Fragile Sites at 16q22 Are Not at the Breakpoint of the Chromosomal Rearrangement in AMMoL

R. N. SIMMERS, G. R. SUTHERLAND, A. WEST, R. I. RICHARDS

There is much speculation about fragile sites on human chromosomes predisposing to specific chromosome rearrangements seen in cancer. Acute myelomonocytic leukemia is characterized by neoplastic chromosome rearrangements involving band 16q22 in patients who carry the rare fragile site at 16q22. This specific leukemic breakpoint is within the metallothionein gene cluster, which is here shown to be proximal to the rare fragile site (*FRA16B*) and to a common fragile site (*FRA16C*) in this region. Hence neither of these fragile sites are at the breakpoint in this leukemic chromosomal rearrangement.

PRAGILE SITES ARE NONSTAINING gaps or breaks at specific points on chromosomes (1). The common, or constitutive, fragile sites occur in frequencies approaching homozygosity (2, 3), whereas rare fragile sites occur only in some members of the population; for example, carriers of the autosomal folate-sensitive fragile sites have an estimated total frequency of one in 260 individuals (4). The folatesensitive fragile X is the only fragile site associated with a known phenotypic abnormality—fragile (X)-linked mental retardation—which is the commonest cause of inherited mental retardation (2).

There have been reports of cancer patients with rare fragile sites in their normal cells in one of the chromosome bands involved in chromosomal rearrangements in the malignant cells (5-9). While two locations within a chromosomal band are not necessarily genetically close, this correspondence between bands containing cancer breakpoints and those containing fragile sites has suggested a possible functional relationship and coincidence at the DNA level. The bone marrows of patients with acute myelomonocytic leukemia (AMMoL) with abnormal eosinophils have cells in which there is a rearrangement at 16q22. Such rearrangements include inv(16)(p13q22) (10, 11), del(16)(q22) (11-13), t(16;16)(p13;q22) (14), and t(5;16)(q33;q22) (15). A strong association of the distamycin A-inducible

Fig. 1. (a) A partial metaphase with *FRA16B* probed for *MT1B*, showing label proximal to the fragile site (large arrow) and on the other chromosome 16 (small arrow). (b) A partial metaphase with *FRA16C* probed for *MT2A*, showing label proximal to the fragile site. The probe that hybridizes to most or all of the members of the *MT* gene family consists of a plasmid containing a 150-base pair (bp) insert from the coding region of *MT2A* (29). The probe specific for *MT1B* contains 800 bp from the 5' flanking region in pUC13 (30). The probe specific for *MT2A* (19) contains 770 bp from the 5' flanking region in pUC13. The probes were labeled to a specific activity of 2×10^7 to 3×10^7 count/min per microgram of DNA with three tritiated nucleotides and hybridized at 37° C in situ to denatured metaphase chromosomes expressing *FRA16B* and *FRA16C* were prepared as described (3, 31). All probes were hybridized in situ to metaphases expressing *FRA16B*, after hybridization with the first probe and 29 days of exposure, 57 (11%) of 541 silver grains were scored in 16q, which represents 1.7% of the total chromosome length (32) ($P << 10^{-5}$ by cumulative Poisson probabilities). Four weeks of exposure to *MT2A*-probed metaphases resulted in 26 grains (20%) on 16q out of 129 total grains over 50 metaphases ($P << 10^{-5}$). Thirty-three days' exposure to metaphases hybridized with the *MT1B*-specific probe (0.4 µg/ml) resulted in 44 grains (21%) on 16q out of 213 total grains over 50 metaphases ($P << 10^{-5}$).

rare fragile site at 16q22.1. (FRA16B) in normal cells with the occurrence of a rearrangement involving band 16q22 in neoplastic cells from bone marrow has been reported in patients with AMMoL (5, 7–9, 16). A total of 17 FRA16B carriers was detected in these 24 reported AMMoL cases. Compared to the frequency of about one in 90 FRA16B carriers in the general population (4), this could suggest a predisposition of FRA16B carriers to AMMoL.

Le Beau *et al.* (17), using in situ hybridization, found that the metallothionein gene (MT) cluster is at 16q22, and that this cluster was split by the chromosomal rearrangement at 16q22 in the four AMMoL patients studied, who were later found to be carriers of *FRA16B* (8). Thus, if these rearrangements do coincide with the *FRA16B* locus at the DNA level, it would be expected that the gap or break seen when the fragile site is expressed would interrupt the *MT* cluster.

We first used a probe that cross-hybridizes to most or all of the members of the MT gene family, of which most are in the MT cluster localized at 16q22 (17). The probe was hybridized in situ to chromosomes expressing FRA16B (Table 1). The finding of 70 grains proximal and 16 grains distal to the fragile site indicated that the MT cluster was proximal to the fragile site. The distal grains in the case of the MT probe and FRA16B may be accounted for by scatter from the proximal site of hybridization and random background. However, it remained possible that while most of the genes were proximal to the fragile site, a small part of the gene cluster homologous to the probe could have been located distal to it. The results of Le Beau et al. show a more central interruption of the cluster by the rearrangements in the four patients they studied (17). One possibility is that the fragile sites are not at exactly the same place in all individuals, just as specific chromosome breakpoints are not all at exactly the same place but occur within a region known as a breakpoint cluster region (18).

The specific chromosome rearrangement in the bone marrow of AMMoL patients occurs between the MT2A gene (19) and the MT1B gene (20) in band 16q22 since probes from each of these regions localize to different sides of the breakpoint at 16q22 (21). To test further the coincidence of this breakpoint and FRA16B, we independently hybridized probes specific for the 5' non-

R. N. Simmers and G. R. Sutherland, Cytogenetics Unit, Department of Histopathology, Adelaide Children's Hospital, North Adelaide, S.A. 5006, Australia. A. West and R. I. Richards, Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Vic. 3052, Australia.

coding regions of the *MT2A* and *MT1B* genes in situ to metaphases from 13 unrelated *FRA16B* individuals expressing the fragile site. In none of these 13 individuals was there evidence of specific hybridization distal to the fragile site. Each showed an excess of label proximal to the fragile site, for both the *MT2A* and *MT1B* probes (Table 1).

The finding of more silver grains than would be expected on the basis of background alone, on the opposite side of the fragile site to that where the majority of silver grains are seen, is in accord with observations made with other probes adjacent to fragile sites. It is probably accounted for by scatter from the site of hybridization, in addition to background. For example, this was seen for the haptoglobin locus, about 10 centimorgans from FRA16B (22), and for the adenine phosphoribosyltransferase locus, in the chromosomal band adjacent to FRA16D (23). Such labeling was usually present distal to FRA16B when either the MT2A or MT1B probe was used on the same individual (Table 1) and is not regarded as resulting from specific hybridization. The fragile site in a single individual cannot interrupt two separate loci. The results indicate that FRA16B, even if it can vary in position at the molecular level, is not between these two loci that flank the breakpoint of the chromosomal rearrangement associated with AMMoL. Thus the breakpoint and the fragile sites cannot coincide.

Yunis and Soreng described a common fragile site at 16q22.1 (3), FRA16C, in the same band as the rare fragile site FRA16B. In malignant cells from an AMMoL patient with inv(16)(p13.11,q22.1), a higher than normal frequency of expression of FRA16C was observed. Three patients with other leukemias had an increased frequency of expression of a common fragile site in the same band as one of the breakpoints of their neoplastic chromosome rearrangements (3). It was therefore suggested that individuals with a high frequency of expression of specific common fragile sites are predisposed to certain types of malignancies.

To test whether FRA16C, rather than FRA16B, interrupts the MT cluster, metaphase spreads from one individual in which FRA16C had been induced were hybridized in situ with the probes specific for the MT2A and MT1B genes. Both genes were shown to be proximal to FRA16C (Table 2). Our results show that MT2A and MT1B are proximal to the two fragile sites, FRA16B and FRA16C (Fig. 1), which are at the interface of bands 16q21 and 16q22 (3, 24), termed 16q22.1. This in turn shows that the specific neoplastic chromosomal rearrangements at 16q22 associated with AMMoL do not occur at the same location

3 APRIL 1987

Table 1. Grains scored with respect to FRA16B in metaphases probed for the metallothionein gene cluster (MT) and the MT2A and MT1B genes in 13 individuals.

Individual	Probe (µg/ml)	Number of FRA16B	Grains proximal on 16q	Grains distal on 16q	χ ^{2*}
41A	MT (0.05)	273	70	16	33.9 (P << 0.001)
4F	MT2A	59	5	2	(1 • • • • • • • • • • • • • • • • • • •
	(0.4) MT1B	51	4	0	
18B	(0.2) MT2A (0.4)	118	26	5	14.2
	MT1B	67	12	2	(1 < 0.001) 7.1 (R < 0.01)
22A	(0.2) MT2A (0.4)	47	4	0	(P < 0.01)
	(0.4) MTIB	17	6	2	
25A	(0.2) MT2A	371	59	12	31.1
	(0.4) MT1B (0.02)	158	36	5	(P << 0.001) 23.4 (P << 0.001)
36A	(0.02) MT2A (0.4)	299	48	24	(P < 0.001) 8.0 (P < 0.005)
	(0.4) MTIB	144	26	0	(P < 0.005) 26.0
41A	(0.2) MT2A (0.4)	448	73	19	(P << 0.001) 31.7 (P << 0.001)
	MTIB	45	6	2	(P << 0.001)
42E	(0.2) MT2A	112	24	4	14.3
	(0.4) MT1B (0.2)	70	13	1	(P < 0.001) 10.3 (P < 0.005)
42 G	(0.2) MT2A (0.4)	86	23	4	(P < 0.005) 13.4 (P < 0.001)
	(0.4) MT1B (0.2)	62	12	2	(P < 0.001) 7.1 (P < 0.01)
50C	MT2A	370	58	11	(P < 0.01) 32.0 (P < < 0.001)
	(0.4) MT1B (0.2)	54	7	1	(<i>P</i> << 0.001)
52A	MT2A	248	57	6	41.3
	(0.4) MT1B (0.2)	70	5	2	(P << 0.001)
53C	(0.2) MT2A (0.4)	528	110	24	55.2
	(0.4) MT1B (0.2)	31	4	0	(<i>P</i> << 0.001)
56B	(0.2) MT2A	129	19	2	13.8
	(0.4) MTIB	6	2	0	(P < 0.001)
63A	(0.2) MT2A	136	14	3	7.1
	(0.4) MT1B (0.2)	7	4	0	(P < 0.01)

*The null hypothesis was that grains proximal = grains distal; $\chi^2(1) = 3.84$, $P \le 0.05$.

Table 2. Silver grains scored with respect to *FRA16C* after in situ hybridization with probes specific for MT2A and MT1B at 0.4 µg/ml.

Sector Se		the second s	to and the second se	
Probe	Number of <i>FRA16C</i>	Grains proximal	Grains distal	χ ² *
MT2A	92	13	3	6.25
MTIB	84	17	4	$(P < 0.025) \ 8.05 \ (P < 0.005)$

*The null hypothesis was that grains proximal = grains distal; $\chi^2(1) = 3.84$, $P \le 0.05$.

as either fragile site and therefore that these rearrangements do not occur as a result of breakage at FRA16B or FRA16C. While FRA16B occurs in about 1% of the population, this does not explain the high frequency of this fragile site in the AMMoL patients with an abnormal chromosome 16. It is possible that in some instances the common fragile site FRA16C, and not FRA16B, was seen in this patient group.

The breakpoints in the specific chromosome 16 rearrangements in AMMoL have been noted to be difficult to define precisely (24, 25). If the conclusions of Le Beau et al. are correct and one of the breakpoints splits the MT cluster, which we have mapped proximal to the fragile sites at the junction of bands 16q21 and 16q22, that breakpoint and the MT cluster are most likely in band 16q21.

There has been increasing conjecture about the relationship between fragile sites and cancer (3, 5-8, 26-28). The associations between FRA16B and the breakpoint in the long arm of chromosome 16 associated with AMMoL with abnormal bone marrow eosinophils, have provided part of the evidence consisting of patients with a cancer breakpoint and the corresponding fragile site. The results presented here remove some of the support for causal relationship between fragile sites and cancer.

REFERENCES AND NOTES

- 1. G. R. Sutherland, Am. J. Hum. Genet. 31, 125 (1979).
- _ and F. Hecht, Fragile Sites on Human Chro-2. and F. Flecht, Frague Sues on Fluman Corro-mosomes (Oxford Univ. Press, New York, 1985).
 J. J. Yunis and A. L. Soreng, Science 226, 1199 (1984).
 G. R. Sutherland, Ann. Hum. Genet. 49, 153
- (1985)5. J. J. Yunis, Cancer Genet. Cytogenet. 11, 125 (1984).
- ., ibid. 12, 85 (1984).

- D. C. Arthur, S. M. Aaseng, C. D. Bloomfield, Cytogenet. Cell Genet. 40, 572 (1985).
 M. M. Le Beau et al., N. Engl. J. Med. 309, 630 (1983).
- 11. Fourth International Workshop on Chromosomes in Leukemia (1982); Cancer Genet. Cytogenet. 11,
- 310 (1984).
 12. D. C. Arthur and C. D. Bloomfield, *Blood* 61, 994 (1983).

- 15. K. Bhambhani, S. Inoue, M. Tyrkus, N. Gohle,
- Cancer Genet. Cytogenet. 20, 187 (1986). 16. T. W. Glover, J. Coyle-Morris, R. Morgan, *ibid.* 19, 141 (1986).
- M. M. Le Beau, M. O. Diaz, M. Karin, J. D. Rowley, *Nature (London)* **313**, 709 (1985).
 I. Groffen *et al.*, *Cell* **36**, 93 (1984).
- 19. M. Karin and R. I. Richards, Nature (London) 299, 797 (1982) 20. R. I. Richards, A. Heguy, M. Karin, Cell 37, 263
- (1984). 21. M. O. Diaz, M. M. Le Beau, M. Karin, personal
- communication.
- R. N. Simmers, I. Stupans, G. R. Sutherland, Cytogenet. Cell Genet. 41, 38 (1986).
 A. Fratini et al., ibid. 43, 10 (1986).
 R. Berger et al., Leuk. Res. 9, 279 (1985).
 D. C. Arthur and C. D. Bloomfield, Blood 63, 242 (1985).
- (1984).
- [1937].
 J. J. Yunis, Science 221, 227 (1983).
 F. Hecht and G. R. Sutherland, Cancer Genet. Cytogenet. 12, 179 (1984).
 F. Hecht and T. W. Glover, *ibid.* 13, 185 (1984).
 M. Karin and R. I. Richards, Nucleic Acids Res. 10, 2145 (1982). 26. 27.
- 28.
- 29.

- M. Karin and K. I. Kichards, *Nucleic Actas Kes.* 10, 3165 (1982).
 A. Heguy, A. West, R. I. Richards, M. Karin, *Mol. Cell. Biol.* 6, 2149 (1986).
 G. R. Sutherland, P. B. Jacky, E. G. Baker, *Am. J. Hum. Genet.* 36, 110 (1984).
 D. G. Harnden and H. P. Klinger, Eds., *An Internative Context in Neurointerview Neuro* tional System for Human Cytogenetic Nomenclature, published in collaboration with Cytogenet. Cell Gen-
- et. (Karger, Basel, 1985). 33. We wish to thank E. Baker for technical assistance
- and the Anti-Cancer Foundation of the Universities of South Australia for grant support.
 - 30 September 1986; accepted 4 February 1987