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Evolution of Urea Synthesis in Vertebrates: 
The Piscine Connection 

Elasmobranch fishes, the coelacanth, estivating lungfish, amphibians, and mammals 
synthesize urea by the ornithine-urea cycle; by comparison, urea synthetic activity is 
generally insignificant in teleostean fishes. It is reported here that isolated liver cells of 
two teleost toadfishes, Opsanus beta and Opsansus tau, synthesize urea by the ornithine- 
urea cycle at substantial rates. Because toadfish excrete ammonia, do not use urea as an 
osmolyte, and have substantial levels of urease in their digestive systems, urea may 
serve as a transient nitrogen store, forming the basis of a nitrogen conservation shuttle 
system between liver and gut as in ruminants and hibernators. Toadfish synthesize 
urea using enzymes and subcellular distributions similar to those of elasmobranchs: 
glutamine-dependent carbamoyl phosphate synthethase (CPS 111) and mitochondrial 
arginase. In contrast, mammals have CPS I (ammonia-dependent) and cytosolic 
arginase. Data on CPS and arginases in other fishes, including lungfishes and the 
coelacanth, support the hypothesis that the ornithine-urea cycle, a monophyletic trait 
in the vertebrates, underwent two key changes before the evolution of the extant 
lungfishes: a switch from CPS I11 to CPS I and replacement of mitochondrial arginase 
by a cytosolic equivalent. 

T HE SYNTHESIS OF UREA BY THE OR- 

nithine-urea cycle is widespread 
among the vetebrates. Marine elas- 

mobranchs (sharks, skates, and rays), the 
coelacanth, and holocephalan fishes use urea 
as an important osmolyte (I) ,  whereas esti- 
vating lungfishes (2) and amphibians (3) 
synthesize urea to detoxie ammonia during 
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periods of water stress. Mammals synthesize 
urea to detoxify ammonia (4), a probable 
prerequisite for living on land, whereas ru- 
minants and some hibernating mammals 
recycle nitrogen between liver and gut 
through urea (5). Urea cycle enzymes have 
been detected in only minute activities in 
some teleostean fishes (6) and are absent in 
others (7). Significant urea synthesis has not 
been reported in teleosts (8), and uricolysis 
or hydrolysis of dietary arginine through 
arginase are the suggested sources for urea 
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CPS, which in elasmobranchs is glutamine- 
dependent (CPS 111), and arginase, which is 
rnitochondrial (1 1). In amphibians and mam- 
mals, CPS depends on ammonia (CPS I) and 
a cytosolic arginase liberates urea (12). 

With few exceptions, teleostean fishes 
spend most of their lives in water, disposing 
of waste nitrogen as ammonia with little, if 
any, metabolic expenditure (13). Therefore, 
Read's early description (14) of significant 
levels of all urea cycle enzymes in the liver of 
oyster toadfish (Opsanus tau), a marine tele- 
ost, has remained an anomaly in the litera- 
ture. Also, the physiological and evolution- 
ary significance of this observation was ne- 
glected and the actual occurrence of urea 
synthesis in 0. tau was not assessed. 

We report that the liver of the related 
Gulf toadfish, 0, beta, contains a high titer 
of all urea cycle enzymes (Table 1) (15). 
Isolated liver cells of 0. beta and 0, tau (16) 
rapidly synthesize and release urea (17) (Ta- 
ble 2). Rates of urea synthesis in these 
toadfishes are higher than in elasmobranch 
hepatocytes and for 0. beta approach one- 
third of the mammalian rate (18). Other- 
wise, toadfish liver cells reveal no metabolic 
peculiarities, with enzyme activities and 
metabolic flux rates similar to those of other 
teleosts (Tables 1 and 2) (19). 

Although toadfish accumulate urea in 
their plasma (24,  they are not ureotelic. 
Like other aquatic teleosts, both toadfish 
species are ammoniotelic (21), whereas ex- 
cretion of urea is below the limit of detec- 
tion in 0, beta and in trace amounts in 0, tau 
(14). Because the concentrations of urea 
achieved in the plasma of the toadfish are 
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small compared with other plasma compo- contents (24) suggest that urea is used as a 
nents (22), urea is unlikely to serve as a transport form for nitrogen and that the 
relevant osmolpte. Arnmoniotelism, low lev- synthesis of urea in the toadfish is a nitrogen 
els of plasma urea compared to substantial salvage mechanism. Therefore, we propose 
synthetic activity in the liver (23), and con- an intertissue nitrogen cycle in these toad- 
siderable activity of urease in toadfish gut fish involving hepatic urea synthesis and gut 

Urea synthesis CPS Glutamlne 
Vertebrate (function) type Arglnase synthetase 

No M C 
No 

Yes ( I )  Ill M M 
Rays, skates Yes (1) 111  M M 

Yes ( I )  Ill M M 
No 
No 
No Ill M 
No 111 M C 
No M C 
No 111  
No 111 M M 
No 111  

ish Yes (3) 111  M C 
Gulf toadfish Yes (3) 111 M M 

Yes ( I )  Ill M 
Yes (2,l) 1 C C 
Yes (2,l) C C 
Yes (2) I C C 

Turtles, tortoises Yes (2) I M 
Snakes, lizards No I C 

No M 
No M 

Yes (2) I C C 
Hibernators 
Ruminants (2'3) I C C 

Fig. 1. Urea synthesis by the ornithine-urea cycle in vertebrates. Function of urea: 1, osmolyte; 2, 
ammonia detoxification; 3, nitrogen cycling benveen liver and gut; CPS I11 is glutamine-dependent; 
CPS I is ammonia-dependent; M, mitochondrial; C, cytosolic. Hagfish (Eptatvetus stouti, Myxiniformes); 
sharks (Elasmobranchii) (11, 36); rays and skates (Raja evinacea) (Elasmobranchii) (1 1, 37); chimaera 
(Hydvolagus colliei, Holocephail) (11, 34, 38); sturgeons and paddlefishes (Chondrostei) (39); bowfin 
(Amia calva, Holostei); bichir (Polyptevus spp., Holostei); trout (Salmo gaivdnevi, Teleostei); bass 
(Micvoptevus salmoides) (40); carp Cypvinus cavpio) (41); midshipman (Povichthys notatus, Batrachoididae) 
(11); oyster toadfish (Opsanus tau, Batrachoididae); Gulf toadfish (0. beta); coelacanth (Latimevia 
chalumnae, Coelacanthiformes); lungfish (*) (Pvotoptevus aethiopicus, Dipnoi); lungfish (+) (Pvotoptevus 
annectens); amphibians (3); reptiles, crocodiles, birds (42); and mammals (12, 43). 

Table 1. Enzyme activities in toadfish liver. Enzyme activities were measured at 24°C (0. beta) or 20°C 
( 0 .  tau) under saturation conditions. 

- 

Actlvitles (mlcromolcs of product per gram 
Enzymes of llver per minute 2 SEM) 

Opsanus beta Opsnnus tau 

Ornithine carbamoyl transferase 
Argininosuccinate synthetase 
Argininosuccinate lyase 
Arginaset 

Nitrogen donor: glutamine 
Nitrogen donor: ammonia 

Glutamine synthetases 
Glutamate dehydrogenase 
Citrate synthase 
Lactate dehydrogenase 

L'vea cycle 
52.11 i 5.09 (18)' 

0.08 i 0.01 (7) 
0.33 i 0.03 (7) 

31.49 i 4.22 (9) 
Cavbamoyl phosphate synthetase* 

7.80 * 1.2 (7) 
0.84 * 0.06 (2) 

Intevmediavy metabolism 
5.39 2 0.67 (18) 

103.4 t 17.5 (5) 
1.57 i 0.29 (13) 

25.1 k 1.61(12) 
- - 

*Number of independent duplicate determinations. thginase  fractionates with citrate spthase, ornithine 
carbamoyl transferase, and glutamate dehvdrogenase, that is, as a mitochondrial matriv enzvme. SCPS was 
measured in isolated mitochondria, and activity was calculated on the basis of the vield in mitochondria; activities are 
given in micromoles per gram per hour; toadfish CPS sho~vs the characteristi& of CPS 111, higher activinp with 
glutamine than with ammonia. CPS I does not accept glutamine as a nitrogen donor. §Glutarnine synthetase is 
mitochondrial in 0. beta (n = 5).  The enzyme is cytosolic in 0, tau, that is, behaves like lactate dehydrogenase during 
cell fractionation (n = 10). 

urease, analogous to urea-based nitrogen 
cycling in ruminants and some hibernating 
mammals (5, 25). Because toadfish lose little 
or no urea to the environment, permeability 
for urea, which is high in teleosts, is likely to 
be extremely low in toadfish gills (and kid- 
neys). 

Within the Batrachoididae, the capability 
for urea synthesis may be restricted to the 
genus Opsanus [Poi,ichthys notatus, another 
member of the same family, displays com- 
paratively low levels of CPS (II)] .  The 
recent observation of high activities of all 
urea cycle enzymes in Hetevopneustes fossilis, 
an air-breathing catfish (26), suggests that 
species with semi-aquatic life-styles will be 
appended to the list of ureogenic teleosts, 
with urea assuming the familiar detoxifica- 
tion function. The selective pressures pecu- 
liar to toadfish leading to the expression of 
genes that appear silent in most other extant 
teleotsts are not obvious: present-day toad- 
fish are not routinely exposed to air, and 
their dietary physiology has pet to be exam- 
ined. 

Once we had established the activity and 
function of the urea cycle in the toadfishes, 
we became interested in the evolutionaqr 
implications. Toadfish synthesize urea with 
enzymes and enzyme compartmentation 
(27) identical to those in elasmobranchs 
(II) ,  including CPS 111 and mitochondrial 
arginase (Table 2). Subsequently, we ana- 
lyzed CPS and arginase characteristics in a 
variety of fishes: the coelacanth, n170 species 
of African lungfish, hagfish, ratfish, bichir, 
bowfin, trout, and carp. The resulting clado- 
gram (Fig. 1) strongly suggests that urea 
synthesis within the vetebrate line is a 
monophyletic trait that has undergone bio- 
chemical and functional changes in the 
course of vertebrate evolution. Only minor 
biochemical changes need be postulated to 
explain this development: (i) the switch 

Table 2. Metabolic activities of isolated toadfish 
hepatocytes. Experiments were conducted at 
24°C (0, beta) or 20°C (0. tau) .  

Activity (micromoles 

Metabolic pathway O ~ / ~ ~ ~ ~ ~ $ ~ ~ s g ~ ~ ~  

hour k SEM 

Opsanus beta 
Urea synthesis 

With glutamine (5 mI4) 17.26 2 3.16 (lo)* 
With ammonia (5 mhf) 3.38 i 0.50 (6) 

L-Lactate oxidation 3.22 2 0.46 (7) 
L-Lactate gluconeogenesis 0.96 i 0.19 (7) 
L-Alanine oxidation 8.14 i 1.22 (6) 
L-Alanine gluconeogenesis 1.40 i 0.34 (6) 

Opsanus tau 
Urea synthesis 

With glutamine (5  m M )  1.48 1 0.27 (10) 

"Number of independent duplicate determinations. 
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from CPS 111 to CPS I; (ii) the replacement 
of mitochondrial arginase by a cptosolic 
counterpart; and (iii) adjustment of mito- 
chondrial transporter specificity from argi- 
nine to ornithine. Further, these switches 
appear linked and occurred before the evolu- 
tion of the extant lungfishes. Our finding of 
mitochondrial arginase and CPS I11 in the " 
coelacanth liver leads to the positioning of 
the coelacanth with the teleost-elasmo- 
branch group and thus away from the am- 
phibians and the lungfishes, a suggestion 
that is likely to fuel the current controversy 
over Latimeria's "true" position (28). Few 
minor biochemical changes are involved in 
the switch from CPS I11 to CPS I (29), two 
enzymes with strong immunological cross- 
reactivity (30). If the mitochondrial and 
cptosolic arginases are products of the same 
gene, only a loss of the mitochondrial leader 
seauence needs to be invoked to exolain 
the subcellular distribution of vertebrate ar- 

inases. g ' 
Two distinct paths of urea synthesis in the 

vertebrates can ;bus be distinguished, lead- 
ing to the liberation of urea in different 
compartments. In the presence of mitochon- 
drial arginase-as in all fishes, including the 
coelacanth-arginine must enter the mito- 
chondrion, and, after urea production, orni- 
thine is directlv available for citrulline svn- 
thesis by ornithine carbamoyl transferase, an 
enzyme of the mitochondrial matrix. If argi- 
nase is localized in the cvtosol. as it is in 
lungfish, amphibians, and mammals, orni- 
thine has to enter the mitochondrion for 
citrulline synthesis. Because glutamine plays 
a central role in urea synthesis, either direct- 
ly as a substrate for CPS 111, indirectly as a 
nitrogen transporter (31), or as a temporary 
nitrogen sink for the detoxification of am- " 
monia, we have included glutamine synthe- 
tase (GNS) in Fig. 1. Before the switch to 
CPS I, ammonia-was probably trapped or 
detoxified in liver (if required) initially by 
GNS and then became available to CPS. The 
subcellular localization of GNS appears to . . 
be plastic (Fig. I ) ,  and ammonia could enter 
the mitochondrion either directly (as in 0. 
beta with mitochondrial GNS) or be carried 
on glutamine (as in 0, tau). In other ("high- 
er") vertebrates, glutamine eventually as- 
sumes a ~ivotal  role as an intertissue trans- 

I 

porter for "nitrogen." Because of its localiza- 
tion around the hepatic venule (32), GNS in 
mammals fulfills a detoxification function 
subordinate to the urea cycle (33). The 
(cytosolic) enzyme is positioned to prevent 
hepatic ammonia not utilized in urea synthe- 
sis from spilling over into the circulation. 
Although our results shed new light on the 
distribution. function, and evolution of the 
urea cycle in vertebrates, they also suggest a 
reevaluation of the central role of glutamine, 

which is intricately linked to the route of 
urea synthesis. 
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Phylogenetic Meaning of the Kingdom Concept: 
An Unusual Ribosomal RNA from Giardia lamblia 

An analysis of the small subunit ribosomal RNA (16s-like rRNA) from the protozoan 
Giardia lamblia provided a new perspective on the evolution of nucleated cells. 
Evolutionary distances estimated from sequence comparisons between the 16s-like 
rRNAs of Giardia lamblia and other eukaryotes exceed similar estimates of evolution- 
ary diversity between archaebacteria and eubacteria and challenge the phylogenetic 
significance of multiple eukaryotic kingdoms. The Giardia lamblia 16s-like rRNA has 
retained many of the features that may have been present in the common ancestor of 
eukaryotes and prokaryotes. 

T HE TAXONOMIC SEGREGATION OE 

organisms into two or more king- 
doms is a legacy from early systemat- 

ic biologists who relied on morphological 
variation at the macroscopic level to differ- 
entiate plants from animals. With the dis- 
covery of the microbial world and the devel- 
opment of analytical tools for defining sub- 
cellular features, the number of proposed 
kingdoms has increased, and the debate 
about evolutionary relationships between 
the major groups of eukaryotic organisms 
has intensified (1 ) . Controversies over con- 
flicting taxonomic schemes are usually due 
to a lack of consensus about which charac- 
teristics are most useful for inferring phylog- 
enies. As an alternative to traditional meth- 
ods, comparisons of gene sequences that 
share a common ancestry can be used to 
infer objective phylogenetic frameworks (2). 
The 16s-like rRNAs have proved to be 
particularly well suited for estimating rela- 
tionships between even the most divergent 
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taxa (3). Here we describe extensive differ- 
ences between the 16s-like rRNAs of Giav- 
dia lamblia and other eukaryotes, including 
diverse protozoans. 

The protozoan parasite G,  lamblia is a 
diplomonad, which can be propagated in 
vitro but normally lives attached to the 
intestinal mucosa of its host. Giavdia lamblia 
has two nuclei and eight flagella but lacks 
mitochondria and normal endoplasmic retic- 
ulum (ER) or Golgi (4). Either these fea- 
tures were introduced into other eukaryotes 
after the divergence of diplomonads or they 
were lost in the G,  lamblia evolutionary 
lineage. To identify its phylogenetic place- 
ment, we determined the sequence of the G.  
lamblia 16s-like rRNA coding region and 
compared it to the rRNAs of divergent taxa. 

The G. lamblia 16s-like rRNA sequence 
(5, 6) is unusually rich in G + C  content 
(75%) and has only 1453 nucleotide posi- 
tions, a size more typical of prokaryotes than 
of eukaryotes. A collection of 41 eukaryotic 
17-9). 6 archaebacterial(10). and 7 eubacter- 
ial 16s-like rRNAs (11; &re aligned with 
the G,  lamblia sequence by a computer- 
assisted procedure that considers the conser- 
vation of both primary and secondary struc- 
ture features. Evolutionary distances (6) 
were used in the distance matrix methods 
(12) to infer the phylogenetic tree shown in 

Fig. 1. In this phylogenetic framework, G.  
lamblia represents the earliest diverging lin- 
eage in the eukaryotic line of descent. The 
G,  lamblia branching is followed by the 
microsporidian Vaivimovpha necatvix and then 
by euglenoids (Euglena gvacilis) and kineto- 
plastids (Tvypanosoma bvucei). Late in the 
evolution of eukaryotes there was a nearly 
simultaneous splitting of animals, fungi, 
chlorophytes plus plants, chromophyte al- 
gae, and ciliates plus dinoflagellates. The 
precise branching order for these lineages is 
statistically uncertain, since it spans a dis- 
tance of fewer than one nucleotide change 
per 100 positions. Yet the general branching 
pattern is nearly constant in similar phyloge- 
netic trees that include different representa- 
tives of these major eukaryotic lineages. 
Similar tree topologies are observed by us- 
ing the parsimony methods implemented by 
Swofford's computer program, "Phyloge- 
netic analysis using parsimony" (PAUP) 
(13), with the significant difference that V. 
necatvix branches before G. lamblia. Unequal 
rates of change in one or more lineages 
(which are represented by long segments in 
distance matrix trees) sometimes produce 
anomalously deep branching patterns or 
generate different tree topologies when par- 
simony rather than distance methods are 
used (14, 15). The segment connecting G. 
lamblia to the eukaryotic subtree is not ab- 
normally long and therefore its early diver- 
gence is not due to an unusually high muta- 
tion rate in its rRNA genes. In contrast, V. 
necatvix seems to have evolved more rapidly 
than the rRNAs of other eukaryotes, which 
may explain the alternate branching orders 
in distance and parsimony analyses. 

The tree geometry in Fig. 1 could be 
biased by the high GIC content in the 16S- 
like rRNAs of G. lamblia (75% GIC) and 
Sulfolobus solfataricus (67% GIC). If GIC-rich 
16s-like rRNAs are used to represent the 
eubacteria and archaebacteria, then conver- 
gence toward G or C at a number of sites 
might influence the phylogenetic position of 
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