
The SBR approach enjoys the potential advantage of global 
coverage and multipurpose capability. Surveillance protection can 
be extended to force concentrations anywhere, such as naval battle 
groups, and to the territories of allied nations; it can prove valuable 
in a world periodically convulsed by outbursts of regional conflict. 
Tracking of aircraft can in many cases be initiated as soon as they 
leave their operating bases, thereby providing a measure of identifi- 
cation and mission purpose. The system could also be used for 
assisting international air traffic control and search-and-rescue oper- 
ations. O n  the negative side are mro  often-cited drawbacks, vulnera- 
bility to  attack and high cost. These are valid concerns that apply to  
many space-based applications of militan technology. 

Currently SBR is in a phase of concept definition and technology 
development. The Department of Defense is interested in bringing 
together the various mission requirements to see if the system can be 
justified. A decision to deploy an operational system will probably 
depend as much on budgetary considerations as on perceived 
usefulness, which is generally held to  be considerable. The required 
advances in technology appear to be reasonable, and the develop- 
ment of a baseline system could proceed at this time. A precursor 
system with the capability to  demonstrate the usefulness of the 
concept to  prospective users could consist of one radar sensor at a 
reasonable altitude. This satellite could be hardened at least against 
natural background radiation effects and could incorporate some 
level of resistance to  electronic countermeasures. Properly instru- 
mented, this system would also function as an invaluable test-bed, 
yielding results that could reduce significantly the technical risk 
inherent in the deployment of an operational system. 

One could conceive of a future system architecture that uses a 
versatile space-based instrument to  perform object discrimination 
tasks (as in SDI) in addition to  carrying out wide-area sun~eillance 
missions (as in ADI). Although the possibility of such synergism is 

appealing, effective sun.eillance and high-quality discrimination 
with a common sensor have traditionally been deemed incompati- 
ble. It  would be an impressive achievement in radar technology to 
demonstrate a unified sensor concept that accommodates b o t h  
missions without compromising the required levels of performance. 
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Artificial Intelligence and 
Natural Resource Management 

R ESEARCH IN ARTIFICIAL INTELLIGENCE ( M )  HAS BEEN 

The use of artificial intelligence (AI) in natural resource performed mainly in computer science and cognitive psy- 
management began with the development of expert sys- chology. The issues have been straightforward: (i) defini- 
tems for problem-solving and decision-making. The use tion and classification of principles of intelligent behavior; (ii) 
of expert systems in turn led to the development of other design and development of computer s~rstems (hardware and soft- 
A1 procedures pertinent to natural resource management. ware) capable of mimicking intelligent behavior; and (iii) use of 
Of particular significance are (i) integrated expert sys- such sSistems to solve problems of perception, analysis, and adapta- 
tems, which link management models with natural re- tion. The recent availability of dedicated A1 workstations and 
source models; (ii) intelligent geographic information knowledge-systems software has hastened the introduction of A1 
systems, which permit interpretation of relations within techniques and products into other sciences. In the literature on AI, 
and among landscape data themes; and (iii) A1 modeling which has been developed principall~i for potential practitioners of 
of animal behavior and interaction with the environment. 
These procedures provide new ways view prob- R. N. Coulson and D. K. Loh are in the Department of Eiitomolop and L. J .  Folse is 
lems in systems analysis. in the Department of Wildlife and Fisheries, Tesas A8aV University, College Station, 

TX 77843. 
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Fig. 1. Scope of application areas for A1 as applied to NRM. 

the technology, broad categories of applications (such as expert 
systems, robotics, vision and image processing, and natural language 
processing) are explained, basic methodologies (knowledge repre- 
sentation, inference, pattern matching, and search procedures) are 
discussed, and specific applications in various academic specialties 
(such as business, medicine, geology, and agriculture) are described 
(Fig. 1) (1-3). This literature has introduced the subject to many 
potential users of the technology, although it has also created a 
perception that A1 applications are simply an array of new extension 
tools for natural resource management (NRM) (4-6). 

Applications of A1 in NRM (7) resulted from interest in expert 
systems. The availability of developmental software and symbolic 
languages for microcomputers hastened introduction of the technol- 
ogy. Diagnostic and decision-aid expert systems are useful for 
problems that have discrete boundaries or are symbolic in nature, 
and for which human expertise is scarce or expensive (5, 6). 
However, the application of expert system techniques in NRM has 
not been a simple task and has been complicated by the existence of 
multiple experts, the inherent uncertainty characteristic of biological 
and economic data, large and complex databases, and a knowledge 
domain that is tied to a changing landscape. These factors have 
required a more detailed examination of basic principles and tech- 
niques associated with the parent discipline, AI, and have led to new 
tools and methodologies for addressing issues in NRM and land- 
scape ecology. Our objectives are to identify and describe A1 
applications directed to (i) development of integrated expert systems 
for problem-solving and decision-making, (ii) development of intel- 
ligent geographic information systems for landscape management, 
and (iii) modeling animal populations and environmental interac- 
tions. 

Integrated Expert Systems for Problem- 
Solving and Decision-Making 

Resource managers must be aware of the ecological, economic, 
and social consequences of their actions if they are to make informed 
decisions. Managers must comprehend information that spans sever- 
al disciplines and ranges from basic social values to highly technical 
research results. Since the late 1960s scientists have used systems 
analysis and simulation modeling to abstract the important features 
of complex systems (8 ) .  More emphasis has been placed on gather- 
ing information than on effective and efficient use of available 
information for decision-making and problem-solving. Although 
conventional decision aids (6) and microcomputers have expedited 

the practical application of some of the knowledge available, the 
problem-solving and decision-making routine of resource managers 
remains essentially unchanged. However, when fundamental con- 
cepts from systems science are combined with principles from AI, 
especially with regard to expert systems, issues of NRM can be 
approached from new perspectives. 

Expert systems in NRM: Uses and lzmitations. Of the various 
computer-decision aids for NRM that can use simulation models, 
expert systems have been chosen for their usefulness and potential 
impact (4-6). Expert systems applications have successfully captured 
and focused human expertise on complex problems in several 
domains (9) and in many cases have achieved a level of performance 
that equals or exceeds that of recognized human experts. In NRM, 
however, applications have been relatively few and recent. 

Two types of expert system applications have been developed for 
NRM: diagnostic systems and simulation delivey systems. In 
diagnostic systems the knowledge base is bounded and includes a 
discrete set of alternatives for problem-solving and decision-making. 
Examples include systems for identifying species ( lo) ,  for giving 
financial advice (11), and for selecting pest control options (12). 
Simulation delivery systems are concerned with the useful manipula- 
tion of simulation models. The execution of the model is controlled 
by an attached expert system that manages inputs to the model to 
ensure that they are correct and sufficient. The expert system 
component also interprets output from the model within the 
bounds of intended use. COMAX (13) is an example of a simulation 
delivery system that provides an expert system interface to a cotton 
model. The system helps growers schedule irrigation, fertilizer 
application, and harvest by searching for a defoliation date, water, 
and nitrogen conditions that improve simulated yields within 
agronomic constraints. 

The use of expert systems in NRM has two limitations. First, 
rules, which are the primay way of representing knowledge in 
virtually all expert systems, are not well suited to providing advice in 
problems that involve natural systems. Second, management itself is 
a broad-based problem. Both limitations reflect the requirement in 
development of expert systems that the problem be well defined 
(14). If the limits are not explicitly stated and the system is not 
constrained to give advice only within appropriate limits, then 
erroneous advice can be given without warning to the user. 

User input 

User input 

-=-j-' 

Fig. 2. The breakdown of management into a system of decisions linked by 
information flow. Information exists in four main forms: (i) user input of 
objective data, (ii) knowledge stored in the knowledge base, (iii) simulation 
output (used to update the knowledge base), and (iv) previous decisions or 
choices made that reflect the opinion of experts. [Adapted from (12), 
courtesy of the National Cotton Council of America] 
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The distinction between models of surface knowledge, which 
describe associations and correlations, and models of deep knowl- 
edge, which describe causative relation, is central to the first 
limitation. Natural systems are dynamic and not completely under- 
stood. Thus scientists seek to explain natural phenomena in terms of 
causation and not correlation. Furthermore, scientific research on 
natural systems is evaluated by the extent to which models of the 
underlying laws of nature can be hypothesized, tested, or elucidated. 
Rules are extremely good at describing associations, such as if boll 
weevil infestations are observed in early-squaring cotton and boll 
weevils are not controlled, then serious yield losses will occur. By 
contrast, rules are not well suited to describing deeper, causative 
knowledge. For example, cotton yield losses due to boll weevil 
infestation are dependent on weather, rates of development of the 
weevil larvae, plant growth and development, temperatures in the 
field at the soil surface, humidity, and several other factors. Writing 
rules to describe such relations would be tedious and inexact. 
Mathematical models and other representation schemes such as 
semantic nets are better suited to describing such deep knowledge. 

The second limitation is one of scope. Expert system applications 
are most successful in narrowly defined problem domains, yet NRM 
is an open-ended problem. Optimal use of farmland, for example, 
involves agronomic, pest management, and economic decisions that 
are interrelated. A proper computer-decision aid should consider the 
complexities involved in these interrelations. Isolated solutions have 
limited usefulness. 

Inte~~ated expevt systems in NRM. Integrated expert systems 
(IEXS) were developed to overcome these two critical limitations in 
applying expert systems to agricultural problems (15). Two strate- 
gies stressed in IEXS are described below: separation of deep 
knowledge of theory associated with scientific and economic sys- 
tems from surface rules for managing those systems; and the 
application of systems analysis approaches to the management 
activity (12). 

Building systems that provide an understanding of a problem 
domain that is separate from knowledge about how to solve 
problems is one of the main goals of all knowledge-based systems 
(2). In expert systems this separation is evident in the distinction 
between the knowledge base and the inference engine, that is, the 
rule interpreter. In practice, however, rule-based expert systems rely 
on rules both for the representation of relations in the problem 
domain and for the problem-solving logic. The inference schemes 
used are too general and too shallow to provide much more than 
search and conflict-resolution strategies. 

The desired separation, then, is possible only through the use of 
other knowledge representation schemes apart from or in addition 
to rules. The major tools for building knowledge-based systems (for 
example, KEE, ART, and ICnowledge Craft) all allow for a specific 
representation of domain knowledge apart from and in addition to 
rules that reference that knowledge. In such systems, rules can act 
separately from the knowledge base to describe how to solve 
problems within the subject domain. In this context rules are an 
appropriate way to encode problem-solving heuristics within the 
constraints of a natural system. 

In IEXS, classical systems analysis is applied to the problem of 
management. The system is a decision system; the modeling meth- 
odology used is rule-based expert system constructs; the compo- 
nents of a management system are the specific decision points and 
choices that need to be made (Fig. 2). The linkages benveen these 
components are information from one of three sources: the user, the 
knowledge base, or previous decisions and choices that have been 
made. A decision network is created in which each node of the 
decision system is modeled by a rule-base module and the catalog of 
decision nodes represents the range of problems to which the system 

can respond. Once the user has identified a starting point within the 
decision network, the system produces a chain of decisions by 
moving through the modular rule bases to reach a conclusion. In 
this way the system provides advice on a wide array of management 
problems while keeping each modular rule base well focused and 
defined. 

Systems that contain these two elements to some degree, that is, a 
natural system model and a management system model, include the 
COMAX system (131, the POMME system for pest management in 
apple orchards (161, the CALEX system for cotton management in 
California (17), and the COTFLEX system for farm management in 
Texas (15). In COTFLEX, a frame-based representation of a Texas 
farm in the Southern Blacklands is augmented and updated by 
simulation models of (i) plant and pest development and interaction 
and (ii) economics models for price forecasting and farm financial 
analysis based on current farm policy. This deep-knowledge descrip- 
tion of the natural and economic systems forms the basis for the 
rule-based management model that provides users with advice (Fig. 
3). Thus a field has certain attributes, such as soil type, size, crop and 
pest histories, and crop planted, which are inherited by its subclass- 
es, the individual fields. All cotton fields also have attributes, such as 
planting date, soil type, pest abundance, and phenological stage of 
the crop. When simulation models are available, future values and 
trends of pest abundance, market prices, and net farm income can be 
added to the system. 

Conventional and Intelligent Geographic 
Information Systems 

Landscape ecology, which is the study of structure, function, and 
change in heterogeneous land area composed of interacting ecosys- 
tems (18), deals with the level of ecological organization that senlice 
agencies in federal and stage government (such as the Forest Service, 
the Park Senlice, the Fish and Wildlife Senlice, and state foresty 
agencies) are charged to manage. Farm and ranch managers are also 
concerned with this level of organization. Landscape ecology, an 
emerging discipline within ecology, is a response to the need to 
understand (i) development and dynamics of pattern in ecological 
phenomena, (ii) the role of disturbance in ecosystems, (iii) charac- 
teristic spatial and temporal scales of ecological events, and (iv) 
interactions among multiple ecosystems (landscape elements) (19). 
One of the principal technologies available for studying landscape 
ecology and landscape management is the geographic information 
system (GIs). The usefulness of the conventional GIs can be 
dramatically enhanced by incorporation of A1 in its design. 

Conventional GISs. A GIS is a computerized mapping system for 
capture, storage, retrieval, and analysis of spatial and descriptive 
data. In a GIS, coordinates that represent a base map of a geographi- 
cal area can be digitized, manipulated, and reproduced on a 
computer screen. Landscape features (or "data themes") (for exam- 
ple, vegetation types, soil types, lakes, river drainages, and road 
systems) can be overlaid on the map (Fig. 4). Spatial relations 
among the various data themes can be examined and specialized 
maps developed. Different map scales can be adjusted or coordinat- 
ed in a GIS; high-resolution graphics terminals permit representa- 
tion in extraordinary detail. For organizations involved in landscape 
management, GISs are useful in assessing consequences of land 
management practices, taking inventory of natural resources, defin- 
ing land-use patterns, delineating animal habitat, and applying to 
other activities. 

Existing GIs technology has been developed by using conven- 
tional computer science techniques. All GISs contain four compo- 
nents: (i) a data input subsystem that collects and processes spatial 
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and descriptive data derived from maps, remote sensors, and other 
sources; (ii) a data storage and retrieval subsystem (that is, a 
database management system); (iii) a data manipulation and analysis 
subsystem that consists of evaluation functions, simulation models, 
and so forth; and (iv) a data-reporting subsystem for display of 
portions of the original database as well as manipulated data (20). 
Relations among elements of the landscape are undefined. Howev- 
er, knowledge of the interrelations is often quite advanced. For 
example, harvesting a stand of trees in a forest is known to influence 
subsequent vegetation dynamics, animal habitat, water quality in 
streams, fish populations, and other aspects of the landscape. The 
knowledge that relates to these subject domains consists of technical 
information, simulation models, evaluation functions, and expert 
opinion. The knowledge base for a given geographic area is often 

Each object contains: 
Attributes 
Procedures 

Predicted infestation 
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quite large and is rarely, if ever, used in its entirety for management C 
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ment. Summaries of the interpretations would form the environ- infestations and so forth 2. Defines how to use 

mental impact statement. J 
Intell&entgeographic infownation systems. The chief limitations of 

conventional GISs for NRM or studies of landscape ecology are that evaluation functions 
relations among landscape elements cannot be interpreted without 
the intervention of human Fu*ermore, many of the Fig. 4. Schematic that illustrates the components of an IGIS that uses object- 
currently available require considerable familiarity and expertise by oriented programming techniques and rule-based reasoning to interpret 
the user, a problem that has greatly reduced acceptance and use of within and among landscape data themes. 
GIs, as it has for much of the simulation modeling technology 
available to practitioners. 

A1 techniques, however, particularly object-oriented program- particular variable. This dynamic message-passing provides interpre- 
ming and rule-based reasoning, have allowed the development of tative capability. Communication within and among objects is 
intelligent geographic systems (IGISs), which consist of a conven- effectively controlled by a supervisory rule base, which is also 
tional GIs with (i) the added capability of interpretation and (ii) a represented as an object. This approach eliminates the nested, 
user interface that guides efficient application of the system. IGIS is procedural method associated with conventional programming. The 
a special form of intelligent database management, which is a branch rule base contains knowledge about relations among data themes as 
of A1 (21). well as knowledge about how to use the system. The use of a 

An IGIS contains the same four components as a conventional conventional GIs would require the human expert to have both 
GIs. The object-oriented programming of the IGIS, however, binds types of knowledge. 
data and related procedures into separate classes of objects and An example of the usefulness of IGIS methodology involves 
manipulates them as such (1,22) (Fig. 4). Each object is defined by research on the association of a natural disturbance and herbivory by 
attributes (values for variables) and procedures (methods for manip- bark beetles (Coleoptera: Scolytidae). Coulson et al. (23) hypothe- 
ulating the attributes). Objects communicate by sending messages sized that the distribution, abundance, and size of bark beetle 
to one another, which results in some type of response in the data infestations in the southern United States are a function of the 
theme; for example, initiation of a procedure or change in value of a interaction of several factors, which include the pattern of lightning 

strikes for the region, landscape structure, forest stand structure, 
weather conditions, and the background population levels of the 
insects. Bark beetles often colonize a lightning-struck host; in some 
cases multiple tree infestations develop as a result of subsequent 
population growth, immigration, or both. This circumstance is most 

COTTON.FIELDS likely in certain classes of forest stands (termed "high hazard") and 
when weather conditions for beetle growth and development are 
optimal. Taken collectively within a region, the patches in forest 
stands created by activities of bark beetles can influence both 
landscape structure and forest management practices. The general- 
ized structure of an IGIS for this association is shown in Fig. 4. 
There are five basic data themes (objects): base map (the coordinate 
system for the landscape area, for example, the pine forest region of 
east Texas), vegetation (host type for the bark beetles), lightning 

, centers (available from thunderstorm radar maps or lightning 
L 

detection instrumentation), centers of high-hazard stands (based on 
Figm 3. A ponion the 'OTFLEx (5> 12)  howledge base showing a subset information on forest-stand invent on^ and characteristics of the of the attributes of a cotton field and the sources for the values of those 
attributes. For example, A-24 is a specific instance of a cotton field and landscape), and predicted centers. Each data theme has 
includes advice about how to control pests in a field. A-24 is derived from associated with it attributes, procedures, and rules as described 
rules that depend primarily on the values of the attributes shown. earlier. The basic premises underlying the hypotheses in question are 

+*- 

for harvesting a forest stand, specialists from each of the subject 
domains (timber management, plant ecology, wildlife biology, and 
others) would be asked to interpret probable effects of the treat- 

Database management 
system 

stand ratings, lightning bark beetle 



contained in the supenisory rule-base object (in the A1 environment 
section of Fig. 4). This rule base defines the relations within and 
among the various data themes to provide interpretation and 
integration that are not available in conventional GISs. An IGIS 
approach to the bark beetle-lightning scenario, then, permits (i) 
testing of the basic hypothesis that landscape disturbance and insect 
herbivory are related, (ii) examination of the effect of bark beetle 
infestations on forest landscapes, and (iii) development of a tool that 
predicts distribution and abundance of infestation centers. 

A1 Models of Animal Behavior and Ecology 
Although A1 methods contribute to better decision-making and 

more effective NKM, A1 techniques also offer new approaches to 
developing deep-knowledge models of ecological processes at the 
organismal level. These newer methods focus on the representation 
and simulation of animal behavior and on the interactions between 
the animal and the environment. The term "A1 model" is used to 
emphasize that such models embody both theory (about how 
animals and components of ecological systems function) and imple- 
mentation of theory (usually in the form of a computer program) 
(24). Thus the main emphasis of A1 modeling is to explain system 
behavior in terms of computation (25). 

The approach is to use the "object-oriented paradigm" described 
above to model interactions among organisms, interactions between 
organisms and their environments, and the internal motivational 
systems whose interactions lead to observable behavior in an 
organism. 111 addition, each component of a behavioral or ecological 
system ma!7 be modeled with appropriate mechanisms (which ma17 
include some combination of rule bases, hierarchical decision trees, 
or evaluation hnctions). The use of A1 tools to represent complex 
data (dynamic data structures in particular) and to manipulate them 
with search techniques for pattern matching fosters this multilevel 
approach for constructing models. Simulation with such models 
provides new means for evaluating emergent behavioral and ecologi- 
cal properties at the individual and population levels. 

These modeling techniques have several advantages over tradi- 
tional methods for developing deep-knowledge models of natural 
resource processes: (i) a rich repertoire of data structures, both 
dynamic and static, to represent behavioral states; (ii) sophisticated 
procedures to manipulate these data structures; (iii) event-driven 
rather than time-driven control of processes; and (iv) dynamic 
linkages among components of the model rather than the static 
linkages found in traditional systems and network models. The 
application of the concepts in ecological modeling is discussed 
below. 

Applications to animal behavior and ecolgy. Some aspects of animal 
behavior are well suited for modeling with A1 techniques, particular- 
ly forms of behavior with a small number of discrete states. Changes 
in behavioral state can be viewed as results of decision processes. 
The task of the researcher is to develop models of those decision 
processes that demonstrate appropriate behavior. In motivational 
and physiological systems such as hunger, safety, reproduction, 
sociability, thirst, and temperature regulation, each system has its 
own decision-process structure. These systems then interact to 
produce a decision that results in observable behavior of the 
organism. With such "behaving" components, the object-oriented 
approach may be used to simulate emergent behavior of the 
organism and explore alternative hypotheses about how such com- 
ponents should interact. 

Object-oriented programming offers a new perspective for model- 
ing animal-environment interactions. The traditional way of posing 
a problem for computcr solution in ecology is to establish basic data 

structures for the problem and then to create procedures to manipu- 
late these data. This method is an artificial way to dissect a biological 
problem. The object-oriented approach allows definition of a prob- 
lem in terms of actors (objects) and communications (messages) 
between them (26). Each actor has an internal state (usually a 
dynamic data structure) and a set of rules or processes (internal 
procedures) by which to respond to messages and modify its state. 
There is a fairly direct correspondence between objects and their 
messages on one hand and the organisms, environmental compo- 
nents, and the interactions of our conceptual models on the other. 
This correspondence allows development of programming models 
that closely match conceptual models of biological systems. 

Models of the behavioral processes of deer relative to habitat use 
and models of deer-habitat interactions are being developed to test 
applications of these techniques. The deer-habitat model is based on 
detailed data on (i) forest stand structure collected from the 
viewpoint of wildlife management and (ii) deer behavior from 
extensive radio-tracking studies (27). The approach of the model is 
to consider each deer and each forest stand as separate objects. A 
deer communicates with other objects by sending and receiving 
messages. For example, when a deer enters a particular forest stand, 
it announces its presence and "queries" the stand about available 
resources (such as browse or cover attributes). The deer ma!7 also 
send a message to the stand by removing a quantity of browse 
(eating); the stand would then update its "memory" as to the 
amount of browse remaining. Simulation involves interactions 
among components by means of such messages. 

Although the technique of assigning active roles to inanimate 
objects may seem unusual, this formal exchange of information 
provides a workable model of separate objects with specific types of 
asynchronous communication between them. The state of each 
object depends on the sequence of internal responses to the history 
of communications received from other objects in the simulation. 
Each object may be as simple or as complex as necessary to effect the 
required type of behavior; other objects see only the external 
messages sent by the given object. In particular, an object can have 
an internal memory that is modified by messages received and that 
affects messages generated. 

New conceptgal benefits j?om AI modeling of natural phenomena. 
Perception of time is a critical factor in development and use of 
simulation tools. Modern approaches to simulation of natural 
systems are based on a concept of time that arose relatively late in 
human intellectual development (about the 14th century). Before 
then, time was measured b!7 the occurrence of natural events in daily, 
lunar, and annual cycles (28). Perception of time was "event- 
driven." Since the introduction of the clock, however, time has been 
parceled into many discrete units that have no direct relation to the 
events and processes of biological systems. This "new" concept of 
time has allowed definition and measurement of rates essential to 
modern simulation techniques. Nevertheless, animal-environmental 
systems are event-driven, whereas simulation techniques depend on 
a rigidly structured time scale. This circumstance strongly constrains 
conceptual approaches to modeling. 

In A1 modeling the time-lock simulation mode commonly used in 
ecology can be avoided and event-driven models can be constructed 
that more closely reflect the natural systems they represent. Each 
component of such a model operates as an independent process with 
its own internal structure, dynamics, and time scale. The component 
processes, or objects, interact with one another by communicating 
with messages. Exchange of a message between two objects consti- 
tutes an "event." The components still have access to "time" and are 
driven not by it but only by interactions with other objects. The 
plant that produces a leaf operates on a time scale that is very 
different from that of the deer that browses on it; however, clear-cut 
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communication obviousl!7 occurs benveen them when the deer bites 
off the leaf. 

Traditional approaches in systems simulation and network model- 
ing provide for interconnected system compartments or network 
nodes. These connections are an integral part of the model defini- 
tion and establish a static linkage for the duration of simulation. In 
-cCGTiWdX, 0b@d~~t'YI?Cd pT3g&YiWFLh'g .iL%% ~ d p & ~  !<,~k&ga; ~!kii 
(messages) benveen components are created and destroyed dynam- 
ically as hnctions of the states of the components at various points 
in the simulation. Such a representation is much closer to our 
perceptions of interacting animals than is the traditional systems 
approach. 

An A1 approach to modeling allows consideration of systems with 
multiple time scales that affect multiple processes within each 
system; it makes possible dynamic linkages among components and 
permits the simulation of "complex dynamical systems" (29). Com- 
plex dynamical systems adapt to changing environments. Although 
they have complex behaviors that arise from interactions of their 
components, the rules that govern those interactions are fairly 
simple. This view of ecological systems provides a powerful tool for 
exploring the effects of alternate strategies (represented by alternate 
properties of components or interaction rules) on development of 
system behavior. 

Epilogue 
In the preceding sections three uses of A1 were examined: IEXS, 

IGIS, and A1 modeling. The purpose, benefits, and beneficiaries of 
each A1 application are somewhat different and reflect a range in 
interest from problem-solving and decision-making to landscape 
ecology and modeling of animal populations. Both applied prob- 
lems in NRM and basic scientific issues can be addressed. The types 
of products that can be developed by using A1 techniques may be of 
use for resource managers and research scientists. A1 applications in 
NRM are just beginning to be explored. 
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