
most immediately useful for traditional time-sharing, they promise 
to provide high performance for individual applications as well. But 
it is not yet clear which of a variety of hardware and software 
structures and systems will have sufficient applicability and perform- 
ance to become widespread. 
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Parallel Supercomputing Today 
Cedar Approach 

and the 

More and more scientists and engineers are becoming 
interested in using supercomputers. Earlier barriers to 
using these machines are disappearing as software for 
their use improves. Meanwhile, new parallel supercom- 
puter architectures are emerging that may provide rapid 
growth in performance. These systems may use a large 
number of processors with an intricate memory system 
that is both parallel and hierarchical; they will require 
even more advanced software. Compilers that restructure 
user programs to exploit the machine organization seem 
to be essential. A wide range of algorithms and applica- 
tions is being developed in an effort to provide high 
parallel processing performance in many fields. The Ce- 
dar supercomputer, presently operating with eight pro- 
cessors in parallel, uses advanced system and applications 
software developed at the University of Illinois during the 
past 12 years. This software should allow the number of 
processors in Cedar to be doubled annually, providing 
rapid performance advances in the next decade. 

T HE HISTORY OF PERFORMANCE GAINS IN SUPERCOM- 

puters is remarkable, yet the rate of improvement over this 
history has steadily declined. In a 5-year period in the 1940's, 

computer speeds increased by lo3 as technology shifted from relays 
to vacuum tubes. ENIAC had a peak rate of about lo3 floating- 
point operations per second (flops) in 1946. In the mid-1980's, 
after changes to transistor and then integrated circuit technology 
and accompanying architectural enhancements, systems are reaching 
peak rates of lo9 flops for an improvement factor of lo6 in 40 years, 
or an average factor of 10 every 7 years. Clock speed is the rate at 
which basic computer operations are performed. The Cray 2 

computer (with a clock period of 4.1 nsec in 1985) has a clock speed 
only about three times that of the Cray 1 computer (clock period, 
12.5 nsec in 1976), and this took 9 years to achieve. New materials, 
such as gallium arsenide devices, are not expected to increase clock 
speeds by more than a factor of 5 in the next 5 to 10 years. 

Furthermore, clock speeds are no longer an adequate indicator of 
system performance. For example, the recently released Cray 2 (1) 
has a clock speed that is more than twice the speed of the Cray X-MP 
(I ) ,  and yet, because of its architecture, most initial users cannot 
obtain from the Cray 2 a performance equal that of the Cray X-MP. 
In such complex, highly concurrent systems, actual delivered per- 
formance is program- and algorithm-specific. Seemingly attractive 
architectural features often have low payoff in delivered system 
performance on actual applications, and severe system bottlenecks 
appear in unexpected places. Thus delivered performance to actual 
users is often only 5 to 15 percent of the peak performance rates 
quoted above, except when hand optimization and assembly lan- 
guage programming are used on well-suited programs. 

On the optimistic side, semiconductor performance and device 
densities in very large scale integration (VLSI) have increased to the 
point where 32-bit microprocessors and high-speed 64-bit floating- 
point arithmetic chip-sets are available and are beginning to be usec 
in some supercomputer systems. Memory chips with up to lo6 bits 
and access times of about 100 nsec are also becoming available to 
system designers. These densities are expected to continue to 
advance in the coming decade, with some improvements in both 
component performance and performance-cost ratio. 

In an effort to restore a high growth rate in supercomputer 
performance, computer designers have made the first half of the 
1980's a turning point in the organization of commercially available 
systems. Existing companies have observed that they can no longer 
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primarily rely on technology to improve the speed of their systems. 
Furthermore, there has been such an increase in available venture 
capital that start-up companies, often with no strong design preju- 
dices or constraints from prior products, have launched a number of 
interesting new computer organizations. These organizations, and 
related trends in academia, show a dramatic shift from uniprocessors 
toward the development of multiprocessor systems with a much 
tighter coupling in the development team among architecture, 
hardware, software, and applications expertise (2). Taxonomies of 
these systems and algorithms have been developed by a number of 
people (3). 

There is clearly great appeal to an approach that allows a doubling 
of the peak system speed by simply doubling the number of 
processors. In practice, multiprocessing has been used in supercom- 
puters by Cray Research in their two newest systems, the Cray 2 and 
Cray X-MP ( I ) ,  each of which currently can have four processors. 
ETA Systems is planning to use eight processors in its ETA10 by 
1987. Multiprocessors can be exploited by simultaneously running a 
different job on each processor. However, improving single-job 
turnaround time, the typical supercomputer mission, can only be 
achieved by parallel processing, that is, using parallel algorithms and 
restructuring the code of a single job to spread it over a number of 
cooperating processors. 

Multiprocessor systems to date have not made parallel execution 
convenient, and few users have found it worth the large effort 
required to restructure their programs. The most critical needs in 
supercomputing today are to provide an easy means of achieving 
parallel applications code and to develop multiprocessor systems 
that reduce the gap between the delivered performance for this code 
and the peak performance of the supercomputer system. Only then 
will increases in peak performance through parallel processing 
achieve their intended effect. We believe that automatic s o h a r e  
restructuring and use of parallel algorithms are keys to meeting these 
needs, and we are designing the Cedar parallel supercomputer 
system for this environment by incorporating multiple levels of 
parallelism and dynamic adaptability to run-time conditions. 

This article discusses several salient issues in parallel supercomput- 
ing today regarding processor capability, shared and private memo- 
ries, memory hierarchy organization and management, program- 
ming languages and program restructuring, the applications envi- 
ronment, and the need for new numerical and nonnumerical 
algorithms. For examples, we describe existing systems as well as 
some hardware and software projects that are currently under 
development. 

Processors 
A fundamental question is whether to use the highest perform- 

ance processors available, low-cost processors, or a mid-range 
compromise. Supercomputer processors, as in the Cray systems, the 
CDC Cyber 205, Fujitsu VP-200, Hitachi S-810, and NEC SX 
systems, have gained speed over the past 20 years by pipelining 
arithmetic functions and employing vector instructions and multiple 
function units (4). This approach is limited by the diminishing 
returns from increasing the number of pipeline segments beyond six 
or eight, by the inability on average to utilize simultaneously more 
than two function units (for example, add and multiply), and by the 
large start-up overhead of vector instructions. Several identical 
vector units are sometimes used to increase peak performance, but - - 

this approach increases the significance of vector start-up overhead 
because vectors are broken into shorter pieces for each vector unit. 

These supercomputer systems, which cost about $10 million, 
have peak performances of several hundred to 1000 megaflops. 

Their 4- to 20-nsec clocks lead to  longer pipelines and densely 
packed bipolar circuits with liquid cooling. Thus, manufacturing, 
operating, and maintenance costs tend to be high. They require 
long, dense array operations with regular memory addressing to 
approach their peak performance. Sparse matrix operations, on the 
other hand, in which irregular memory addressing prevails, degrade 
the performance of many application packages on such machines. 

At the other end of the performance spectrum, several multipro- 
cessor superminicomputers have been introduced or announced 
recently, such as the Encore, Flexible, and Sequent systems (5 ) ,  
which are based on the National Semiconductor 32000 series 
microprocessor. These systems exploit inexpensive off-the-shelf mi- 
croprocessors and standard bus designs, with no vector instructions 
and minimal pipelining. They use the rudimentary parallel-process- 
ing software provided by the widely adopted UNIX operating 
system plus language-specific synchronization techniques. The Intel 
iPSC abandons standard busses and operating systems in favor of a 
multidimensional hypercube connection between processor-memo- 
ry nodes (6). 

Superminicomputers, when configured with 8 to 32 processors, 
typically cost about $100,000 and have less than 2-megaflops peak 
performance. Thus several thousand processors would be required 
to reach supercomputer performance. Since it is yet to be shown 
what applications could readily exploit such a system without 
massive system coordination overhead and application development 
costs, systems in this class are not proven contenders in the 
supercomputer market today. Nevertheless, some applications with 
massive parallelism and a preponderance of low precision data (for 
example, some image and signal processing problems) have enjoyed 
success on the Goodyear Aerospace STARAN and MPP systems 
(7), which do contain thousands of bit-serial processors in one 
system. This approach (8) has also been used by some new logical 
inference projects and other projects oriented toward artificial 
intelligence-for example, by Thinking Machines Corporation. 

In the midrange of price and performance are at least two systems, 
Alliant and Elxsi, that use eight to ten fairly p o w e h l  processors for 
multiprocessing or parallel processing. These, together with minisu- 
percomputers built by Floating Point Systems, Star Technologies, 
and Convex and with those being developed by Scientific Computer 
Systems, Axiom, Astronautics, and others, employ a variety of 
pipelined, multiunit architectures for vector and scalar operations 
and typically have peak performance in the 10- to 100-megaflops 
range for less than $ 1  million. These systems use fairly conservative 
technology with 40- to 100-nsec clocks and air cooling. Those 
minisupercomputers that achieve less than $10,000 per megaflops 
(peak at 64  bits) offer the highest performance-cost ratio for 
supercomputer applications in today's technology. A system that 
includes several of these minisupercomputers can hope to achieve 
supercomputer performance levels. 

The Cedar supercomputer is being constructed to demonstrate 
that parallel processing can deliver good performance across a wide 
range of applications. It consists of multiple clusters with a globally 
shared memory. Each cluster is a slightly modified Alliant FXI8 
minisupercomputer (Fig. 1)  with a UNIX operating system, virtual 
memory, eight 64-bit floating-point processors, fast interprocessor 
synchronization, and vector instructions. We currently have two 
clusters operating independently and plan to have them operating 
together in the third quarter of 1986; two more clusters will be 
added by the first quarter of 1987 for a total of 32 processors. It is 
our objective to double the number of processors in the Cedar 
system each year for the next 5 years. Parallel systems such as Cedar 
offer the advantage that algorithms can be much less uniform and 
still be executed efficiently, thereby reducing the gap between 
delivered and peak performance (9). Because we believe that the 
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Cedar system has a general hardware and software organization, we 
will use Cedar as a reference to compare ideas throughout the article. 
Future implementations of such system may well employ faster 
technology or denser VLSI technology if and when these technolo- 
gies become more cost-effective. 

Memories 
Supercomputer performance is usually limited by memory access- 

ing. Supercomputer memories have become larger (the Cray 2 can 
have up to 256 million 64-bit words) and faster, and processors have 
been designed to match the &test and widest affordable paths to 
memory; yet this limitation has persisted. Costs have been con- 
trolled with memory hierarchies that use small, fast memories with a 
high cost per bit near the processor and larger, slower memories 
with less cost per bit at greater distances from the processor. Blocks 
of information are moved from slower levels to faster levels of the 
hierarchy as needed. A well-designed hierarchy has an effective 
access time near that of the fastest memories (due to locality, the 
tendency of temporally near references to access physically near data) 

Fig. 1. The Alliant FX18 chassis with several l&inch boards removed to 
show an active backplane (rear) with a crossbar switch between eight 
processors and a four-port shared-cache memory (Fujitsu CMOS gate arrays 
of about 2000 gates). The processor board (left) contains the Weitek 
floating-point chipset (two multipliers and an adder-subtractor, three 
padcages top at midboard) that operates at about 6 megaflops (64-bit 
words); also visible (upper right) are two dividers (two Fujitsu gate arrays of 
about 8000 gates) designed by Alliant. Each single-board processor contains 
about loS gates. The entire system is air-cooled. 

and a cost per bit near that of the largest memories. Yet the fraction 
of system cost invested in memory and in paths between memories 
and processors is still increasing. 

Cache memories are small, fast memories that are managed by 
hardware and are thus transparent to system and user software. 
Most supercomputers do not use caches because of various ineffi- 
ciencies and instead use efficiently managed vector register sets that 
hold small slices of large arrays for vector processing. However, data 
caches are appropriate if they allow noncacheable modes for large 
data structures that would otherwise be referenced only once in 
cache before being replaced, or if the system dock speed is slow 
enough to tolerate the small delays that caches add. Instruction 
caches are efficient in any case. 

Virtual memory shields users from the complexity of memory 
hierarchies by providing a large monolithic address space and 
employing software and hardware support to map virtual addresses 
onto physical addresses and to move blocks of needed information 
among the levels of the hierarchy when demanded. Some supercom- 
puters have not used virtual memory (Cray does not but CDC does) 
for reasons similar to those for not using cache; they have instead 
required application code to manage overlays of data in memory 
explicitly. However, recent research into loop blocking (discussed 
below) indicates that such supercomputer inadequacies may not 
endure. 

In multiprocessor systems, the question of shared or private 
memory arises at various levels in the memory hierarchy. When 
multiple accesses to a shared memory must be served simultaneous- 
ly, the memory is typically partitioned into modules (or banks) in 
such a way that simultaneous conflicting requests to a single module 
are rare (10). However, shared memories with multiple simulta- 
neous requests must of necessity be at a greater distance from the 
requestors than a private memory for each requestor. Thus, al- 
though high request rates can be sustained with appropriate pipelin- 
ing of packet-switched paths to memory, long access delays must be 
tolerated by the processor by allowing multiple outstanding requests 
and providing earlier fetch requests for needed information (11). 

Registers inside the processor are one form of private memory. A 
private cache or local memory for each processor is often also 
desirable. Memory that is private to one cluster but shared among 
the processors of that cluster may be called partially shared memory. 
Sharing is almost always used at more remote levels of the hierarchy. 
However, some systems, such as the hypercube systems (12), use 
only private memory, wherein each memory in the system is 
associated with and controlled by one particular processor. Al- 
though careful algorithm design can diminish the need to share data, 
some sharing of data between processors is inevitable. When no 
shared memory is used, variables that are needed by several proces- 
sors must be accessed through a message-passing system that allows 
one processor to request some other, possibly distant, processor to 
modify or transmit the requested data (13). Without shared memo- 
ry, this process can be painfully slow. 

Several alternatives exist for connecting multiple processors (or 
private memories) to a shared memory. A time-shared bus is the 
least expensive solution, but it can only serve one request at a time 
and therefore provides the lowest performance. When multiple 
requests must be served simultaneously, some form of parallel 
switch is required. A crossbar switch provides high performance and 
can simultaneously serve one request for each output port. Buffering 
at the switch ports can partially mask burst demands for particular 
output ports. However, the cost of a crossbar typically grows as the 
square of the number of input or output ports, and its cost can easily 
become prohibitive. For this reason, blocking switches are often 
used. These consist of several stages, where each stage is a set of 
small crossbars (14). Lower performance results since requests for 
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distinct final output ports may be blocked as a result of contention 
for some crossbar's output port. Properly designed blocking switch- 
es, however, achieve nearly full crossbar switch performance at a 
small fraction of the hardware cost (15). 

Whenever distinct copies of shared data are allowed to exist in the 
memory system a coherence problem exists: the logical consistency 
of these copies must be maintained. A variety of mechanisms are 
normally employed to insure coherence. Hardware mechanisms, 
such as snooping mechanisms for private caches (16), are typically 
used among multiple memories in smaller systems and within 
clusters. Such mechanisms (which are logically similar but more 
complex than the switches mentioned above) become prohibitively 
expensive and can limit system performance in larger systems; thus 
software schemes must be used at some point. The Cedar compiler 
will identify variables that could cause incoherence and allocate them 
to noncached shared memory. If there are few of these variables (as 
we have observed in experiments), accessing them in a slower mode 
should not cause much performance degradation (1 7). 

Synchronization primitives are used in some form to coordinate 
access to shared variables. There are many types of synchronization 
primitives, but all may be thought of as having a key that is required 
to pass some comparison test before permission is given to access or 
update some data, the key itself, or both. Testing and modifying the 
key must be performed as an indivisible operation to prevent 
another set of operations from beginning before the set in progress 
is completed. Probably the simplest form of synchronization is the 
111-empty bit used in the HEP computer (18), whereby a word 
cannot be written if its full-empty bit indicates full and cannot be 
read if it is empty. Only slightly more complex is the common test- 
and-set form of instruction, which tests for a particular value and, if 

the test is true, writes a new value into the key. Still more complex is 
the fetch-and-add instruction used in the Ultracomputer and the 
IBM RP3 (19), which allows an arithmetic or logical operation 
instead of just a write and benefits from some clever combining of 
operations in the memory switch. Cedar uses a general and flexible 
synchronization mechanism (20) wherein each 64-bit data word 
may have an associated 32-bit integer key stored in the same global 
memory module. Each global memory module has a simple dedicat- 
ed processor that performs an indivisible sequence of synchroniza- 
tion operations in response to a single-packet request transmitted 
from a processor. A transmitted key is compared with a stored key, 
and one of several tests is performed. If the test is successful, an 
arithmetic or logical operation may be performed on the stored key, 
and transmitted data may be stored. A return packet to the processor 
contains the test result and (if the test is successful) key or data 
values (or both) as requested. 

Secondary memory is usually implemented with disks, which 
handle most inputloutput (110) traffic. Historically, disk traffic rates 
have been proportional to computational rates, regardless of the 
primary memory size or configuration. However, improvements in 
disk speeds have not kept up with processor speeds. Recently built 
supercomputers employ solid-state memories associated with the 
disk subsystem, such as the Cray SSD or caches with smart disk 
controllers. Alternatively or in addition, disk striping, or partition- 
ing of very large data structures, may be used: stripes of data 
structures are allocated to distinct disks that are accessed in parallel 
to provide the massive data rates required by the supercomputer. 

Supercomputers thus require a wide variety of memories distrib- 
uted throughout the system. The Cedar system may be used as one 
illustration (Fig. 2). Effective exploitation of a complex memory 
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Fig. 2. In the Alliant FX/8 cluster, the eight floating-point processors each clusters. Each of two unidirectional intercluster global switches is fully 
have vector registers and an instruction cache, share a concurrency control pipelined and employs two stages, each with eight 8 x 8 unidirectional 
bus for fast synchronization, and share a single four-module cache with ports crossbars and input buffering, for system configurations up to eight clusters. 
that are twice as fast as a processor port. This cache is backed with a shared The global memory contains one module per floating-point processor in the 
cluster memory. The cluster memory is backed by an I10 subsystem that system. Each module contains two interleaved banks and a synchronization 
contains several caches, processors, disks, and other I10 devices. A hardware processor. The synchronization processor can perform an elaborate synchro- 
coherence scheme insures cache coherence. Each floating-point processor is nization operation in response to a single input packet, thereby saving several 
also connected through Cedar logic to a private port of the global switch round trips through the network while a memory port is locked up for each 
network that provides access to the shared global memory. A crossbar switch synchronization. The global memory may thus be used effectively for 
within each cluster connects each of these processors to its global switch port intercluster shared data and synchronization, for streaming isng-vector 
and to the shared cache ports. Fortran do-loops may be computed as accesses at high rate to the processors, and as a fast backup memory for 
doacross loops that are executed as follows. Cluster control provides for self- cluster memory. Each cluster has both a computational and an I10 complex 
scheduled assignment of the next loop iteration to the next available of processors so that, as more clusters are added, the peak rates for processing 
processor, and fast synchronization hardware handles dependences between and I10 both grow; disk striping can be used to exploit this I10 bandwidth. 
loop iterations within a cluster. Software handles doacross loops on multiple 
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hierarchy, and thus supercomputer efficiency, can be greatly en- 
hanced by properly structuring a program. As we shall see below, 
restructuring compilers are becoming more and more capable in this 
respect. 

To take better advantage of the ever more complex organizations 
of the latest supercomputers, users are having to write increasingly 
intricate programs that are fine-tuned to details of the system 
hardware. Thus, one of the most pressing questions associated with 
the powerful new concurrent processors is how to reduce applica- 
tion development costs, thereby making supercomputers practical 
for ord&a~-y users. Answering this question means determining how 
to meet crucial objectives in five areas: 

1) Programs: the ability to use old programs embodying sequen- 
tial algorithms in old languages, as well as new programs using 
parallel algorithms in old or new languages. 

2) Languages: new languages that allow one to express, in a well- 
structured form, algorithms that are amenable to parallel processing. 

3) Compilers: software, which is able to exploit effectively all 
available architectural features, for use in developing and compiling 
programs in both old and new languages. 

4) Algorithms: applications packages and library routines with 
parallel algorithms for standard problems. 

5) Environments: effective programming environments for using 
the above software interactively, debugging programs, and graphi- 
cally reviewing results of runs. 

The first of the five objectives above would allow users to 
approach new machines without having to rewrite their programs in 
a new style or a new language. The ability to use old languages 
makes for an easy transition from an old machine to a new machine 
and thereby provides for architectural evolution. This approach is 
probably a necessary condition for the general acceptance of a new 
machine. 

The second and third objectives, taken together, would allow 
users to learn and exploit a new language, especially if the program- 
development system could translate the old language to the new. 
Language evolution would occur as the user moved from familiar 
programs to new high-performance programs that would be easier 
to understand. New language features are not a sufficient condition 
for the success or acceptance of a new machine. New languages 
should permit the user to make assertions about the program that 
allow faster execution. In fact, the program-development software 
should query the user for such assertions. 

Packages and library routines, mentioned in the fourth objective, 
have always been important to computer users. However, when 
integrated with program-restructuring techniques, they would help 
lead to the new and powerful program development systems in the 
fifth objective. 

Debate over which programming language to use has been going 
on for many years and will probably continue indefinitely. As with 
natural languages, people become biased by what they understand 
and grew up with but are willing to learn a new language if their 
livelihood or interests depend on it. Probably the only two argu- 
ments that could effect a change of language or computer system are 
faster computation and easier programming. Speed is easy to 
measure, but ease of use is somewhat subjective, and both require 
the user to invest substantial time just to make a comparison. Thus, 
change has been slow to come. 

Applicative and functional programming languages (21) and new 
languages with low- and high-level parallelism constructs (22) have 
been advocated for use with parallel processors, as have extensions 

to existing imperative programming languages (23). Our own work 
in program restructuring has focused on Fortran because it is so well 
established as a high-level language and yet is difficult to restructure 
automatically. Because we have achieved good results by restructur- 
ing Fortran code (24), we believe that the future looks bright for 
developing and exploiting powerful restructuring tools for a wide 
range of languages. We feel, however, that even for languages with 
explicit parallelism, automatic restructuring will always be important 
for advanced computer organizations. This is es~ecidv true because 
of the difficulty &at mog users have in expliiting Lese systems 
effectively (25). 

 ASS&^ that a user has a good algorithm to solve a problem on 
some machine, the remaining problem is to obtain high perform- 
ance as easily as possible. A good programming environment is 
essential for this conversion and should include a good program- 
ming language, a powerful editor, compiler, and debugger, as well 
as a rich library of software packages. Using these program develop- 
ment tools, a programmer can transform an algorithm into a good 
parallel supercomputer program (the TAMPR system at ~ r g n n e  
and the proposed Gibbs Project at Cornell are examples). 

Program development is an iterative process (Fig. 3). The user 
enters a program-into the program-de~elopment~system, which 
analyzes it and possibly restructures it for the target machine. The 
system can query the user to get additional information that can lead 
to a better opt&ization of the program. Findy, the program can be 
compiled and tested. Program testing on a supercomputer involves 
speed measurement (including bottleneck identification), which can 
be done at both compile- and execution-time, and numerical quality 
measurement, which-may depend on how the program was mapped 
onto the system (26). Debugging the execution of a parallel 
computation can be particularly difficult without effective system 
aids because the logic of the program may be very complex, and the 
execution may be nondeterministic in that independent operations 
may be executed in a different order on different runs, exposing bugs - - -  
in ways that are not always reproducible (27). 

Applications programs must be handwritten or restructured by a 
compiler to put parallelism in the preferred form for the target 
supercomputer. Program restructurers can automatically effect sim- 
ple algorithm changes, as illustrated in a simple vector-matrix 
product. Program 1 implements 

and is coded as follows: 

do j  = l , n  
cj = 0 
d o i =  1 , n  

c. J = c. J + ai * bij 
enddo 

enddo 

Program 2 implements 
n 

and is coded as follows: 

d o i =  1 , n  
q = 0 

enddo 
d o i =  1 , n  

do j  = l , n  
c. = c. + a. * b.. 

J J I B  
enddo 

enddo 
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Interact ive supercompiler and 
code development system 

r New language program -T-'--l 
Old language program 

Queries 

Restructured source program 

'ig. 3. Program development with automatic restructuring for parallel 
recessing. In the source-to-source scheme illustrated here, an automatic 
:structurer takes a user's source program, asks questions, receives answers 
nd other statements, and then produces a new source program that can be 
ompiled and executed. The arrow returning to the user indicates that this 
rocess is iterative and that the new language program derived in this 
lanner may be maintained and compiled without further restructuring. 
Iowever, today's intricate supercomputers are best exploited by having the 
ser write an abstractly "highly parallel" program and letting the software 
:structure it for fast execution. 

luite different code would be generated for these two loops, and 
he machine architecture would dictate which to choose. Program 1 
elks on reduction of vectors to a scalar (inner product) and is 
dvantageous in many vector processors because it requires only two 
ector memory accesses. Program 2 does (vector = scalar x vector 
- vector), which can be executed on a vector processor or spread 
cross the processors. However, in a vector processor, it may be less 
esirable than Program 1 since it requires three vector references 
including the store) and hence may stress the memory hierarchy 
lore than an inner product. 
Innermost loops should contain vectors to exploit vector proces- 

xs,  but outermost loops should contain doacross concurrency 
Fig. 2) that allows execution of multiple iterations in parallel. 
'igure 4 is a simple illustration of a doacross to solve a lower 
:iangular system h =f: If A = [au], f = {&), x = {ti), and i, 
= 1, 2, . . . , n, a sequential program for solving this system is 
iven by the following program: 

d o j  = 1 , n  
tj = 4lj/CY$ 

if (j.eq.n) exit 
d o i = j + l , n  

+.. = 4. - 
1. I 

enddo 
enddo 

The main point of a doacross is that computing each tj need not 
rait for the completion of the whole inner iteration i = j + 1, . . . , 
. In fact, one processor may compute Sj soon after another 
rocessor has computed +j: = +j - aj,j-lk-l. To minimize the 
rnchronization overhead in a doacross, the computation is per- 
xmed by blocks. For example, ifA = [A,,], x = {x,), f = up}, and 
, q = 1, . . . , 4 ,  where each block is of order n/4, then the doacross 
n two processors may be illustrated as shown in Fig. 4. Vectoriza- 
on can be exploited in each of the calculations shown if each 
rocessor has vector capabilities. Independent tasks should be 
:ranged for simultaneous execution on multiple clusters. Also, the 
ata must be restructured so that it flows smoothly through the 
lemory hierarchy and arrives at the correct processors at the right 
me. Thus, loops may be blocked so that, for example, operations 
n large two-dimensional arrays are not carried out on whole rows 
r columns but rather on small rectangular blocks that can be 
~ntained in private memory and referenced many times before the 
rogram accesses other blocks of the large array. The resulting code 
m be effective on a supercomputer with cache hardware or with 
bcal memory that requires explicit move operations (for example, 
:ctor register loads and stores). The same ideas have been shown to 

be effective between main memory and secondary memory in any 
virtual memory system for a wide range of computations (28). 
Finally, it must be remembered that the time required to synchro- 
nize various parts of the computation can overwhelm any speedup 
obtained through parallelism. Thus the program and data restruc- 
turing mentioned above must be carried out with an eye to avoiding 
synchronization whenever possible (29). 

How to  exploit a parallel processor to speed up each job is 
currently a serious question in machine design as well as software 
design. We describe three levels of granularity in program parallel- 
ism that one could attempt to exploit on a correspondingly parallel 
machine organization. The highest level is that of separate subrou- 
tines, separate loops within a subroutine, and so forth. Most 
programmers can easily find some independent tasks at this level in 
their programs. However, it is unlikely that factors of mu, : than a 
small constant in speedup are possible in most programs using such 
high-level granularity. 

Medium granularity is represented by parallelism between indi- 
vidual loop iterations. Here, the discovery of parallelism is some- 
times rather intricate. For example, in weather prediction code, it is 
easy to see that the Northern and Southern hemispheres can be 
computed simultaneously, but exactly how to break a program up so 
that all the mesh points can be computed at once may be trickier, 
because there are many dependences between program variables. 
Nevertheless, the potential for parallelism here is enormous, because 
of the large number of mesh points involved. In general, the 
potential speedup is proportional to the loop limit or to the product 
of nested loop limits. Nested loops provide the potential for loop 
interchanging to move the appropriate type of parallelism to a 
nesting level that best exploits the machine organization. Experi- 
mentally, we have observed that medium granularity parallelism is 
by far the most important in program speedup (30). 

Compared to vector machines, parallel processors can deal more 
efficiently with conditional branching and with random memory 
accessing caused, for example, by subscripted array subscripts. When 
program dependence graphs contain cycles with linear recurrences, 
fast algorithms are available for multiprocessors or properly de- 
signed vector machines (31 ) . However, parallel processors using 
doacross (Fig. 4) can also deal with nonlinear recurrences by simply 
delaying subsequent iterations properly, whereas vector machines 
must execute them in scalar mode. All these cases can be compiled 
from sequential programs by a p o w e h l  restructuring compiler. 

The lowest granularity of parallelism includes arithmetic expres- 
sions and blocks of assignment and control statements. Methods of 
speedup with optimizing compilers are well understood at this level, 
but the potential speedups are relatively small because of the limited 
complexity of individual statements or even blocks of statements. 
Speedup factors of 2 or 3 are possible here, as judged from extensive 
measurement of real Fortran programs (32). 

Applications 
The main driving force for higher supercomputing performance is 

the fact that some important applications in engineering and science 
currently consume excessive amounts of time or are infeasible to 
attempt at all on available vector computers. To describe physical 
phenomena, one must resort to simulation of complex models on 
the computer. The closer the model is to a physical phenomenon, 
the more extensive are the required computational resources. For 
example, to simulate certain aerodynamic flows around a three- 
dimensional aircraft configuration, one needs to solve time-depen- 
dent partial differential equations that require a capacity of fast 
storage and a sustained computational rate that exceed by several 
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orders of magnitude those offered by the fastest existing vector 
machines (33). This exponential growth in the running time of time- 
dependent problems in three space dimensions can be easily appreci- 
ated by considering the refinement of the space mesh by halving the 
distance between the nodes and halving the time step, as well as by 
using a more realistic physical model. Such requirements can be 
made feasible only by parallel processors that incorporate innovative 
hardware organization, together with well-suited software develop- 
ment tools and algorithms. In addition to this three-dimensional 
fluid flow example, we expect to see other important uses of parallel 
processors in the near fiture (34). Among these are computer 
simulation of gauge theory and elementary particle physics, multidi- 
mensional semiconductor devices, electronic circuits, weather circu- 
lation, and oil reservoirs, as well as studies in chemical quantum 
dynamics and molecular scattering, seismic imaging, and dynamic 
structural analysis. 

On the basis of experiments with automatic program restructur- 
ing for multiprocessing, we have found that potential bottlenecks in 
taking advantage of parallelism in these applications are most 
obvious from analyzing a few important building blocks. These 
buildmg blocks are Monte Carlo calculations, table look-up, and 
various numerical linear algebra algorithms for unstructured and (to 
a certain extent) structured sparse problems. Some parallel algo- 
rithms, primarily in computational linear algebra, have been devel- 

Processor 1 Processor 2 

solve A r q  

Fig. 4. ILlustration of a doacross. 
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oped in an abstract setting (35); some of these are ideally suited to a 
 allel el Drocessor such as Alliant's FX/8 and the new ~ r a v  multi- 
processors (36). On one cluster of Cedar, we have achieved perform- 
ance rates that exceed 20 megaflops for dense matrix calculations. 
This performance ranges from 0.1 to 0.2 of that on one central 
processing unit (CPU) of the Cray X-MP. Whlle performance on 
such problems is widely quoted, it seldom reflects system perform- 
ance on whole applications. For example, in the eigenvalue problem 
of symmetric tridiagonal matrices, where vector calculations do not 
play a significant role, the achieved performance on one cluster is 0.5 
that of one CPU of the Cray X-MP. On complete application codes, 
we expect the performance of one Cedar cluster relative to one Cray 
X-MP processor to range from 0.2 (the ratio of their peak perfor- 
mances for 64-bit arithmetic) to 1. 

In general, a parallel algorithm is one where the various computa- 
tional steps can be divided among a number of processors. The 
performance of such an algorithm depends primarily on the organi- 
zation of the multi~rocessor on which the algorithm is to be used. It " 
is natural, therefore, to associate particular algorithms with major 
architectural features. Perhaps the most obvious question to be 
considered by an algorithm designer is whether the multiprocessor 
consists of a relatively small or large number of processors, which 
dictates the granularity of the parallelism to be exploited. In the 
former case, it is usually possible to decompose a problem into tasks 
that need to communicate only infrequently. For the latter case, 
tasks that can be executed independently in each processor are 
usually short-lived, and interprocessor communication may domi- 
nate. with many processors, k g h  efficiencies are often more difficult 
to achieve than with few processors (37). For a particular applica- 
tion, the number of processors that can be efficiently used depends 
on both the degree of parallelism that can be achieved for the 
application and the size of the problem being solved. By using a 
powerful restructuring compiler on most of a program and basic 
algorithms with high parallelism whenever necessary, parallel pro- 
cessor users with large jobs will achieve high performance, even on 
systems with hundreds of processors (38). In designing parallel 
algorithms, it is also important to distinguish between systems with 
a shared memory and those with private memories only. For the 
private memory model, the interconnection geometry plays a vital 
role in the choice of an algorithm for solving a given problem (39). 
If the number of processors is large, so that communication between 
distant processors becomes slow, the algorithm, if possible, should 
be designed such that a given processor needs to communicate 
predominantly with those few processors in its immediate neighbor- 
hood. As the number of processors grows larger, algorithm design- 
ers on such parallel processors have increasing difficulty in achieving 
high speedup, except for Monte Carlo methods (40) and asynchro- 
nous iterative schemes (41). 

In the Cedar architecture, we adopt the shared memory model for 
which algorithm design is more flexible. Furthermore, to accomrno- 
date a large number of processors without suffering from high 
synchronization overhead, we introduce eight-processor clusters 
with fast intracluster synchronization and local cluster memory. 
Thus, there are three levels of system parallelism at the disposal of 
the Cedar algorithm designer. The first step is to decompose the 
problem among the available clusters such that the time consumed 
h the computational tasks within a cluster far exceeds that con- 
sumed in intercluster communication. At the second level, the tasks 
within a cluster are allowed to be more communication intensive: 
with self-scheduled doacross (Fig. 4), the synchronization penalties 
are not high. At the innermost level the vector capabilities of each 
processor are used. Judging from our experience, we expect that 
Cedar will deliver more uniform speedup from application to 
application than has been possible on today's supercomputers. 
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Finally, we emphasize two points. First, in developing parallel 
algorithms to solve problems in the shortest time possible on a given 
multiprocessor, one should not sacrifice either robustness (graceful 
failure of algorithms on the machine) or, more important, numerical 
stability. Second, whenever possible, one should keep in mind the 
issue of portability of these algorithms, at least among members of 
the same class of multiprocessors. Here again, automatic program 
restructurers can be useful in limiting the damage to the perform- 
ance of an algorithm as it is moved to another multiprocessor for 
which it was not originally designed (42). 
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