
New Asymptotics for Old Wave Equations 

Wave equations govern the propagation of acoustical or optical fields in diverse 
physical settings of interest to oceanographers, geologists, atmospheric scientists, 
among others. For wavelengths much smaller than all other length scales in the system 
the wave equation solution is generally expressed as a superposition of waveforms, 
each of which is determined by properties of the rays of geometrical acoustics or optics. 
Typically such solutions are accurate except in the vicinity of one or another caustic 
surface such as those defined as a surface across which a jump in the number of rays 
tracing through each point occurs. When numerous caustic surfaces exist, which is the 
generic situation, standard asymptotic solutions prove unsuitable. In this report a new 
asymptotic expression that overcomes deficiencies in previous approximations is 
introduced and characterized in an elementary way. 

AVE EQUATIONS FOR A SINGLE- solutions such as those valid for large k, that 
component field 4 of the general is, a wavelength much smaller than any w form other length scale, become relevant. The 

usual asymptotic (subscript a) solution takes 

ik-1- ad(x>') = H(-&-I-- a , x , z ) ~ ( x , z )  ( I )  the form (2) 
az ax 

have a variety of applications. Here k de- 
notes the nominal wave number, z a propa- 
gation distance, x a transverse coordinate, 
and H the (self-adjoint) generator of propa- 
gation. Such equations have applications in 
unidirectional acoustical and optical propa- 
gation problems (1). If z is replaced by t, the 
time, and k-' replaced by h/27~, where h is 
Planck's constant, then Eq. 1 describes a 
general one-dimensional quantum mechan- 
ics problem. In any case it follows for all z 
that 

Here 

S(xl';x') = 

where the functions p(z) and x(z) are solu- 
tions, based on the real Harniltonian h c -  
tion H ,  of Hamilton's equations of motion, 

which should normally be finite, indepen- subject to the boundary conditions 
dent of the various physical interpretations 
for 6. x(R) = x", x(0) = x'  (8) 

One particular solution of Eq. 1 denoted 
by J(x,R; xl,O) is called the propagator and 
is characterized by the initial condition 

lim J(x,R;xl, 0) = 6(x - x')  (3) 
R+ 0 

The propagator represents the response at 
position x and distance R to a normalized 
point source at position x' and distance 0. 
For many problems J itself is the field of 
physical interest, and in our discussion we 
shall also assume this is the case. 

An exact analytic solution for J is general- 
ly nonexistent, and approximate, asymptotic 
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Equation 6 may be inverted to give 
p = p(x,x,z), which then defines p in terms 
of the slope x and position (x, z) . We assume 
there is at least one such solution to Eqs. 6 
and 7 consistent with Eq. 8, which is re- 
ferred to as a rav: if there is more than one 
ray then the sum in Eq. 4 implicitly includes 
them all. The amplitude coefficient, which 
involves the factor [.G(R)]-'/~, reflects the 
local density of rays. Here Z(z) and its 
partner p(z) denote solutions of the linear- 
ized equations of motion, about each rele- 
vant ray. These equations are 

subject to the initial conditions Z(0) = 0 
and p(0) = 1. Here, for example, 
HpX(z) = a2~ /8pax  evaluated along the 
principal ray solution of Eqs. 6 and 7. In 
other words, taken together Eqs. 6, 7, 9, 
and 10 relate to the trajectory of neighbor- 
ing rays that begin at x' but with slightly 
different initial p-values than the principal 
ray. 

The representation afforded by Eq. 4 is 
quite adequate unless 2(R) = 0 for some 
ray, which generally occurs at a caustic 
(defined as an envelope of rap crossings). 
Physically, Z(R) = 0 signifies that rays that 
start at x' and end at x" have a first-order 
insensitivity to the outgoing orientation 
about its nominal value. Consequently, we 
expect an enhancement of the field arnpli- 
tude at such points, but the divergence 
offered by Eq. 4 is generally in error. 

As a prelude to introducing an alternative 
to Eq. 4 we first observe that 

k 1 
Ja(xlI, R;  x', 0) = 1- eikS(x"; x' 

2.rr 

holds as an identity. When armed with 
sufficient hindsight the combined phase fac- 
tor in Eq. 11 may be recognized as a qua- 
dratic approximation within another inte- 
gral representation given by (3) 

Here SM is determined by a Legendre trans- 
formation of S, that is, 

with the right side evaluated at 
x" = x"(p",xl) which comes from inverting 
p" = aS(xt';x')/ax". A stationary-phase eval- 
uation of Eq. 12 leads to 

where 

with the right side evaluated at 
p" = p"(x",xf) which in turn comes from 
inverting x" = - dSM@";x')/apl'. As a sta- 
tionary point and an inverse Legendre trans- 
formation it follows that D M  and aDM/au 
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Fig. 1. (A) Schematic plot of leikSLl versusp" for a 
case with three rays. With d' and x' held fixed the 
three rays occur for those p" values where the 
curve reaches an amplitude of unity. Near each 
ray, where the curve is less than but near to unity, 
one is in a region that is strictly forbidden in the 
geometrical or zero-wavelength limit. For non- 
zero wavelengths such nearby regions contribute 
to the integral in Eq. 20 helping to determine the 
amplitude for the waveform associated with that 
particular ray. (B) Schematic plot of lelkSLl versus 
p" for a case with one isolated ray and a finite band 
of a large number of closely spaced rays. For the 
isolated ray the discussion of (A) pertains. Within 
the band the curve reaches unit amplitude for each 
ray, and these are so closely spaced that for 
nonzero wavelength the curve remains very close 
to unity throughout the band. For the contribu- 
tion to Eq. 17 it suffices to approximate the curve 
as belng of unlt amplitude within the interval of 
the band. 

both vanish at u = 0. If DM(u) may be 
approximated by a quadratic term, then Eq. 
11 is recovered, and the amplitudes are 
proportional to k1I2, as in Eq. 4. The merits 
of this approach arise at a caustic where the 
coefficient of the quadratic term in DM(u) 
vanishes and the cubic term becomes rele- 
vant. When that is the case the partial ampli- 
tude in Eq. 14 is finite and proportional to 
the enhanced factor k2I3. Moreover, if 
E(R) = 0 thenj(R) f 0, for if2 a n d j  vanish 
simultaneously then Eqs. 9 and 10 imply 
they vanish for all z including z = 0 which is 
incompatible with the chosen initial condi- 
tion. Although Eq. 14 is correct at caustics it 
generally fails at pseudocaustics, which are 
defined by the condition j (R)  = 0. Since 
E(R) f 0 at pseudocaustics one may skip 
back and forth between Eq. 4 and Eq. 14, 
using one when the other fails (3). Howev- 
er, when there are many caustics and pseu- 
docaustics this ceases to  be practical. 

Yet another asymptotic approach may be 
introduced with the observation that 

holds as an identity, where fl must be 

positive for the integral to converge. The 
combined "phase factor" in this expression is 
generally not real, pet-and again when 
armed with sufficient hindsight-it may be 
recognized as a quadratic approximation 
within still another integral representation 
given by (4) 

z 

1 
X e ikS~(p " ,  x" ;  x ' ) d  

d j ( ~ )  + i.IZli.(R) P" (17) 

where 

As before p(z) and x(z) are solutions of 
Hamilton's equations, Eqs. 6 and 7, but 
now subject to the generally complex 
boundary conditions 

To satisfy these boundary conditions set 
x(R) = x" + w and p(R) = p" - iflw where 
w is a complex variable chosen so that 
x(0) = x i .  If w = 0, then x(R) = x" and 
p(R) = p", and it follows that SL(p" ,~ ' i ;~ i )  
= S(x";xl) for that particular (real) ray spec- 
ified byp". When w $ 0  it is noteworthy that 
Im SL(p",x";x') > 0, or in other words lexp 
(ikSL) I < 1. Thus the dominant factor in the 
integrand of Eq. 17 is, for large k, extremely 
small except at and near those p" values that 
correspond to real rays between x" and x' 
(Fig. 1A). For sufficiently well-separated 
peaks, as depicted in Fig. lA, an approxi- 
mate evaluation of Eq. 1 7  is given by 

k 1 
1- eikS(x"; x ' )  

2" d j ( ~ )  + i.Rji.(R) 

where 

with the right side evaluated at p" = 

p"(x",xl) corresponding to one of the real 
rays. It follows that D L  and aDL/au both 
vanish at u = 0. If DL(u) may be approxi- 
mated by a quadratic term, then Eq. 16 is 
recovered, &d the amplitudes are propor- 
tional to  k1I2. At a caustic where the coeffi- 
cient of the quadratic term in DL(u) vanish- 
es then the cibic term becomes relevant. As 
in the previous case the partial amplitude in 
Eq. 20 is finite and proportional to the 
enhanced value k2I3. The slowly varying 
expression p(R) + m ( R )  is evaluated at 

each principal ray in Eq. 20, and based on 
earlier arguments, cannot vanish, implying 
that Eq. 20 is everywhere valid. Thus in Eq. 
20 we have achieved a global, uniform 
asymptotic approximation valid when the 
rays are well separated in the sense that 
midway between the rays k Im SL >> 1 
(Fig. 1A). 

It is interesting to observe that J: interpo- 
lates between f a  and J: in the sense that 

lim J~(x1I,R;x',O) = Ja(xl',R;xl,O) (22) 
n + m  

lim J;(x1', R;xl ,  0) = J?(X", R;x',  0) (23) 
n+ o 

This interpolation is evident at the quadratic 
approximation level; for example, compare 
Eqs. 16 and 11 and as fl+ 0. But it also 
holds more generally, and it is from the limit 
fl +a or fl + 0 that the finite amplitude 
coefficients of]: in Eq. 20 develop singular- 
ities at caustics or pseudocaustics, respec- 
tively. 

When there are many rays contributing, 
as is the generic situation for sufficiently 
large R, the conditions leading to Eq. 20 
may not hold. In that case we deal directly 
with Eq. 17  (4 ) .  We may even suppose there 
is an interval % ofp" where the rays are so 
closely spaced (a "thicket") that for all p" in 
3, k Im SL(p",x";xl) << 1 (Fig. 1B). Out- 
side % we illustrate in Fig. 1B a case of well- 
separated rays. The example of a vast nurn- 
ber of rays illustrated in Fig. 1B may be dealt 
with as follows. Break up the integral in Eq. 
17  into two disjoint pieces, one over 9, and 
the other over the complementary set 9'. 
Within 9' the procedure that led to  Eq. 20 
may be used. Within 3 replace SL by ReSL 
in the exponent. Then evaluate both inte- 
grals by suitable stationary-phase approxi- 
mations. As argued previously the ampli- 
tude factors in this formulation remain finite 
throughout. In this way Eq. 1 7  becomes a 
readily evaluated, global and uniform inte- 
gral representation for fields having a vast 
number of contributing rays any number of 
which could be caustics. 

Although our discussion of the three dif- 
ferent asymptotic approximations has of ne- 
cessity been somewhat of a caricature, the 
relative merits of these three approximations 
is faithfully represented. Extensions to trans- 
verse coordinates of more than one dimen- 
sion and to multiconiponent wave equa- 
tions, which are available in the cited litera- 
ture, do not materially affect the situation. 
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Biologically Effective Ultraviolet Radiation: Surface ds (2.8 counts equal 1 ~ 1 ~ 2 ) .  
Measurements in the United States, 1974 to 1985 Table 2 shows annual R-B measurements 

from the period from 1974 to 1985 at each 
station, arranged according to increasing 

JOSEPH S C O ~ O ,  GERALD COTTON, FREDERICK URBACH, latitude. The intensity of UVB at each sta- 
DANIEL BERGER, THOMAS FEARS tion (Table 2) could have varied according. 

0 

to geographic factors, such as latitude, lon- 
Recent reports of stratospheric ozone depletion have prompted concerns about the gitude, and altitude, and physical or meteo- 
levels of solar ultraviolet radiation that reach the earth's surface. Since 1974 a network rological factors, such as the water content 
of ground-level monitoring stations in the United States has tracked measurements of of the atmosphere, turbidity, and cloudiness 
biologically effective ultraviolet radiation (UVB, 290 to 330 nanometers). The fact of the day. Solar W flux generally decreases 
that no increases of UVB have been detected at ground levels from 1974 to 1985 as latitude increases and as the zenith angle 
suggests that meteorological, climatic, and environmental factors in the troposphere increases. However, Tallahassee, the south- 
may play a greater role & attenuating UVB radiation than was previously suspected. 

R ECENT REPORTS OF STRATOSPHER- 
ic ozone depletion ( I ) ,  as much as 
40% over parts of Antarctica dur- 

ing its spring month of October (Z), suggest 
that greater amounts of solar ultraviolet 
radiation will reach the surface of the earth. 
In 1974 a collaborative study of ground- 
level measurements of biologically effective, 
nonionizing solar radiation was implement- 
ed (3). We report trends in the annual 
amounts of biologically effective ultraviolet 
radiation (UVB, 290 to 330 nm) that reach 
the earth's surface at several locations within 
the United States. Solar ultraviolet radiation 
can produce skin erythema (sunburn) in 

The most effective biological wavelength for 
producing erythema on typical Caucasian 
skin is 297 nm (7). The biological effective- 
ness of W B  decreases logarithmically with- 
in the W B  range; at 330 nm it is less than 
0.1% as effective as at 297 nm. The R-B 
meter integrates the weighted amounts of 
UVB and provides counts in "sunburn 
units" (SU) (8-10). Quality control checks 
included an evaluation of diurnal, daily, and 
monthly readings at specific locations to 
verify that SU counts agreed with meteoro- 
logical data. 

To assure that the R-B meter measure- 
ments were comparable among stations, 

ernmost station, received less solar UV than 
either Albuquerque, New Mexico, or El 
Paso, Texas. This difference reflects the ef- 
fect of the higher altitude and less turbid and 
cloudy conditions at the southwestern sta- 
tions compared to the Florida station, which 
has greater amounts of sky cover and hu- 

Average annual R-B counts for two con- 
secutive 6-year periods (1974 to 1979 and 
1980 to 1985) show a negative shift at each 
station, with decreases ranging from 2 to 
7% (Table 2). Figure 1 (semi-logarithmic 
plot) shows that there are no positive trends 
in annual R-B counts for 1974 to 1985. The 
logarithm of the annual R-B counts is used 
as the dependent variable in regression anal- 

humans and skin cancer in laboratory ani- each meter was checked annually against yses to obtain an estimate of the average 
mals (4) and would be expected to increase two standardized meters, which were annual percentage change. The estimated 
if ozone is depleted. A 1% decrease in checked every other week against a calibrat- average annual change varied from - 1.1% 
stratospheric ozbne could cause about a 2% ing light source (11). calibration factors at Minneapolis, Minnesota, to -0.4% at 
increase in the amount of UVB that would (CFs) (obtained for each year from 1974 to Philadelphia, Pennsylvania (Table 2). For all 
pass through this shield (5). The increases 1983 for each station) varied in absolute the stations the R-B counts dropped an 
vary according to specific waveband, season, value among stations, but no significant average of 0.7% per year since 1974. Three 
and zenith angle of the sun (6). annual trends in CF were noted for the of the individual station trend coefficients 

Photosensitive meters [Robertson-Berger stations reported here. Data presented for were not statistically significant, however. 
(R-B) meters] were installed at various Na- 1984 and 1985 were adjusted according to Although we rule out changes in instru- 
tional Weather Service stations (usuallv air- the most recent CF at each field station. The mentation and monitoring techniques, it is 

.2 

ports) and have been monitored and main- outputs from R-B meters have been com- unclear whether abrupt meteorological 
tained continuously since 1974 (Table 1). pared with those from Dobson spectropho- changes such as atmospheric aerosol scatter- 
The locations span a latitude range from 30" 
to 4 7 ~ N  and a longitude range from 75.2~ to Table 1. Geographic locations and meteorological measures for the eight stations used. 

122.2"W. Radiation in the UVB range is site T Latitude Longitude Elevation Average sky 

tograpnic locations and meteorological measures for the eight stations used. 

T Latitude Longitude Elevation Average sky 
L,ULdLIUII monitored by a magnesium tungstate sensor number (ON) ( O w )  (m) cover 

and weighted according to an action spec- 
1 Tallahassee, FL 30.4 84.4 2 0.58 trum that parallels that for skin erythema. El Paso. TX 31.8 106.4 1194 0.39 
3 Fort worth, TX 32.8 97.0 164 0.52 

J. Scotto and T. Fears, Biostatistics Branch, National 4 Albuquerque, NM 35.0 106.6 1619 0.44 
Cancer Institute, Bethesda, MD 20892. 5 Oakland, CA 37.7 122.2 2 0.48 
G. Cotton, Air Resources Laboratow, National Oceanic 
and Atmospheric Administration, Silver Spring, MD Philadelphia, PA 39.9 75.2 9 0.62 
20910. 7 Minneapolis, MN 44.9 93.2 255 0.64 
F. Urbach and D. Berger, Health Sciences Center, 8 Bismarck, ND 46.8 100.7 502 0.63 
Temple University, Philadelphia, PA 19140. 
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