Mitogens and Oncogenes Can Block the Induction of Specific Voltage-Gated Ion Channels

JOHN M. CAFFREY, ARTHUR M. BROWN, MICHAEL D. SCHNEIDER*

The mechanisms underlying the ontogeny of voltage-gated ion channels in muscle are unknown. Whether expression of voltage-gated channels is dependent on mitogen withdrawal and growth arrest, as is generally true for the induction of muscle-specific gene products, was investigated in the BC3H1 muscle cell line by patch-clamp techniques. Differentiated BC₃H1 myocytes expressed functional Ca² ⁺ and Na⁺ channels that corresponded to those found in T tubules of skeletal muscle. However, Ca^{2+} and Na^{+} channels were first detected after about 5 days of mitogen withdrawal. In order to test whether cellular oncogenes, as surrogates for exogenous growth factors, could prevent the expression of ion channels whose induction was contingent on mitogen withdrawal, BC₃H1 cells were modified by stable transfection with oncogene expression vectors. Expression vectors containing v-erbB, or c-myc under the control of the SV40 promoter, delayed but did not prevent the appearance of functional Ca²⁺ and Na⁺ channels. In contrast, transfection with a Val¹² c-H-ras vector, or cotransfection of c-myc together with v-erbB, suppressed the formation of functional Ca²⁺ and Na⁺ channels for ≥ 4 weeks. Potassium channels were affected neither by mitogenic medium nor by transfected oncogenes. Thus, the selective effects of certain oncogenes on ion channel induction corresponded to the suppressive effects of mitogenic medium.

USCLE DIFFERENTIATION IS ACcompanied by developmental changes in the expression of voltage-gated membrane ion channels (1), whose underlying cellular mechanisms are unknown. In contrast, the induction of genes that encode each subunit of the ligand-gated nicotinic acetylcholine receptor has been linked to cessation of cell division or to withdrawal of mitogenic growth factors (2, 3). It has been proposed that cellular oncogenes that have been implicated in mediating growth factor effects (4) function as negative regulators of myogenesis (5). Furthermore, certain variant muscle cell lines that cannot differentiate autonomously express either c-myc (6) or the epidermal growth factor (EGF) receptor encoded by cerbB (7). We therefore examined the ontogenv of voltage-gated ion channels in BC₃H1 muscle cells, a clonal line that has been used extensively as a model of myogenic differentiation (3, 5, 8, 9). We wanted to determine whether expression of one or more voltage-

gated channels in BC₃H1 myocytes would be contingent on mitogen withdrawal, or would be influenced by stable transfection (10) with cellular or viral oncogenes that mimic the effects of growth factors on muscle-specific gene induction (9). We report that expression of functional calcium and sodium channels was suppressed both during proliferative growth and by transfection with certain oncogene alleles. In contrast, expression of potassium channels was inhibited neither by mitogenic medium nor by the transfected oncogenes.

We examined Ca^{2+} , Na^+ , and K^+ currents in whole cells or single channels by means of the gigaseal patch-clamp method (11). In BC₃H1 cells that had been induced to differentiate in 0.5% fetal bovine serum (FBS) for 5 days (5, 9) we identified (i) a rapidly activating, low-threshold Ca^{2+} current, (ii) a slowly activating, higher threshold Ca^{2+} current (Fig. 1), (iii) a delayed, outwardly rectifying K⁺ current, and (iv) an inward Na⁺ current that was half-maximally

inhibited by tetrodotoxin at 10 µM. Wholecell recordings of the Ca²⁺, Na⁺, and K⁺ currents, current-voltage (I-V) relations, and unitary channels are each shown in Fig. 1. The two Ca^{2+} currents resembled those reported for skeletal muscle (12) and differed from the Ca²⁺ currents reported for smooth muscle cells (13) (Fig. 1, A to C, and Table 1). The "slow" Ca^{2+} current of BC₃H1 cells activated with a time constant ≈ 20 to 100 msec, comparable to "slow" Ca²⁺ channels found in T tubules of skeletal muscle. The "fast" current inactivated very slowly, as observed in T tubules. Furthermore, the "fast" and "slow" components could be distinguished by the voltage dependence of inactivation (see the legend to Fig. 1B), conductance and mean open time of single channels (Fig. 1C), divalent cation selectivity, and pharmacology. Taken together, these data indicate that two independent classes of elementary Ca²⁺ channels coexist in differentiated BC₃H1 cells, whose biophysical properties correspond to those in T tubules of skeletal muscle. The kinetics and I-V relations of the K⁺ current (Fig. 1, D to F) and Na⁺ current (Fig. 1, G and H) also were similar to those reported for skeletal muscle (14, 15).

To determine whether changes in voltagegated currents of BC3H1 muscle cells could be induced by mitogen withdrawal, we compared whole-cell clamp recordings from exponentially growing cells with those from cells at 1 to 20 days in 0.5% FBS (Fig. 2). Ca²⁺ and Na⁺ currents could not be detected in proliferating BC3H1 myoblasts, at test potentials ranging from -20 to +60 mV: these currents first appeared after 4 to 5 days of mitogen withdrawal. Peak amplitudes for the three inward currents, relative to one another, neither varied appreciably from cell to cell nor varied during the observed time course of differentiation (1). Current densities were normalized to membrane area, which was estimated from both cell capacitance and cell geometry, and were found to increase through days 15 to 20 after mitogen withdrawal and then to plateau (Fig. 2B). We estimated channel number (N)using the relation $I = N \cdot i \cdot P_{o}$ where I denotes the amplitude of the whole-cell current, *i* is the mean single-channel amplitude, and P_{0} indicates the probability that a single channel is in an open state (11). For the "slow" Ca^{2+} current, at +10 mV in 50 mM

J. M. Caffrey and A. M. Brown, Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030.

M. D. Schneider, Molecular Cardiology Unit, Departments of Medicine, Cell Biology, and Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030.

Table 1. Properties of Ca²⁺ channels in BC₃H1 myocytes, skeletal muscle (*12*), and smooth muscle (*13*). V_{th} , potential for threshold activation; V_{p} , potential at which inward current is maximal; and $t_{1/2}$, time to 50% activation or inactivation.

Samples	$V_{th} \ (mV)$	(mV)	<i>t</i> _{1/2} Activation (msec)	t _{1/2} Inactivation (msec)
BC ₃ H1 myocytes				
Fast	-30 to -20	-10 to 0	2 to 10	500 to 5,000
Slow	-20 to 0	0 to +20	20 to 100	1,000 to 10,000
Skeletal muscle				
Fast	-70 to -60	-20 to -10	5 to 50	500 to 5,000
Slow	-50 to -40	-10 to 0	100 to 300	500 to 5,000
Smooth muscle				,
Fast	-60 to -50	-20 to -10	1 to 10	10 to 50
Slow	-30 to -10	0 to +30	2 to 10	200 to 1,000

*To whom correspondence should be addressed. SCIENCE, VOL. 236 Ba²⁺, $I \cong 400$ pA, i = 0.65 pA, and $P_o \cong 0.1$. Thus, we calculate that differentiated BC₃H1 myocytes may express ~10⁴ functional "slow" Ca²⁺ channels per cell, with a doubling time of approximately 2 days during mitogen withdrawal. For the K⁺ current, $I \cong 500$ pA, i = 0.5 pA, and $P_o \cong 0.5$, indicating that BC₃H1 cells express ~2000 K⁺ channels per cell (Fig. 1, D to F). In contrast to our results for Ca²⁺ and Na⁺ currents, the K⁺ current was relatively invariant during differentiation (Fig. 2D).

To test if induction of Ca²⁺ channels can be inhibited via genes that encode proteins postulated to transduce or emulate mitogenic signals, we investigated clonal cell lines derived from BC3H1 cells that had been stably transfected with activated alleles of cmyc, v-erbB, both genes, or c-H-ras (9) (Fig. 3). The c-myc expression vector, pSVc-myc-1, contained murine c-myc coding sequences under the transcriptional control of the SV40 promoter (16). The v-erbB vector, pAEV11-d1-3, consisting of the avian erythroblastosis viral genome deleted in the irrelevant erbA and gag sequences (17), corresponds to a truncated or ligand-independent EGF receptor. The vector, pEJ6.6, containing the Val¹² allele of c-H-ras, encodes a ras protein that binds, but cannot hydrolyze guanosine triphosphate and is postulated to function constitutively in transduction of signals induced by growth factors (16, 18). Evidence that the transfected oncogenes are expressed in the resulting clonal cell lines is reported elsewhere (9). We found that either an autonomous c-myc gene or v-erbB delayed, but did not prevent, differentiation of BC₃H1 cells, indicated by >100-fold induction of muscle creatine kinase (mck) messenger RNA (mRNA) (9). In contrast, more than additive inhibition of differentiation resulted when c-myc was cotransfected with v-erbB. Moreover, the Val¹² c-H-ras allele, when transfected alone, suppressed mck and a-actin mRNA induction (9). The expression vectors were not themselves mitogenic for BC₃H1 cells, and each of these stably transfected, clonal cell lines withdrew from the cell cycle within 48 hours of mitogen deprivation. Thus, the effects of transfected oncogenes on musclespecific gene expression were independent of cell proliferation. In BC3H1 cells that had been transfected with pSVc-myc-1 or pAEV11-d1-3, the initial expression of both Ca^{2+} channels was delayed by 1 to 2 days, when compared to control BC3H1 myocytes. On the other hand, the Ca²⁺ current density ultimately was equivalent to that of the control cells (Fig. 2B). Neither the I-Vrelations nor the kinetics of the macroscopic Ca²⁺ currents were altered. These results agree with recent reports indicating that c*myc* expression by itself does not suppress the differentiated phenotype in muscle cells (9, 19).

In contrast, cotransfection of pSVc-myc-1, together with pAEV11-d1-3, resulted in synergistic suppression of the two Ca^{2+} currents (Fig. 2). These results substantiate our previous observation that the concerted effect of the oncogenes *c*-myc and *v*-*erb*B on myogenesis was more than additive in these cells (9, 11). Consistent with its marked effects on muscle-specific gene induction (9), the Val¹² allele of c-H-*ras* sufficed by itself to abolish expression of functional Ca²⁺ channels at up to 40 days in "differentiating" medium (Fig. 2). Maximal concentrations of isoproterenol ($10^{-6}M$) and BAY k 8644, a dihydropyridine agonist (DHP, $5 \times 10^{-6}M$) (20), did not elicit Ca²⁺ currents either in *ras*-transfectants or in proliferating cells. Since currents of ≥ 10 pA could be resolved, the number of Ca²⁺

Fig. 1. Voltage-activated Ca²⁺, K⁺, and Na⁺ currents in differentiated BC₃H1 myocytes. (**A**) "Fast," low-threshold (upper pair) and "slow," higher threshold (lower pair) inward Ba²⁺ currents were elicited by 450-msec voltage steps from -80 mV (V_h) to the test potentials (V_t) shown. The external solution was without Na⁺ and contained: 20 mM barium glutamate, 110 mM N-methyl-p-glucamine, 5 mM glucose, and 10 mM Hepes (pH 7.3); cells were internally dialyzed with 130 mM cesium aspartate, 10 mM CsF, 5 mM EGTA, and 10 mM Hepes (pH 7.3). (**B**) Current (I_m) is plotted as a function of voltage of the membrane (V_m) for peak inward Ba²⁺ current elicited by voltage steps from -80 mV to the potentials shown (open symbols). In order to isolate the "fast" Ba²⁺ current, "slow" Ba²⁺ currents were inactivated with a holding potential of -50 mV (closed symbols) (11). (**C**) Single Ba²⁺ channels were measured in a differentiated BC₃H1 myocyte (cell-attached patch). Pipette: 50 mM barium glutamate, 50 mM tetraethylammonium glutamate, 51 mM glucose, and 10 mM Hepes (pH 7.3); currents were elicited by 150-msec pulses from -100 to -10 mV at 5-second intervals, filtered at 1 kHz, and sampled at 100 µsec per point. (**D**) Delayed, outwardly rectifying K⁺ currents were measured. $V_h = -80 \text{ mV}$; $V_t = -30$, -20, -10, or 0 mV; the pulse duration was 450 msec. External: 5 mM CaCl₂, 130 mM NaCl, 5 mM KCl, 5 mM glucose, 10 mM Hepes (pH 7.3), and 5 mM Ca²⁺ Tyrode's solution; internal: 130 mM potasium aspartate, 10 mM KF, 5 mM EGTA, and 10 mM Hepes (pH 7.3). (**E**) Current (I_m) is plotted as a function of voltage of the membrane (V_m) for K⁺ current 450 msec after onset of a voltage step from -80 mV to each potential. (**F**) Unitary K⁺ channels were measured in a proliferative, undifferentiated BC₃H1 cell (cell-attached patch). $V_h = -80 \text{ mV}$; $V_t = -20 \text{ mV}$. Pulse duration was 150 msec. Pipette and bath: 5 mM Ca²⁺ Tyrode's solutio

channels that were activated by DHP thus was decreased at least 50-fold by either FBS or transfection with the Val¹² c-H-*ras* allele. Corresponding results were obtained for Na⁺ currents (Fig. 2C), whereas, by contrast, the K⁺ currents were not altered by any of the transfected genes (Fig. 2D).

It will be interesting to test the prediction that mitogenic stimulation and the transfected *ras* gene suppressed Ca^{2+} currents by channel biosynthesis, or because channels, though present, were rendered functionally inactive. It remains to be established whether an activated *ras* protein that can serve as a

Fig. 2. (A) Induction of Ca^{2+} currents in BC₃H1 muscle cells after mitogen withdrawal and inhibition after transfection with genes that suppress myogenesis. Individual traces are shown for (traces a to c) BC₃H1 muscle cells or cells transfected with (traces d to f) c-myc, (traces g to i) v-erbB, (trace j) c-myc + v-erbB, or (trace k) Val¹² H-ras. Cells were cultured in 0.5% FBS for the durations shown in days to the right of each tracing. Currents were elicited by voltage steps from -80 mV to a test potential of +10 mV (conditions as for Fig. 1A). Under these conditions, both the "fast" and "slow" components of the Ca²⁺ current are maximally activated in differentiated BC₃H1 myocytes (see Fig. 1B). Horizontal calibration: 50 msec; vertical: (day 1) 50 pA or (day 7 to day 40) 200 pA. (B) Ca²⁺ current density as a function of duration of serum withdrawal for BC₃H1 cells and transfectants. Values are means \pm SD of peak Ba²⁺ current elicited as above. Cell surface area was calculated from each cell's input capacitance for $1 \mu F/cm^2$ (11). Input capacitance for each cell line ($\sim 30 \text{ pF}$ at day 1) was twice as much by day 14 for each transfectant except v-erbB, which was five times as much as on day 1. Results shown represent six independent experiments (three to eight observations per cell line for each time indicated after serum withdrawal). BC₃H1 (●), v-erbB (pAEV11-d1-3) (△), cmyc (pSVc-myc-1) (O), v-erbB + c-myc (\Box), Val¹² c-H-ras (pEJ6.6) (\blacksquare). (C) Na⁺ current inactivation is dependent on mitogen withdrawal and is suppressed by an activated ras gene. Cells were shifted to 0.5% FBS for the duration shown in days under each set of bars. Na $^+$ currents evoked by pulses from -90 to -20 mV were normalized to membrane areas as for (B). BC₃H1 (solid); v-

Fig. 3. Morphology of stably transfected BC₃H1 myocytes. Phase-contrast microscopy is shown for (A) proliferative BC₃H1 cells and (B) differentiated BC₃H1 cells, or after transfection with (C) cmyc (pSVc-myc-1); (D) v-erbB (pAEV11-d1-3); (E) c-myc + v-erbB; (F) Val¹² c-H-ras (pEJ6.6). Panels B through F show quiescent cultures at 10 days of mitogen withdrawal. Bar = 100 μ m. To introduce exogenous DNA into BC₃H1 muscle cells, we used transfection by the calcium phosphate method (10). Each reaction mixture for 10⁶ cells per 100-mm dish comprised 1 μ g of test DNA, 30 μ g of carrier DNA, and 0.1 μ g of pSV2neo DNA, conferring aminoglycoside resistance as a dominant selectable marker (26). Stable clones were isolated 18 to 21 days after transfection with the neomycin analog G418 at 400 surrogate for exogenous growth factors (i) has a primary effect on induction of these three voltage-gated channels, or (ii) is coupled to channel function as a negative modulator (21), or (iii) acts principally through up-regulation of secondary autocrine factors. Our investigation does not resolve the issue of whether the effects of "activated" oncogene alleles, which have been altered by mutation or by transcriptional control, may be extrapolated to imply similar involvement of the respective endogenous genes. As illustrated by contrasting results in rat pheochromocytoma cells, biological responses to *ras*- dependent signals may reflect inherent properties of a particular cell lineage rather than properties intrinsic to the *ras* gene product (22).

Expression of K⁺ channels in BC₃H1 cells was refractory to both the state of cell proliferation and to transfection with genes that suppress myogenic development. This "constitutive" expression of these K⁺ channels agrees with previous findings of K⁺ channel expression in immature or undifferentiated cells (1, 23) and contrasts with the regulated induction of functional Ca²⁺ and Na⁺ channels.

 σtbB (striped); Val¹² c-H-*ras* (third or open). (**D**) Expression of the delayed rectifier K⁺ current does not vary with the state of cell proliferation

and is refractory to the transfected genes. Current densities were calculated as above, after mitogen withdrawal for the times shown. Bars as for (C).

 μ g/ml and were propagated in the selective medium. Measurements of oncogene incorporation and expression in the transfected myocytes are reported elsewhere (9).

In agreement with our results shown here for voltage-gated ion channels analyzed by patch-clamp techniques, transfection of BC₃H1 cells with the Val¹² ras gene (but not the c-myc vector) was sufficient to prevent the induction of muscle differentiation products measured at the level of mRNA abundance. It is possible that the coordinate regulation of multiple channels, whose induction is contingent on mitogen withdrawal and is prevented by a single missense mutation, is interpreted most simply in the context of models for the control of musclespecific gene induction via the recognition of shared, cis-acting DNA sequences (24). Since the regulatory events underlying the expression of voltage-gated channels during development are likely to be complex, it should prove advantageous to exploit a clonal system such as the present one, in which genetic manipulations produce clear-cut phenotypic effects (25).

REFERENCES AND NOTES

- 1. Y. Kidokoro, in Excitable Cells in Tissue Culture, P. Nelson and M. Lieberman, Eds. (Plenum, New York, 1981), pp. 319–339; D. Schubert, Develop-mental Biology of Cultured Nerve, Muscle, and Gia (Wiley, New York, 1984); A. Schmid, J.-F. Renaud, M. Fosset, J.-P. Meaux, M. Lazdunski, J. Biol. Chem.
- M. Fosset, J.-P. Meaux, M. Lazdunski, J. Biol. Chem. 259, 11366 (1984); R. E. Weiss and R. Horn, Science 233, 361 (1986).
 J. P. Merlie, R. Sebbane, S. Gardner, E. Olson, J. Lindstrom, Cold Spring Harbor Symp. Quant. Biol. 48, 135 (1983). For studies of genes encoding sarcomeric and cytosolic proteins: B. Nadal-Ginard, Cell 15, 855 (1978); M. Shani et al., Der. Biol. 86, 483 (1981); M. Caravatti et al., J. Mol. Biol. 260, 59 (1982); K. E. M. Hastings and C. P. Emerson, Jr., Proc. Natl. Acad. Sci. U.S.A. 79, 1553 (1982); H. T. Nguyen, R. M. Mcdford, B. Nadal-Ginard, Cell 34, 281 (1983); M. D. Schneider, P. A. Pavne, H. 2 281 (1983); M. D. Schneider, P. A. Payne, H. Ueno, M. B. Perryman, R. Roberts, *Mol. Cell. Biol.* 6, 4140 (1986).
- 3. L. Yu, R. J. LaPolla, N. Davidson, Nucleic Acids Res.
- L. 14, 1329 (1986).
 J. M. Bishop, Cell 42, 23 (1985); H. E. Varmus, Annu. Rev. Genet. 28, 553 (1984).
- Chem. 261, 9483 (1984).
 Chem. 261, 9483 (1986); E. N. Olson, J. Biol. Chem. 261, 9483 (1986); E. N. Olson, E. Sternberg, J. S. Hu, G. Spizz, C. Wilcox, J. Cell Biol. 103, 1799 (1986).
 T. Stierrer et al. L. Cell Physicia 125, 445 (1985).
- T. Sejersen *et al.*, J. Cell Physiol. **125**, 465 (1985).
 R. W. Lim and S. D. Hauschka, Cold Spring Harbor
- Conf. Cell Proliferation 9, 877 (1982).
 D. Schubert, A. J. Harris, C. E. Devine, S. Heinemann, J. Cell Biol. 61, 398 (1974); E. N. Olson, K. C. Caldwell, J. I. Gordon, L. Glaser, J. Biol. Chem. 158, 2644 (1983).
- 9. M. D. Schneider et al., Mol. Cell. Biol., in press; P. A.
- Payne et al., J. Cell Biol. 103, 30a (1986).
 10. M. Wigler et al., Cell 11, 223 (1977); C. M. Corsaro and M. Pearson, Somatic Cell Genet. 7, 603 (1981).
- Consaid M. Pearson, Somula Cen Genel. 7, 605 (1981).
 B. Sakmann and E. Ncher, Eds. Single Channel Recording (Plenum, New York, 1983).
 W. Almers and E. W. McCleskey, J. Physiol. (London) 353, 585 (1984); ______, P. T. Palade, in Calcium in Biological Systems, R. P. Rubin, G. B. Weiss, J. W. Putney, Eds. (Plenum, New York, 1985), pp. 321-330; H. Affolter and R. Coronado, Biophys. J. 48, 341 (1985); G. Cota and E. Stefani, J. Physiol. (London) 370, 151 (1986).
 J. M. Caffrey, I. R. Josephson, A. M. Brown, Biophys. J. 49, 1237 (1986); B. P. Bean, M. Sturek, A. Puga, K. Hermsmeyer, Circ. Res. 59, 229 (1986).
- (1986)
- N. B. Standen, P. R. Stanfield, T. A. Ward, J. Physiol. (London) 369, 339 (1985).
 T. Gonoi et al., J. Neurosci. 51, 2559 (1985).
 H. Land et al., Nature (London) 304, 596 (1983).
 L. Sealy, G. Moscovici, C. Moscovici, J. M. Bishop,

- Virology 130, 179 (1983); T. Gilmore, J. E. DeClue, G. S. Martin, Cell 40, 609 (1985).
 18. C. Shih and R. A. Weinberg, Cell 29, 161 (1981); J. P. McGrath, D. J. Capon, D. V. Goeddel, A. D. Levinson, Nature (London) 310, 644 (1984); R. W. Sweet et al., ibid. 311, 273 (1984).
 19. T. Endo and B. Nadal Cingrad. Mol. Cell. Biol. 6
- Sweet et al., 101a. 311, 2/3 (1984). T. Endo and B. Nadal-Ginard, Mol. Cell. Biol. 6, 1412 (1986); G. Falcone, F. Tato, S. Alema, Proc. Natl. Acad. Sci. U.S.A. 82, 426 (1985); J. A. Coppola and M. D. Cole, Nature (London) 320, 760 (1986).
- A. M. Brown, D. L. Kunze, A. Yatani, Nature (London) 311, 570 (1984); P. Hess, J. B. Lansman, R. W. Tsien, *ibid.*, p. 538. 21. G. G. Holz, S. G. Rane, K. Dunlap, *ibid.* 319, 670
- (1986).
- 22. M. Noda et al., ibid. 318, 73 (1985); D. Bar-Sagi
- and J. R. Feramisco, *Cell* **42**, 841 (1986). L. Schlichter, N. Sidell, S. Hagiwara, *Proc. Natl. Acad. Sci. U.S.A.* **83**, 5625 (1986). 23.
- C. Emerson, D. Fischman, B. Nadal-Ginard, M. A. Q. Siddiqui, Molecular Biology of Muscle Development 24. (Liss, New York, 1986).

- 25. M. Nirenberg et al., Science 222, 794 (1983).
- 26. E. M. Southern and P. Berg, J. Mol. Appl. Gen. 1, 327 (1982).
- 327 (1982). We thank J. M. Bishop and R. A. Weinberg for the oncogene expression vectors, E. N. Olson for BC₃H1 muscle cells and his review of the manu-script, and K. Angelides, S. L. Mulvagh, and M. B. Perryman for suggestions. M.D.S. is grateful to R. Roberts and R. S. Adelstein for generous support and encouragement and to M. Nirenberg and H. Lecar for many helpful discussions. This investigation was supported by the following: grant to M.D.S. from the American Heart Association, Texas affiliate, 85G-223, and PHS grant from NIH, RR-05425; grants to A.M.B. from NIH, HL37044 and HL36475; and National Research Service Award to J.M.C., AR07546. M.D.S. and A.M.B. are investigators of the American Heart Association-Bugher Foundation Center for Molecular Biology of the Cardiovascular System.

3 November 1986; accepted 2 February 1987

Clustering of Genes Dispensable for Growth in Culture in the S Component of the HSV-1 Genome

RICHARD LONGNECKER AND BERNARD ROIZMAN*

The herpes simplex virus 1 genome consists of one long and one short stretch of unique sequences flanked by inverted repeat sequences. The nucleotide sequence and RNA map predict 12 open reading frames designated as US1 through US12 within the short stretch of unique sequences. This paper reports the construction of virus mutants from which US2, US3, or US4 had been deleted that are capable of growth in cell culture. One of the three deleted genes, US4, specifies the viral envelope glycoprotein G. Mutants with deletions in US1, US8, US9, US10, US11, and US12 have been previously reported. The nine genes deleted from this region form two clusters, US1 through US4 and US8 through US12, and encode at least two and possibly more structural proteins. The presence of so many genes dispensable for growth in cell culture suggests several hypotheses regarding their function and evolution.

HE 150-KILOBASE PAIR (KBP) HERpes simplex virus 1 (HSV-1) genome consists of two covalently linked components (L and S). Each component consists of unique sequences $(U_1 \text{ or } U_s)$ flanked by inverted repeats (1-3). The inverted repeats of the L component, designated as ab and b'a' (4), each contain in their entirety two genes ($\alpha 0$ and $\gamma 34.5$) (5– 7); those of the S component, designated as a'c' and ca, each contain a copy of the $\alpha 4$ gene (5, 6) and an origin of viral DNA synthesis (8-10). The nucleotide sequence of the U_s sequence predicts the presence of 12 open reading frames designated as US1 to US12 (11). The products of several of these open reading frames have been identified as those of the α proteins $\alpha 22$ (US1) and $\alpha 47$ (US12) and of the glycoproteins G (US4), D (US6), and E (US8). Other studies have shown that virus mutants with deletions in the $\alpha 22$ gene or from which the entire domain of genes specifying gE (US8), US9, US10, US11, and US12 had been deleted are viable and multiply in cells in culture (12, 13). In this paper we report the deletion of DNA sequences encoding the open reading frames US2, US3, and US4. These genes are contiguous, mapping within the Bam HI N and Bam HI J fragments of HSV-1 strain F [HSV-1(F)] viral DNA (Fig. 1). On the basis of analyses of the nucleotide sequences, it was suggested that US2 specifies a membrane-translated protein (11) because of the predicted hydrophobic NH₂-terminal region, which could be a signal for membrane-bound translation. The predicted amino acid sequence for US3 is homologous to members of a protein kinase family in eukaryotes and retroviruses (11, 14). US4 encodes glycoprotein gG (15, 16)

The procedures used for construction of the deletion mutants were similar to those described previously (12, 17). Specifically, a chimeric thymidine kinase gene consisting of the promoter-regulatory domain of the $\alpha 27$ gene fused to the transcribed domain of

The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 East 58 Street, Chicago, IL 60637

^{*}To whom correspondence should be addressed.