
Measuring the Accuracy of Diagnostic Systems 

Diagnostic systems of several kinds are used to distin- 
guish between two classes of events, essentially cCsignals" 
and "noise." For them, analysis in terms of the "relative 
operating characteristic" of signal detection theory pro- 
vides a precise and valid measure of diagnostic accuracy. 
It is the only measure available that is uninfluenced by 
decision biases and prior probabilities, and it places the 
performances of diverse systems on a common, easily 
interpreted scale. Representative values of this measure 
are reported here for systems in medical imaging, materi- 
als testing, weather forecasting, information retrieval, 
polygraph lie detection, and aptitude testing. Though the 
measure itself is sound, the values obtained from tests of 
diagnostic systems often require qualification because the 
test data on which they are based are of unsure quality. A 
common set of problems in testing is faced in all fields. 
How well these problems are handled, or can be handled 
in a given field, determines the degree of confidence that 
can be placed in a measured value of accuracy. Some fields 
fare much better than others. 

D IAGNOSTIC SYSTEMS ARE ALL AROUND US. THEY ARE 
used to reveal diseases in people, malfunctions in nuclear 
power plants, flaws in manufactured products, threatening 

activities of foreign enemies, collision courses of aircraft, and entries 
of burglars. Such undesirable conditions and events usually call for 
corrective action. Other diagnostic systems are used to make 
judicious selection from many objects. Included are job or school 
applicants who are likely to succeed, income tax returns that are 
fraudulent, oil deposits in the ground, criminal suspects who lie, and 
relevant documents in a library. Still other diagnostic systems are 
used to predict future events. Examples are forecasts of the weather 
and of economic change. 

It is immediately evident that diagnostic systems of this sort are 
not perfectly accurate. It is also clear that good, quantitative 
assessments of their degree of accuracy would be very useful. Valid 
and precise assessments of intrinsic accuracy could help users to 
know how or when to use the systems and how much faith to put in 
them. Such assessments could also help system managers to deter- 
mine when to attempt improvements and how to evaluate the 
results. A full evaluation of a system's performance would go beyond 
its general, inherent accuracy in order to establish quantitatively its 
utility or efficacy in any specific setting, but good, general measures 
of accuracy must precede specific considerations of efficacy (1). 

I suggest that although an accuracy measure is often calculated in 
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one or another inadequate or misleading way, a good way is 
available for general use. The preferred way quantifies accuracy 
independently of the relative frequencies of the events (conditions, 
objects) to be diagnosed ("disease" and "no disease" or "rain" and 
"no rain," for instance) and also independently of the diagnostic 
system's decision bias, that is, its particular tendency to choose one 
alternative over another (be it "disease" over "no disease," or vice 
versa). In so doing, the preferred measure is more valid and precise 
than the alternatives and can place all diagnostic systems on a 
common scale. 

On the other hand, good test data can be very Ifficult to obtain. 
Thus, the "truth" against which diagnostic decisions are scored may 
be less than perfectly reliable, and the sample of test cases selected 
may not adequately represent the population to which the system is 
applied in practice. Such problems occur generally across diagnostic 
fields, but with more or less severity depending on the field. Hence 
our confidence in an assessment of accuracy can be higher in some 
fields than in others-higher, for instance, in weather forecasting 
than in polygraph lie detection. 

The Appropriate Measure of Accuracy 
Although some diagnoses are more complex, diagnostic systems 

over a wide range are called upon to  discriminate between just two 
alternatives. They are on the lookout for some single, specified class 
of events (objects, conditions, and so forth) and seek to distinguish 
that class from all other events. Thus, a general theory of signal 
detection is germane to measuring diagnostic accuracy. A diagnostic 
system looks for a particular "signal," however defined, and attempts 
to ignore or reject other events, which are called "noise." The 
discrimination is not made perfectly because noise events may mimic 
signal events. Specifically, observations or samples of noise-alone 
events and of signal (or signal-plus-noise) events produce values of a 
decision variable that may be assumed to vary from one occasion to 
another, with overlapping distributions of the values associated with 
the two classes of events, and modern detection theory treats the 
problem as one of distinguishing between two statistical hypotheses 
(2). . , 

The relevant perfomance data. With two alternative events and 
two corresponding diagnostic alternatives, the primary data are 
those of a two-by-two contingency table (Table 1). The event is 
considered to be "positive" or "negative" (where the signal event, 
even if undesirable, is called positive), and the diagnosis made is 
correspondingly positive or negative. So there are two ways in 
which the actual event and the diagnosis can agree, that is, two kinds 
of correct outcomes, called "true-positive" (cell a in Table 1 )  and 
"true-negative" (cell d ) .  And thereare two ways in which the actual 
event and the diagnosis can disagree, that is, two kinds of errors, 
called "false-positive" (cell b) and "false-negative" (cell c). Data from 
a test of a diagnostic system consist of the observed frequencies of 
those four possible outcomes. 
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Table 1. Two-by-two contingency table. 

Event 

Diag- 

nosis 

However, if we consider proportions rather than raw frequencies 
of the four outcomes, then just two proportions contain all of the 
information about the observed outcomes. Take the symbols a, b, c, 
and d as denoting the actual numbers of each outcome that are 
observed, and certain ratios, such as a/(a + c), as giving their 
proportions. Then, whenever the positive event occurs, the diagno- 
sis is either positive or negative, and hence the false-negative 
proportion, cl(a + c), is simply the complement of the true-positive 
proportion, a/(a + c), with the two proportions in that column 
adding to one. Similarly, for the other column, whenever the 
negative event occurs, the diagnosis is either positive or negative, 
and so the true-negative and false-positive proportions are comple- 
ments. Therefore, in a test of a diagnostic system, all of the relevant 
information with regard to accuracy can be captured by recording 
only one member of each of the complementary pairs of proportions 
(one proportion from each column). The usual choices are those of 
the top row, namely, the true-positive proportion and the false- 
positive proportion. The language of detection theory is often apt: 
those two proportions are of "hits" and "false alarms." Any operat- 
ing system, unless perfect, will lead to false alarms as well as hits. 
Although other proportions can be drawn from the table, these two 
proportions are the major ones and the basis for an appropriate 
accuracy measure. 

A measure independent of event Ji.equencies. Converting raw fre- 
quencies to proportions in the way just described creates one of two 
fundamental attributes of a suitable accuracy measure. If it considers 
only the true-positive and false-positive proportions, an accuracy 
measure ignores the relative frequencies, or prior probabilities, of 
positive and negative events-defined, respectively, as (a + c)/N and 
(b + d)lN, where N is the total number of events-and it does not 
depend on them. This is as it should be. For example, we do not 
want the accuracy score assigned a particular system for detecting 
cracks in metal to be specific to the relative frequencies of cracked 
and sound specimens chosen for the test sample. 

A measure independent of the deciiion cviterion. The second hnda- 
mental attribute of a suitable accuracy measure is that it be 
unaffected by the system's decision bias or tendency to favor one or 
the other diagnostic alternative. It is convenient to think of this bias 
or tendency as based on the criterion used by the system to establish 
a positive diagnosis. This decision criterion can be thought of as the 
critical, or threshold, amount of evidence favoring the occurrence of 
the positive event that is required to issue a positive diagnosis. 

The decision criterion chosen by or for the system should (and 
usually does) depend on the prior probabilities of the two events. 
Thus, in situations in which the positive event has a high prior 
probability, the system should have a lenient criterion for a positive 
diagnosis. Consider the rain forecaster in Washington (merely a hint 

Positive 

Negative 

of rain leads to a positive prediction) or  the mammographer 
examining a high-risk or symptomatic patient (the minimal sugges- 
tion of a lesion leads to further action). Then the quantity from 
Table 1 that reflects the entire positive row (not column), namely, 
(a + b)lN, will be high relative to its complement in the negative row, 
namely, (c + d )N .  Conversely, a strict criterion should be used when 
the positive event is unlikely on prior grounds. Then the positive row's 
probability will be lower relative to the negative row's. 

The particular decision criterion that is appropriate depends also 
on the benefits ascribed to the correct outcomes and the costs 
ascribed to the incorrect outcomes. Predicting a severe storm that 
does not occur (a false positive) is typically regarded as having a cost 
that is small relative to the cost of failing to predict a storm that does 
occur (a false negative), so the criterion adopted for a positive 
diagnosis is on the lenient side. Conversely, a strict criterion would 
be set when the cost of a false-positive outcome is disproprotionate- 
ly high; for example, the physician wants much to avoid life- 
threatening surgery on a patient who turns out not to have the 
suspected disease. Other examples exist in which one or another 
benefit is paramount (rather than costs as just illustrated) and hence 
has a major effect on the diagnostic criterion that is adopted. 

When a positive diagnosis is made according to a lenient decision 
criterion, it will be made relatively often and both of the primary 
proportions in accuracy measurement, the true- and false-positive 
proportions, will be high. Conversely, positive diagnoses made 
according to a strict criterion will be made relatively infrequently, 
and both of these proportions will be low. A system of a fixed 
capacity to distinguish between positive and negative events cannot 
increase the true-positive proportion without also increasing the 
false-positive proportion. Nor can it decrease the false-positive 
proportion without also decreasing the true-positive proportion. A 
valid measure of accuracy will acknowledge that the true- and false- 
positive proportions will vary together, as the decision criterion 
changes. We desire a measure of accuracy that is valid for all the 
settings in which a system may operate, with any of the various 
decision criteria that may be appropriate for the various settings. 
And, within a single setting, we desire a measure of accuracy that is 
valid for the different decision criteria, appropriate or not, that may 
be set by different decision-makers. We must recognize that individ- 
uals can differ in their estimates of prior probabilities and of costs 
and benefits and so adopt different criteria. 

Basis for cdculating the suitable measure. A measure of accuracy that 
is independent both of the relative frequencies of the two events and 
of the decision criterion that is adopted for a positive diagnosis is 
defined in terms of the graph illustrated in Fig. 1. On this graph, 
one uses test data to plot the true-positive proportion against the 
false-positive proportion for various settings of the decision criteri- 
on. Thus, a curve on the graph shows the trading relation between 
true- and false-positive proportions that is characteristic of a particu- 
lar system. One can see at a glance what proportion (or probability) 
of true positives the system will give for any particular proportion 
(or probability) of false positives, and vice versa. The idea then is to 
extract one number from a curve, which represents the entire curve, 
to provide a single-valued, general measure of accuracy. 

Enough data points to define a curve reliably, say, five or more, 
are collected by either of two procedures. Under the binary or "yes- 
no" procedure, the system is induced to adopt a different decision 
criterion from one group of trials to another (3). Under the rating 
procedure, the system in effect reports which one of several different 
criteria is met on each trial. It does so by issuing either a rating of 
likelihood that a positive event occurred-for example, on a five- 
category scale ranging from "very likely" to "very unlikely"--or 
effectively a continuous quantity, for example, a probability esti- 
mate, that the analyst can convert to a rating. Then, in analysis, one 
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Fig. 1 (top). The ROC 
graph, in which the true- 
positive proportion is 
plotted against the false- 
positive proportion for 
various possible settings 
of the decision criterion. 
The ideahxd curves 
shown correspond to 
the indicated values of 
the accuracy measure A. 
Fig. 2 (bottom). Exam- 
ple of empirical ROCs, 
showing standard and 
enhanced interpretations 
of mammograms. 
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considers different numbers of categories as representing a positive 
response (4). Most of the data reported in this article were obtained 
by the rating method. 

A curve as shown in Fig. 1 is called an "ROC"-sometimes short 
for Receiver Operating Characteristic, especially in the field of signal 
detection, and sometimes short for Relative Operating Characteris- 
tic, in generalized applications. The history of the ROC and its 
extensive applications to discrimination tasks in experimental psy- 
chology, beginning in the early 1950s, is reviewed elsewhere (5, 6). 
It is well established that measured ROCs generally take a form 
much like that shown in Fig. 1 (7), and a detailed comparison of 
ROC measures of accuracy with other candidate measures is avail- 
able (8). Methods for applying the ROC analysis to diagnostic 
systems have been described (9, 10). 

Theprefeerved measure of accuracy. A suitable, single-valued measure 
of accuracy is some measure of the locus of an ROC curve on its 
graph. The now preferred measure, specifically, is the proportion of 
the area of the entire graph that lies beneath the curve. The measure, 
denoted A in Fig. 1, is seen to vary from 0.50 to 1.0. Thus, 
A = 0.50 when no discrimination exists, that is, when the curve lies 
along the major diagonal (solid line), where the true- and false- 
positive proportions are equal. A system can achieve that perform- 
ance by chance alone. And A = 1.0 for perfect discrimination, that 
is, when the curve follows the left and upper axes, such that the true- 
positive proportion is one (1.0) for all values of the false-positive 
proportion. 
- Three other, illustrative values of A are indicated bv the three 
intermediate curves of Fig. 1. Observed curves usually dke r  slightly 
in shape from the idealized curves shown; they are typically not 
perfectly symmetrical but are a little higher on one side of the minor 
diagonal (dashed line) and a little lower on the other. However, the 
measure A suffices quite well as a single-valued measure of the locus 
of curves of the sort widely observed. Calculation of the measure can 
be accomplished graphically but is usually performed by a computer 
program that accepts as inputs the frequencies of positive and 

negative diagnoses for each alternative event that are observed for 
various criteria (9-1 1). 

Illustrative Calculation of the Accuracy Measure 
Techniques for obtaining an empirical ROC, making a maximum- 

likelihood fit of a smooth curve to its points, estimating A, 
estimating the variability in A,  estimating components of variability 
in A due to case and observer sampling and observer inconsistency, 
and determining the statistical significance of a difference between 
two values of A are discussed elsewhere (9, 10). Here a brief 
illustration is given of the major aspects. 

The data used for this purpose are taken from a study in which six 
general radiologists attempted to distinguish between malignant 
and benign lesions as viewed in a set of 118 mammograms (58 
malignant, 60 benign), first when the mammograms were viewed in 
the usual manner and then when they were viewed with two aids. 
The radiologists came from community hospitals in the Cambridge 
area to BBN Laboratories where my colleagues and I had assembled 
an appropriate sample of mammograms from other area hospitals 
(12). The aids were (i) a checklist of perceptual features that are 
diagnostic of malignancy (obtained from specialists in mammogra- 
phy and confirmed by discriminant analysis), which elicited a scale 
value from the observer for each feature, and (ii) a computer system 
that merged the observer's scale values according to their optimal 
weights and estimated a probability of malignancy. 

Each mammogram was rated on a five-category scale of likelihood 
that the lesion was malignant; the frequencies of the various ratings, 
as pooled over the six observers, are shown in columns 2 and 3 of 
Table 2. The procedure described above for converting rating data 
to the various pairs of true- and false-positive proportions that 
correspond to various decision criteria was used to generate the data 
in columns 4 and 5. The ROC points defined by those coordinate 
proportions are plotted in Fig. 2. (The points span the graph well 

Table 2. Data table for illustrative ROC plot. 

Frequencies Proportions 
Rating Malig- 

category Benign a nant 
b - - 

cases cases a + c b + d  

Very likely 
malignant 

Probably 
malignant 

Possibly 
malignant 

Probably 
benign 

Very likely 
benign 
Sum 

Very likely 
malignant 

Probably 
malignant 

Possibly 
malignant 

Probably 
benign 

Very likely 
benign 
Sum 

Standard viewing 
19 

50 

48 

151 

92 

360 
Enhanced viewing 

8 

38 

62 

131 

121 

360 
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Fig. 3. Measured values of A for A 

forecasts of several different weather 

Fig. 4. Measured values 
of A for a manual infor- m Computer science (2 )  
mation-retrieval system Aircraft structures - 
(on the left) and a corn- Aerodynamics 2-0.90 

puter-based informa- - Aerodynamics 1 
tion-retrieval system (on 
the right), for different - Documentation 
collections of documents 0.70 
as indicated. 

enough to avoid much extrapolation-a five-category rating scale, 
which yields four points within the graph, is usually adequate; other 
diagnostic fields often yield more data points, for instance, weather 
forecasting, where 13 rating categories are the norm, and aptitude 
testing or information retrieval, where the analyst can often derive a 
dozen or so ROC points from a nearly continuous decision vari- 
able.) 

A nonparametric estimate ofA can be obtained by connecting the 
successive ROC points for a given condition by lines and using the 
trapezoidal rule, or some related formula, to measure the area 
beneath the connected points (5). In general practice, however, 
empirical ROCs are plotted on other scales, namely, scales that are 
linear for the normal-deviate values that correspond to probabilities 
(where probabilities are inferred from observed proportions). A 
robust result across diagnostic fields is that empirical ROCs are 
fitted well by a straight line on such a "binormal" graph, as 
exemplified elsewhere for the fields treated here (7). A computer 
program gives the maximum-likelihood fit of the straight line (with 
parameters of slope and intercept) along with an estimate o fA  and 
its variance (9, 10). For the present purposes, the straight lines so 
fitted were transposed to the smooth curves on ordinary scales in 
Fig. 2. For the curves of Fig. 2 the X 2  test of the goodness of fit 
yielded P = 0.08 for the standard viewing condition and P = 0.29 
for the viewing condition enhanced by the aids, indicating satisfac- 
tory fits. The respective values of A for these curves (from pooled 
ratings) were 0.81 and 0.87 with standard errors of 0.017 and 
0.014. (AverageA values for curves fitted to individual observers are 
sometimes slightly different; here they were 0.83 and 0.88.) The 
difference be&een observing conditions (assessing the group values 
ofA in either way) is significant by either a critical-ratio test or t test 
at P = 0.02 (13, 14). 

Measured Accuracies of Some Common 
Systems 

Let us consider now measured accuracies of some common 
systems in six diagnostic fields. With the exception of medical 
imaging systems, where upwards of 100 studies have reported 
ROCs, I include here all of the studies in each field I know that have 
used (or were later subjected to) ROC analysis and can be represent- 
ed by a value ofA.  

Weather fiecasting. ROCs for some 20 sets of weather data 
collected in the United States and Australia were calculated by 
Mason (15). The positive events consisted of rain, temperatures 
above or below a critical value or within a range, tornadoes, severe 
storms, and fog. I made estimates of A from his graphs. These 
estimates are based usually on hundreds, sometimes thousands, of 
forecasts, so the uncertainty in reported A values is 0.01 or so. 
Various values for weather events are summarized on the A scale in 
Fig. 3, showing ranges where available. The average or central 
values are approximately 0.89 for extreme cold; 0.82 for rain, 0.76 
for fog, 0.74 for storms, and 0.71 for intervals of temperature (16- 
18). 

Infomatian retrieval. Major tests of information-retrieval systems 
at two locations were conducted in the mid-1960s (19), and their 
analysis in ROC terms was described shortly thereafter (20). The 
task of such a system is to find the articles and books that are relevant 
to each of a series of queries that are addressed to it, and to reject the 
irrelevant documents. In a traditional, manual library system, the 
queries will be in terms of some indexing language; in a computer- 
based system, they will contain some combination of key words. 

Figure 4 summarizes the results obtained with a computer-based 
system at Harvard University by Gerard Salton and Michael Lesk 
(on the right) and results obtained with a manual library system at 
the Cranfield libraries in England by Cyril Cleverdon and Michael 
Keen (on the left). The computer-based system measured the degree 
of relevance of every document in the file to every query addressed 
to the file, and I established different decision criteria by selecting in 
turn various values along this nearly continuous variable. Various 
retrieval methods used synonyms, statistical word associations, 
hierarchical expansions, and so forth to relate the language of the 
document to the key words of the query. The collections of 
documents were in the subject matters of documentation, aerody- 
namics, and computer sciences. Under each method, a few hundred 
documents were examined in relation to each of about 20 to 40 
queries. With almost no variation among methods, the collection of 
documents on documentation gave a typical value ofA estimated to 
be 0.75; the aerodynamics collection, 0.87; and two computer- 
science collections, 0.95 and 0.97. For the manual system, I adopted 
different criteria by varying the number of query terms a document 
had to satisfy in order to be retrieved. In this test, 13 retrieval 
methods were variations of several indexing languages. They were 
applied with about 200 queries to a collection of some 1500 
documents on aerodynamics. Again very consistently over methods, 
the approximate mean value of A was 0.91. Six retrieval methods 
applied to a smaller collection on aircraft structures yielded 
A = 0.93. For both of these tests in the library setting, the numbers 
of observations were large enough to yield very reliable values ofA. 

Aptitude testing. The validity of aptitude tests is usually measured 
by a correlation coefficient, because the event predicted, as well as 
the diagnostic system's output, is usually represented by a continu- 
um of many values, rather than just two. These values are typically 
school grades or job ratings. However, the prediction of a two- 
valued event is often required, as when students under individually 
paced instruction either complete the course or not, or when job 
performance is measured simply as satisfactory or not. Another 
example comes from current interest in how much the Scholastic 
Aptitude Test helps, beyond knowing rank in high school class, in 
predicting college graduation. For such instances I suggest that the 
accuracy of prediction in ROC terms is the most appropriate 
measure of test validity. Figure 5 shows summary results of two 
studies of school performance on the A scale. Although nearly 
continuous grades in the course happen to be available here, I 
simulated a binary outcome of pass-fail by selecting arbitrarily a 
particular level of course performance as the cutoff for passing (21). 
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Fig. 5. Measured values 
of A for two aptitude 
tests (on the right) that m General abilities battery 

were followed by school- 
ing of all testees; a Armed 
roughly adjusted range QualificationTest 

ofA values for a test (on 0.70 
the left) that was fol- 
lowed by schooling only 
of those who achieved a 
criterion score on the 0.50 

test. 

Fig. 6. Measured values 
of A for several imaging 
tests in clinical medicine. ' 
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The testees in the study shown on the right in Fig. 5 were 
approximately 450 students entering the seventh grade in four 
classes in each of three schools in Barquisimeto, Venezuela, all of 
whom would take a special course on thinking skills (22). The initial 
tests included the Otis-Lennon School Abilities Test (OLSAT) and 
an extensive battery of general aptitude tests (GAT). The year-end 
measure of performance came from an extensive test consisting of 
items specially written to tap the thinking abilities the course was 
intended to teach, called the Target Abilities Test (TAT). Actually, 
three values o f A  were computed for both OLSAT and GAT, one 
for each of three different percentile cuts on TAT performance that I 
took (arbitrarily) to define passing and failing. For GAT, the three 
corresponding A values ranged from 0.93 to 0.94 and for OLSAT 
they ranged from 0.81 to 0.89. The correlation coefficients are 0.87 
for GAT and 0.71 for OLSAT. Other data so far analyzed in ROC 
terms are on the ability of the Armed Forces Qualification Test to 
predict pass-fail performance in four Navy schools (7) and are 
shown on the left in Fig. 5 (23, 24). 

Medical imagin~. Thirty published studies of medical imaging 
techniques or of image interpreters, in which the ROC was used for 
accuracy evaluation, were reviewed several years ago (25). There 
mav now be as manv as five times that number in the medical 
literature (5, lo ) ,  and so the summary here must be selective. I have 
tended to choose studies with enough clinical cases and image 
readers, and with enough points per ROC, to yield relatively reliable 
estimates ofA. They focus on the abilities of computed tomography, 
mammography, and chest x-rays to discriminate lesions indicative of 
disease from normal variations of organ appearance. Values ofA are 

- - -  

summarized in Fig. 6. 
In an early study of computed tomography (CT) relative to 

radionuclide scanning (RN) for detecting brain lesions, images of 
both modalities were obtained from the same patients. With the 
sponsorship of the National Cancer Institute, images of 136 cases 
were selected from about 3000 cases collected at five medical 
centers. These images were interpreted retrospectively by six special- 
ists in each modality who gave ratings of likelihood that a lesion was 
present (26). About 60% of the cases were abnormal as proven by 
histology; the normal cases showed no symptoms after 8 months of 
follow-up. Both the pooled and average A values across observers 
were 0.97 for CT and 0.87 for RN. A study comparing CT to 
ultrasound in detecting adrenal disease (for the most part, with both 
examinations made of the same patients) was based on cases at two 

medical centers and on interpretations made in the course of 
diagnosis. Values o f A  were 0.93 for CT and 0.81 for ultrasound 
(27-35). 

Materials testind. "Materials testing" here means testing metal 
structures, such as aircraft wings, for cracks. There is one major 
study in the field, in which a set of 148 metal specimens, each 
regaided to be with or without cracks, was tested a t16  bases of the 
U.S. Air Force. The diagnostic systems consisted of ultrasound and 
eddy current devices used by upwards of 100 technicians in two 
separate tests (36). 

Because the technicians made only binary decisions, without 
manipulation of their diagnostic criteria, just one point on each 
individual's ROC is available. To calculate A, I assumed that that 
point lay on a symmetrical ROC, as shown in Fig. 1 (not a crucial 
assumption here). The average A values across sites are 0.93 for the 
eddy-current technique and 0.68 for the ultrasound technique, but 
accuracy varied widely from one base to another, across the ranges 
shown in Fig. 7. Indeed, the extent of the range may be the salient 
result: a case could be made for analyzing the expertise at the more 
proficient sites in order to export it to the less proficient. 

Polypzph lie detection. Studies of polygraph accuracy in lie detec- 
tion are of two types. In so-called "field" studies, for various real 
crimes, the polygraph examiners' decisions about deception or truth 
are compared either to actual judicial outcomes, panel decisions 
about guilt, or confessions. So-called "analog" studies are of mock 
or role-playing crimes in a laboratory setting, for example, stealing a 
$20 bill from an office down the hall. The obvious differences 
between the two types concern the surety of the "ground truth" 
about the positive event of guilty and the negative event of not 
guilty, and the severity of the consequences of failing the test. 

Figure 8 shows summary values for both types of study. About 
ten published studies exist in each category. Most of the field studies 
were reviewed in the context of signal detection theory and ROC 
analysis (37), and both categories were reviewed f i r  the U.S. 
Congress Office of Technology Assessment (38). I have calculated 
values ofA, again under the assumption that the single ROC points 
available lie on a symmetric curve as shown in Fig. 1. (The possible 
impact of that assumption is lessened by the fact that the studies 
generally gave points near the negative, dashed-line, diagonal of the 
ROC graph.) Of the field studies, four gaveA values near 0.95, with 
one as-high as 0.98; these were conducted by a commercial agency. 
Five field studies conduct$ in university settings gave A values 
between 0.70 and 0.92. Nine of eleven analog studies producedA 
values ranging from 0.81 to 0.95; A values for the two outlying 
analog studies were 0.64 and 0.98. One of the analog studies used 
the rating-of-likelihood procedure to yield full ROCs, based on six 
ROC points. In this study, six examiners yieldedA values ranging 
from 0.55 to 0.75; four of them were between 0.64 and 0.68 (39). 

Qualifications of Measured Accuracies 
Most, if not all, of the values of A listed for the various fields 

should be qualified in one or more ways. Certain definitions, 
operations, and assumptions made in conducting the tests have 
served to bias the calculated values--often in unknown directions to 
unknown extents, sometimes in known directions, and, infrequent- 
ly, to an extent that may be estimated. So, calculated values ofA are 
neither perfectly reliable, in the sense of being repeatable across 
different tests of the same system, nor perfectly valid, in the sense of 
measuring what they are supposed to measure. There is constant, as 
well as variable, error. The difficulty lies not, I have argued, with the 
measure: as far as we can tell, there are no intrinsic limits on its 
reliability, beyond ordinary statistical considerations, or on its 
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Fig. 7. Measured values of A for 
detecting cracks in airplane wings by 
two techniques, from several Air 
Force bases. 

Fig. 8. Measured values A 
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validity. The difficulty arises, rather, because the quality of test data 
is not everything it should be. I consider here four ideals for test data 
and comment on how well each of the diagnostic fields treated here 
matches up to these ideals. 

Adequacy of w t h .  The tester should know certainly for every item 
in the test sample whether it is positive or negative. Incorrectly 
c1assif)ing test items will probably depress measures of accuracy. 

How are truly guilty and truly innocent parties to be determined 
for tests of the polygraph? Judicial outcomes and panel decisions 
may categorize erroneously, and even confessions can be false. 
Hence, one may resort to the analog study, which sacrifices realism 
to gain sure truth. 

Sure truth about cracks in metals can only be obtained destruc- 
tively, by sacrificing the specimens. Destructive testing tends not to 
be done, because then the next diagnostic technique, or the next 
group of inspectors, must be tested on another, different set. A set of 
specimens for which fairly good truth is felt to be available is 
acquired only painstakingly, and a new set will not be a common 
ground for comparing a potential diagnostic technique with existing 
ones, or new inspectors with old. Just how truth is determined in 
this field, short of sacrifice, is not clear to me. I believe that it is 
based on the same diagnostic techniques one hopes to test, perhaps 
in the hands of experts and in combination. 

The so-called "gold standard" for truth in medical imaging is 
usually regarded to be surgery or autopsy and analysis of tissue. It is 
recognized, however, that imagery and pathology are not perfectly 
correlated in space or time. The image interpreter and pathologist 
may look at different locations, and the pathological abnormality 
observed may not have been present when the image was taken. 
Moreover, the pathologist's code or language for describing lesions 
differs from the radiologist's. Of course, this histology standard is 
applied primarily to positive cases. Negative truth is usually based 
on months or years of follow-up without related symptoms. 

For assessments of aptitude testing in terms of the measure A I 
think the problems of truth data are slight. If handing in the 
assigned work means passing, then we know who passed and who 
failed; if staying on the job constitutes success, likewise. We may 
assume that errors in determining who did what are infrequent. 

The definition of a document's relevance to a query--or, in this 
context, what should constitute truth-has had a controversial 

history in the field of information retrieval. In the studies reviewed 
here, the relevance of every document in the file was judged by 
subject-matter experts for each query. In some instances, the degree 
of relevance was estimated on a four-category scale. Other studies 
have drawn queries directly from documents in the file, a procedure 
that better defines those documents as relevant than it does all others 
as irrelevant. In any event, the dependence of truth on judgment 
suggests that it will be more adequate for some subject matters, 
probably those with a highly technical language, than for others. 

Problems in assessing truth in weather-forecasting arise primarily 
from logistic limitations on establishing in a fine-grained manner 
whether a weather event occurred throughout the area of the 
forecast. One knows rather surely how many millimeters of rain 
there are in a can at the airport, but the forecast is often made for a 
larger area. Similarly, tornadoes may touch down, or storms may be 
severe, in unobserved places. In short, it is difficult to correlate the 
forecast and the truth determination in space. The correlation of 
forecast and truth determination in time is not simple either but 
seems easier. 

Independence of truth determination and system operation. The truth 
about sample items should be determined without regard to the 
system's operation, that is, without regard to the system's decisions 
about test cases. If this condition is not met, the truth will be 
inappropriate for scoring the system and will probably inflate its 
measured accuracy. 

When confessions are used to determine guilt and innocence, the 
likelihood of a confession depends on whether the polygraph test is 
judged to be positive or negative. Examiners work hard to elicit a 
confession from suspects who appear to test positively and believe 
that the existence of a positive test is often the main factor in 
securing a confession. (Hence, they can argue that the system's 
efficacy is high even if its accuracy is low.) The result for accuracy 
measurement is that the system is scored against a determination of 
truth that it helped to make. That test procedure treats the 
polygraph system very generously-it ought to do well. Values ofA 
will be inflated, to an unknown, but conceivably large, extent. 

If panel decisions based on all available evidence are used to 
establish truth in materials testing, then truth is determined in part 
by the operation of the system or systems under test. 

In good practice in medical imaging, the truth is determined 
independently of system operation. Occasionally, truth is deter- 
mined by all of the case evidence, including the results of the systems 
under test. That practice can favor CT, say, over the alternative, if 
the CI' result is dominant in calling a case positive or negative. CT is 
then scored against itself. 

Independence of test sample and ~ t h  determination. Procedures 
used to establish the truth should not affect the selection of cases. 
Thus, the quest for adequate truth may bias the sample of test cases, 
perhaps resulting in an easier sample than is realistic. 

Many criminal investigations do not result in a confession. When 
confession is the sole basis for determining truth and hence dictates 
the sample, the sample will probably not represent the population of 
cases to which the polygraph is typically applied. As one specific, it is 
possible that the more positive a test appears to be, the greater the 
likelihood of a confession. So the sample will tend to consist of the 
easier cases to diagnose. Again, the possibility exists of substantial 
inflation of measured accuracy. 

In materials testing, the use of panel decisions based on all 
available evidence would serve to condition the constitution of the 
sample by the procedure for determining truth. 

In medical imaging, potential biases in the sample may result from 
the procedures for establishing truth. If tissue analysis is the 
standard, the sample will be made up of cases that achieve that 
advanced stage, quite possibly cases that show relatively clear 
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lesions. For negative cases, a sample may reflect the population more 
or less well, depending on how long one waits for follow-up. A 
formula for eliminating these biases was recently proposed (40). 

A problem for aptitude testing arises from the fact that testing is 
carried out to make selections, and ground truth is available only for 
those selected. How the persons scoring below the selection criteri- 
on on the aptitude test would have performed in school or on the 
job is usually not known. Procedures used to establish truth- 
observing and grading the individual in school or on the job- 
determine the sample completely. The sample for assessing the 
diagnostic system is biased relative to the population to which the 
system is applied. 

Representativeness oftbe sample. The sample of test items should 
fairly reflect the population of cases to which the diagnostic system 
is usually applied. The various types of events should occur in the 
sample in approximately the same proportions as they do in practice. 

A representative of criminal cases could, in principle, be obtained 
prospectively. If all criminal cases in the country were collected for a 
sufficiently long time starting now, then the various types of crimes 
against objects and people would appear in appropriate numbers. 
But that would be a very long time from the standpoint of someone 
desirous of an accuracy measure soon. Selection of criminal cases 
retrospectively in the appropriate proportions would depend on a 
common and adequate coding of case types across the country, or a 
central file, and an ability to acquire fill records for cases in which 
the polygraph was used. A reasonable deduction from sample sizes 
in the polygraph assessment literature, ranging typically from about 
20 to 50 in field studies, is that sample items are very difficult to 
acquire. This is an instance of a potential bias in the accuracy 
measure of an unknown direction, let alone extent (41). 

For reasons given earlier, it would seem to be difficult in materials 
testing to specify a representative sample of types and sizes of cracks 
and to ensure that one exists. 

The problem in medical imaging of achieving representative 
samples with respect to type and extent of lesion mirrors the 
problem for criminal cases. Prospective sampling is expensive and 
time-consuming. Indeed, a new and advanced model of the imaging 
device may be available before enough cases are collected with the 
tested one. Retrospective sampling requires first that the data be 
accessible, and so far they usually have not been. Such sampling also 
requires great care. For example, rare cases must be present in at 
least minimal numbers to represent the rarity fairly, and having that 
number of them may distort the relative proportions. 

In information retrieval, it is difficult to say whether a repre- 
sentative sample of documents is acquired for a general assessment 
of a system. Working with special subject matters seems appropriate 
for a given test, but most systems, as illustrated earlier, are tested 
with just a few of them. Across the few mentioned above, accuracy 
varies considerably and seems to covary with the "hardness," or 
technical nature, of the language used for the particular subject 
matter. 

The ability of weather forecasters to assemble large and repre- 
sentative samples for certain weather events is outstanding. Predic- 
tion of precipitation at Chicago was tested against 17,000 instances, 
and even individual forecasters were measured on 3,000 instances. 
Of course, some weather events are so rare that few positive events 
are on record, and for such events the precision as well as the 
generality of the measurements will be low (42). 

Concluding Remarks 
Can we say how accurate our diagnostic systems are? According 

to the evidence collected here, the answer is a quite confident "yes" 

in the fields of medical imaging, information retrieval, and weather 
forecasting, and, at least for now, a "not very well" in most if not all 
other fields, as exemplified here by polygraph lie detection, materials 
testing, and (except for the few analyses mentioned above) aptitude 
testing for predicting a binary event. ROC measures of accuracy are 
widely used in medical imaging (5,10,24), have been advocated and 
refined within the field of information retrieval (20, 43), and have 
been effectively introduced in weather forecasting (15, 17, 18, 44). 
Although problems of bias in test data do not loom as large in 
information retrieval and weather forecasting as elsewhere, those 
fields have shown a high degree of sophisticated concern for such 
problems, as has medical imaging, where the problems are greater 
(45). So, in medical imaging we can be quite confident for example, 
aboutA values of 0.90 to 0.98 for prominent applications of CT and 
chest x-ray films and A values of 0.80 to 0.90 for mammography. 
Similarly, in weather forecasting, confident about A values of 0.75 
to 0.90 for rain, depending largely on lead time, and of 0.65 to 0.80, 
depending on definitions, for temperature intervals and fog; and in 
information retrieval, A values ranging from 0.95 to 0.75 depending 
on subject matter. A positive aspect of the field of polygraph lie 
detection is that it recognizes the need for accuracy testing and 
attempts to identify and cope with inherently difficult data-bias 
problems, and the field of materials testing is making some begin- 
nings in these respects. Of course, for other than the special case 
considered here, the field of aptitude testing devotes a good deal of 
sophisticated effort to validity questions. 

What will the h ture  bring? A basic assumption of this article is 
that testing the accuracy of diagnostic systems is often desirable and 
feasible and is sometimes crucial. Although individual diagnosticians 
are treated here only in passing, a similar case could be made for the 
importance of testing them. I suggest that a wider and deeper 
understanding of the needs and the possibilities would be beneficial 
in science, technology, and society, and that it is appropriate for 
scientists to take the lead in enhancing that understanding. Scientists 
might help society overcome the resistance to careful evaluation that 
is often shown by diagnosticians and by designers and managers of 
diagnostic systems, and help to elevate the national priority given to 
funding for evaluation efforts. Specifically, I submit that scientists 
can increase general awareness that the fundamental factors in 
accuracy testing are the same across diagnostic fields and that a 
successfil science of accuracy testing exists. Instead of making 
isolated attempts to develop methods of testing for their own fields, 
evaluators could adapt the proven methods to specific purposes and 
contribute mutually to their general refinement. 
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The El Niiio Cvcle: A Natural Oscillator of the 
Pacific ocean-Atmomhere Svstem 

Research conducted during the past decade has led to an 
understanding of many of the mechanisms responsible for 
the oceanic and atmospheric variability associated with 
the El NZo-Southern Oscillation (ENSO). However, the 
reason for one of the fundamental characteristics of this 
phenomena, its quasi-periodicity, has remained unclear. 
Recently available evidence fiom a number of sources 

now suggests that the ENS0 cccycle" operates as a natural 
oscillator based on relatively simple couplings between 
the tropical atmospheric circulation, the dynamics of the 
warm upper layer of the tropical ocean, and sea surface 
temperatures in the eastern equatorial Pacific. This con- 
cept and recent field evidence supporting the natural 
coupled oscillator hypothesis are outlined. 

NE OF THE FUNDAMENTAL ASPECTS OF THE EL NI&o-- 
Southern Oscillation (ENSO) phenomena is its quasi- 
periodicity that is marked by the repeated appearance of 

warm or cool water in the equatorial eastern and central Pacific 
Ocean at intervals of 3 to 5 years. There is now evidence that this 
quasi-cyclic behavior is due to the operation of a natural coupled 
oscillator of the ocean-atmosphere system in the tropical Pacific. In 
the context of this concept, warm and cool water episodes are 
considered as phases of a self-sustaining cycle; this contrasts with the 
more traditional view of El Niiios as discreet warm events superim- 
posed on a mean background state. This cycle is maintained by 

interactions, both immediate and delayed as well as local and 
remote, between three fields in the tropical Pacific; sea surface 
temperature (SST), surface wind, and the thickness of the warm 
upper layer of the ocean. Representative examples of time series 
from each of these fields are presented in Fig. 1, which shows 
departures from the long-term monthly means of eastern Pacific 
SST ( I ) ,  zonal (east-west) wind in the central equatorial Pacific (2 ) ,  
and sea level at Truk Island in the western tropical Pacific (3) for the 
period from 1950 through the mid-1980s (4). How these curves 
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