) eye 
are indicated. The right eye, which 
remained stationary and received 
visual stimulation, was fitted with a Retina TI 
contact lens. Bv a~~ l i ca t ion  of the , L L  

correct spectacle lens, the right reti- 
na was made conjugate with a dis- 
play monitor positioned at a view- 
ing distance of 57 cm. The left eve, 
whvich was moved but received h i  
visual stimulation. was fitted with B Visual display Luminance profile EOG 
an opaque contact lens occluder 
and received an intraocular injec- Position 

tion of TTX in most cases. iB) 
Visual stimuli (delivered to rig& 
eye) and eye movement signals (of Movement 
left eye). For the eye position ex- 
periment, the visual display (a drift- 
ing grating pattern) and electroocu- C Control lTX 
lograrn (EOG) indicating a steady- 
state change in eye position are 
indicated. For the eye movement 
experiment, the visual display (an 

d 
abrupt onset circular spot posi- 

IF:. - 
tioned within the receptive field of the LGN, neuron) and brief (75 ms) phasic eye movement are 
indicated. Neuronal responses were collected for six eye positions or ten times of eye movement in a 
randomized, interleaved fashion. Blocks of five trials were collected for each eye position or time of 
movement in an interleaved fashion. The new position or time was selected by the computer with a new 
randomization from a table of preselected values during a 1-s pause. During the pause period, the visual 
display remained spatially and temporally homogeneous. (C) Visually evoked potential recorded from 
optic nerve of left (moving) eye before and after TTX injection into vitreous humor. 
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