
most immediately useful for traditional time-sharing, they promise
to provide high performance for individual applications as well. But
it is not yet clear which of a variety of hardware and software
structures and systems will have sufficient applicability and perform-
ance to become widespread.

REFERENCES AND NOTES

I. C. G. Bell, Science 228, 462 (1985).
2. J. T. Deutch and A. R. Newton, paper presented at the ~ 1 s t Design Automation

Conference, Miami Beach, FL, June 1984.
3. G. C. Fox and S. W. Otto, Phy. Today 37, 50 (May 1984).

4. Session on Commercial Multiprocessors, 12th Symposium on Computer Architec-
ture, Boston, June 1985.

5. S. Frank, Elemnia 57, 164 (12 January 1984).
6. J. Goodman, paper presented at the Tenth Symposium on Computer Architecture,

Trondheim, Norway, June 1983.
7. M. Dubois and F. A. Briggs, IEEE Trans. Comput. C-31, 1083 (1982).
8. R. H. Kau et d., paper presented at the 12th Symposium on Computer

Architecture, Boston, June 1985
9. S. Reinhardt, paper presented at the Tenth Symposium on Operating Systems

Principles, Orcas Island, WA, December 1985
10. D. L. Kuck et d., paper resented at the Eighth Symposium on Principles of

Programming Languages, k'il~iamsbur~, VA, January 1981.
11. C. L. Seitz, IEEE Trans. Comput. C-33,1247 (1984).
12. J. T. Schwartz, ACM TOPLAS 2, 484 (1980).
13. W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
14. R. P. Gabriel, Science 231, 975 (1986).
15. C. L. Seiu, Commun. ACM 28, 22 (1985).

Parallel Supercomputing Today
Cedar Approach

and the

More and more scientists and engineers are becoming
interested in using supercomputers. Earlier barriers to
using these machines are disappearing as software for
their use improves. Meanwhile, new parallel supercom-
puter architectures are emerging that may provide rapid
growth in performance. These systems may use a large
number of processors with an intricate memory system
that is both parallel and hierarchical; they will require
even more advanced software. Compilers that restructure
user programs to exploit the machine organization seem
to be essential. A wide range of algorithms and applica-
tions is being developed in an effort to provide high
parallel processing performance in many fields. The Ce-
dar supercomputer, presently operating with eight pro-
cessors in parallel, uses advanced system and applications
software developed at the University of Illinois during the
past 12 years. This software should allow the number of
processors in Cedar to be doubled annually, providing
rapid performance advances in the next decade.

T HE HISTORY OF PERFORMANCE GAINS IN SUPERCOM-

puters is remarkable, yet the rate of improvement over this
history has steadily declined. In a 5-year period in the 1940's,

computer speeds increased by lo3 as technology shifted from relays
to vacuum tubes. ENIAC had a peak rate of about lo3 floating-
point operations per second (flops) in 1946. In the mid-1980's,
after changes to transistor and then integrated circuit technology
and accompanying architectural enhancements, systems are reaching
peak rates of lo9 flops for an improvement factor of lo6 in 40 years,
or an average factor of 10 every 7 years. Clock speed is the rate at
which basic computer operations are performed. The Cray 2

computer (with a clock period of 4.1 nsec in 1985) has a clock speed
only about three times that of the Cray 1 computer (clock period,
12.5 nsec in 1976), and this took 9 years to achieve. New materials,
such as gallium arsenide devices, are not expected to increase clock
speeds by more than a factor of 5 in the next 5 to 10 years.

Furthermore, clock speeds are no longer an adequate indicator of
system performance. For example, the recently released Cray 2 (1)
has a clock speed that is more than twice the speed of the Cray X-MP
(I) , and yet, because of its architecture, most initial users cannot
obtain from the Cray 2 a performance equal that of the Cray X-MP.
In such complex, highly concurrent systems, actual delivered per-
formance is program- and algorithm-specific. Seemingly attractive
architectural features often have low payoff in delivered system
performance on actual applications, and severe system bottlenecks
appear in unexpected places. Thus delivered performance to actual
users is often only 5 to 15 percent of the peak performance rates
quoted above, except when hand optimization and assembly lan-
guage programming are used on well-suited programs.

On the optimistic side, semiconductor performance and device
densities in very large scale integration (VLSI) have increased to the
point where 32-bit microprocessors and high-speed 64-bit floating-
point arithmetic chip-sets are available and are beginning to be usec
in some supercomputer systems. Memory chips with up to lo6 bits
and access times of about 100 nsec are also becoming available to
system designers. These densities are expected to continue to
advance in the coming decade, with some improvements in both
component performance and performance-cost ratio.

In an effort to restore a high growth rate in supercomputer
performance, computer designers have made the first half of the
1980's a turning point in the organization of commercially available
systems. Existing companies have observed that they can no longer

The authors are at the Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.

ARTICLES 9 6 7 28 PEBRUARY 1986

primarily rely on technology to improve the speed of their systems.
Furthermore, there has been such an increase in available venture
capital that start-up companies, often with no strong design preju-
dices or constraints from prior products, have launched a number of
interesting new computer organizations. These organizations, and
related trends in academia, show a dramatic shift from uniprocessors
toward the development of multiprocessor systems with a much
tighter coupling in the development team among architecture,
hardware, software, and applications expertise (2). Taxonomies of
these systems and algorithms have been developed by a number of
people (3).

There is clearly great appeal to an approach that allows a doubling
of the peak system speed by simply doubling the number of
processors. In practice, multiprocessing has been used in supercom-
puters by Cray Research in their two newest systems, the Cray 2 and
Cray X-MP (I) , each of which currently can have four processors.
ETA Systems is planning to use eight processors in its ETA10 by
1987. Multiprocessors can be exploited by simultaneously running a
different job on each processor. However, improving single-job
turnaround time, the typical supercomputer mission, can only be
achieved by parallel processing, that is, using parallel algorithms and
restructuring the code of a single job to spread it over a number of
cooperating processors.

Multiprocessor systems to date have not made parallel execution
convenient, and few users have found it worth the large effort
required to restructure their programs. The most critical needs in
supercomputing today are to provide an easy means of achieving
parallel applications code and to develop multiprocessor systems
that reduce the gap between the delivered performance for this code
and the peak performance of the supercomputer system. Only then
will increases in peak performance through parallel processing
achieve their intended effect. We believe that automatic s o h a r e
restructuring and use of parallel algorithms are keys to meeting these
needs, and we are designing the Cedar parallel supercomputer
system for this environment by incorporating multiple levels of
parallelism and dynamic adaptability to run-time conditions.

This article discusses several salient issues in parallel supercomput-
ing today regarding processor capability, shared and private memo-
ries, memory hierarchy organization and management, program-
ming languages and program restructuring, the applications envi-
ronment, and the need for new numerical and nonnumerical
algorithms. For examples, we describe existing systems as well as
some hardware and software projects that are currently under
development.

Processors
A fundamental question is whether to use the highest perform-

ance processors available, low-cost processors, or a mid-range
compromise. Supercomputer processors, as in the Cray systems, the
CDC Cyber 205, Fujitsu VP-200, Hitachi S-810, and NEC SX
systems, have gained speed over the past 20 years by pipelining
arithmetic functions and employing vector instructions and multiple
function units (4). This approach is limited by the diminishing
returns from increasing the number of pipeline segments beyond six
or eight, by the inability on average to utilize simultaneously more
than two function units (for example, add and multiply), and by the
large start-up overhead of vector instructions. Several identical
vector units are sometimes used to increase peak performance, but - -

this approach increases the significance of vector start-up overhead
because vectors are broken into shorter pieces for each vector unit.

These supercomputer systems, which cost about $10 million,
have peak performances of several hundred to 1000 megaflops.

Their 4- to 20-nsec clocks lead to longer pipelines and densely
packed bipolar circuits with liquid cooling. Thus, manufacturing,
operating, and maintenance costs tend to be high. They require
long, dense array operations with regular memory addressing to
approach their peak performance. Sparse matrix operations, on the
other hand, in which irregular memory addressing prevails, degrade
the performance of many application packages on such machines.

At the other end of the performance spectrum, several multipro-
cessor superminicomputers have been introduced or announced
recently, such as the Encore, Flexible, and Sequent systems (5) ,
which are based on the National Semiconductor 32000 series
microprocessor. These systems exploit inexpensive off-the-shelf mi-
croprocessors and standard bus designs, with no vector instructions
and minimal pipelining. They use the rudimentary parallel-process-
ing software provided by the widely adopted UNIX operating
system plus language-specific synchronization techniques. The Intel
iPSC abandons standard busses and operating systems in favor of a
multidimensional hypercube connection between processor-memo-
ry nodes (6).

Superminicomputers, when configured with 8 to 32 processors,
typically cost about $100,000 and have less than 2-megaflops peak
performance. Thus several thousand processors would be required
to reach supercomputer performance. Since it is yet to be shown
what applications could readily exploit such a system without
massive system coordination overhead and application development
costs, systems in this class are not proven contenders in the
supercomputer market today. Nevertheless, some applications with
massive parallelism and a preponderance of low precision data (for
example, some image and signal processing problems) have enjoyed
success on the Goodyear Aerospace STARAN and MPP systems
(7), which do contain thousands of bit-serial processors in one
system. This approach (8) has also been used by some new logical
inference projects and other projects oriented toward artificial
intelligence-for example, by Thinking Machines Corporation.

In the midrange of price and performance are at least two systems,
Alliant and Elxsi, that use eight to ten fairly p o w e h l processors for
multiprocessing or parallel processing. These, together with minisu-
percomputers built by Floating Point Systems, Star Technologies,
and Convex and with those being developed by Scientific Computer
Systems, Axiom, Astronautics, and others, employ a variety of
pipelined, multiunit architectures for vector and scalar operations
and typically have peak performance in the 10- to 100-megaflops
range for less than $ 1 million. These systems use fairly conservative
technology with 40- to 100-nsec clocks and air cooling. Those
minisupercomputers that achieve less than $10,000 per megaflops
(peak at 64 bits) offer the highest performance-cost ratio for
supercomputer applications in today's technology. A system that
includes several of these minisupercomputers can hope to achieve
supercomputer performance levels.

The Cedar supercomputer is being constructed to demonstrate
that parallel processing can deliver good performance across a wide
range of applications. It consists of multiple clusters with a globally
shared memory. Each cluster is a slightly modified Alliant FXI8
minisupercomputer (Fig. 1) with a UNIX operating system, virtual
memory, eight 64-bit floating-point processors, fast interprocessor
synchronization, and vector instructions. We currently have two
clusters operating independently and plan to have them operating
together in the third quarter of 1986; two more clusters will be
added by the first quarter of 1987 for a total of 32 processors. It is
our objective to double the number of processors in the Cedar
system each year for the next 5 years. Parallel systems such as Cedar
offer the advantage that algorithms can be much less uniform and
still be executed efficiently, thereby reducing the gap between
delivered and peak performance (9). Because we believe that the

SCIENCE, VOL. 231

Cedar system has a general hardware and software organization, we
will use Cedar as a reference to compare ideas throughout the article.
Future implementations of such system may well employ faster
technology or denser VLSI technology if and when these technolo-
gies become more cost-effective.

Memories
Supercomputer performance is usually limited by memory access-

ing. Supercomputer memories have become larger (the Cray 2 can
have up to 256 million 64-bit words) and faster, and processors have
been designed to match the &test and widest affordable paths to
memory; yet this limitation has persisted. Costs have been con-
trolled with memory hierarchies that use small, fast memories with a
high cost per bit near the processor and larger, slower memories
with less cost per bit at greater distances from the processor. Blocks
of information are moved from slower levels to faster levels of the
hierarchy as needed. A well-designed hierarchy has an effective
access time near that of the fastest memories (due to locality, the
tendency of temporally near references to access physically near data)

Fig. 1. The Alliant FX18 chassis with several l&inch boards removed to
show an active backplane (rear) with a crossbar switch between eight
processors and a four-port shared-cache memory (Fujitsu CMOS gate arrays
of about 2000 gates). The processor board (left) contains the Weitek
floating-point chipset (two multipliers and an adder-subtractor, three
padcages top at midboard) that operates at about 6 megaflops (64-bit
words); also visible (upper right) are two dividers (two Fujitsu gate arrays of
about 8000 gates) designed by Alliant. Each single-board processor contains
about loS gates. The entire system is air-cooled.

and a cost per bit near that of the largest memories. Yet the fraction
of system cost invested in memory and in paths between memories
and processors is still increasing.

Cache memories are small, fast memories that are managed by
hardware and are thus transparent to system and user software.
Most supercomputers do not use caches because of various ineffi-
ciencies and instead use efficiently managed vector register sets that
hold small slices of large arrays for vector processing. However, data
caches are appropriate if they allow noncacheable modes for large
data structures that would otherwise be referenced only once in
cache before being replaced, or if the system dock speed is slow
enough to tolerate the small delays that caches add. Instruction
caches are efficient in any case.

Virtual memory shields users from the complexity of memory
hierarchies by providing a large monolithic address space and
employing software and hardware support to map virtual addresses
onto physical addresses and to move blocks of needed information
among the levels of the hierarchy when demanded. Some supercom-
puters have not used virtual memory (Cray does not but CDC does)
for reasons similar to those for not using cache; they have instead
required application code to manage overlays of data in memory
explicitly. However, recent research into loop blocking (discussed
below) indicates that such supercomputer inadequacies may not
endure.

In multiprocessor systems, the question of shared or private
memory arises at various levels in the memory hierarchy. When
multiple accesses to a shared memory must be served simultaneous-
ly, the memory is typically partitioned into modules (or banks) in
such a way that simultaneous conflicting requests to a single module
are rare (10). However, shared memories with multiple simulta-
neous requests must of necessity be at a greater distance from the
requestors than a private memory for each requestor. Thus, al-
though high request rates can be sustained with appropriate pipelin-
ing of packet-switched paths to memory, long access delays must be
tolerated by the processor by allowing multiple outstanding requests
and providing earlier fetch requests for needed information (11).

Registers inside the processor are one form of private memory. A
private cache or local memory for each processor is often also
desirable. Memory that is private to one cluster but shared among
the processors of that cluster may be called partially shared memory.
Sharing is almost always used at more remote levels of the hierarchy.
However, some systems, such as the hypercube systems (12), use
only private memory, wherein each memory in the system is
associated with and controlled by one particular processor. Al-
though careful algorithm design can diminish the need to share data,
some sharing of data between processors is inevitable. When no
shared memory is used, variables that are needed by several proces-
sors must be accessed through a message-passing system that allows
one processor to request some other, possibly distant, processor to
modify or transmit the requested data (13). Without shared memo-
ry, this process can be painfully slow.

Several alternatives exist for connecting multiple processors (or
private memories) to a shared memory. A time-shared bus is the
least expensive solution, but it can only serve one request at a time
and therefore provides the lowest performance. When multiple
requests must be served simultaneously, some form of parallel
switch is required. A crossbar switch provides high performance and
can simultaneously serve one request for each output port. Buffering
at the switch ports can partially mask burst demands for particular
output ports. However, the cost of a crossbar typically grows as the
square of the number of input or output ports, and its cost can easily
become prohibitive. For this reason, blocking switches are often
used. These consist of several stages, where each stage is a set of
small crossbars (14). Lower performance results since requests for

28 FEBRUARY 1986 ARTICLES 969

distinct final output ports may be blocked as a result of contention
for some crossbar's output port. Properly designed blocking switch-
es, however, achieve nearly full crossbar switch performance at a
small fraction of the hardware cost (15).

Whenever distinct copies of shared data are allowed to exist in the
memory system a coherence problem exists: the logical consistency
of these copies must be maintained. A variety of mechanisms are
normally employed to insure coherence. Hardware mechanisms,
such as snooping mechanisms for private caches (16), are typically
used among multiple memories in smaller systems and within
clusters. Such mechanisms (which are logically similar but more
complex than the switches mentioned above) become prohibitively
expensive and can limit system performance in larger systems; thus
software schemes must be used at some point. The Cedar compiler
will identify variables that could cause incoherence and allocate them
to noncached shared memory. If there are few of these variables (as
we have observed in experiments), accessing them in a slower mode
should not cause much performance degradation (1 7).

Synchronization primitives are used in some form to coordinate
access to shared variables. There are many types of synchronization
primitives, but all may be thought of as having a key that is required
to pass some comparison test before permission is given to access or
update some data, the key itself, or both. Testing and modifying the
key must be performed as an indivisible operation to prevent
another set of operations from beginning before the set in progress
is completed. Probably the simplest form of synchronization is the
111-empty bit used in the HEP computer (18), whereby a word
cannot be written if its full-empty bit indicates full and cannot be
read if it is empty. Only slightly more complex is the common test-
and-set form of instruction, which tests for a particular value and, if

the test is true, writes a new value into the key. Still more complex is
the fetch-and-add instruction used in the Ultracomputer and the
IBM RP3 (19), which allows an arithmetic or logical operation
instead of just a write and benefits from some clever combining of
operations in the memory switch. Cedar uses a general and flexible
synchronization mechanism (20) wherein each 64-bit data word
may have an associated 32-bit integer key stored in the same global
memory module. Each global memory module has a simple dedicat-
ed processor that performs an indivisible sequence of synchroniza-
tion operations in response to a single-packet request transmitted
from a processor. A transmitted key is compared with a stored key,
and one of several tests is performed. If the test is successful, an
arithmetic or logical operation may be performed on the stored key,
and transmitted data may be stored. A return packet to the processor
contains the test result and (if the test is successful) key or data
values (or both) as requested.

Secondary memory is usually implemented with disks, which
handle most inputloutput (110) traffic. Historically, disk traffic rates
have been proportional to computational rates, regardless of the
primary memory size or configuration. However, improvements in
disk speeds have not kept up with processor speeds. Recently built
supercomputers employ solid-state memories associated with the
disk subsystem, such as the Cray SSD or caches with smart disk
controllers. Alternatively or in addition, disk striping, or partition-
ing of very large data structures, may be used: stripes of data
structures are allocated to distinct disks that are accessed in parallel
to provide the massive data rates required by the supercomputer.

Supercomputers thus require a wide variety of memories distrib-
uted throughout the system. The Cedar system may be used as one
illustration (Fig. 2). Effective exploitation of a complex memory

SYSTEM

CLUSTER

1
1
I

1
I

I
1 COMPUTATIONAL E L E M E N T

Global
S w ~ t c h

I
I

1
1
I
I
I
I
I

1

- --- --- SP--Synchron~zaton Processor --- Concurrency Control Bus

Fig. 2. In the Alliant FX/8 cluster, the eight floating-point processors each clusters. Each of two unidirectional intercluster global switches is fully
have vector registers and an instruction cache, share a concurrency control pipelined and employs two stages, each with eight 8 x 8 unidirectional
bus for fast synchronization, and share a single four-module cache with ports crossbars and input buffering, for system configurations up to eight clusters.
that are twice as fast as a processor port. This cache is backed with a shared The global memory contains one module per floating-point processor in the
cluster memory. The cluster memory is backed by an I10 subsystem that system. Each module contains two interleaved banks and a synchronization
contains several caches, processors, disks, and other I10 devices. A hardware processor. The synchronization processor can perform an elaborate synchro-
coherence scheme insures cache coherence. Each floating-point processor is nization operation in response to a single input packet, thereby saving several
also connected through Cedar logic to a private port of the global switch round trips through the network while a memory port is locked up for each
network that provides access to the shared global memory. A crossbar switch synchronization. The global memory may thus be used effectively for
within each cluster connects each of these processors to its global switch port intercluster shared data and synchronization, for streaming isng-vector
and to the shared cache ports. Fortran do-loops may be computed as accesses at high rate to the processors, and as a fast backup memory for
doacross loops that are executed as follows. Cluster control provides for self- cluster memory. Each cluster has both a computational and an I10 complex
scheduled assignment of the next loop iteration to the next available of processors so that, as more clusters are added, the peak rates for processing
processor, and fast synchronization hardware handles dependences between and I10 both grow; disk striping can be used to exploit this I10 bandwidth.
loop iterations within a cluster. Software handles doacross loops on multiple

970 SCIENCE, VOL. 231

hierarchy, and thus supercomputer efficiency, can be greatly en-
hanced by properly structuring a program. As we shall see below,
restructuring compilers are becoming more and more capable in this
respect.

To take better advantage of the ever more complex organizations
of the latest supercomputers, users are having to write increasingly
intricate programs that are fine-tuned to details of the system
hardware. Thus, one of the most pressing questions associated with
the powerful new concurrent processors is how to reduce applica-
tion development costs, thereby making supercomputers practical
for ord&a~-y users. Answering this question means determining how
to meet crucial objectives in five areas:

1) Programs: the ability to use old programs embodying sequen-
tial algorithms in old languages, as well as new programs using
parallel algorithms in old or new languages.

2) Languages: new languages that allow one to express, in a well-
structured form, algorithms that are amenable to parallel processing.

3) Compilers: software, which is able to exploit effectively all
available architectural features, for use in developing and compiling
programs in both old and new languages.

4) Algorithms: applications packages and library routines with
parallel algorithms for standard problems.

5) Environments: effective programming environments for using
the above software interactively, debugging programs, and graphi-
cally reviewing results of runs.

The first of the five objectives above would allow users to
approach new machines without having to rewrite their programs in
a new style or a new language. The ability to use old languages
makes for an easy transition from an old machine to a new machine
and thereby provides for architectural evolution. This approach is
probably a necessary condition for the general acceptance of a new
machine.

The second and third objectives, taken together, would allow
users to learn and exploit a new language, especially if the program-
development system could translate the old language to the new.
Language evolution would occur as the user moved from familiar
programs to new high-performance programs that would be easier
to understand. New language features are not a sufficient condition
for the success or acceptance of a new machine. New languages
should permit the user to make assertions about the program that
allow faster execution. In fact, the program-development software
should query the user for such assertions.

Packages and library routines, mentioned in the fourth objective,
have always been important to computer users. However, when
integrated with program-restructuring techniques, they would help
lead to the new and powerful program development systems in the
fifth objective.

Debate over which programming language to use has been going
on for many years and will probably continue indefinitely. As with
natural languages, people become biased by what they understand
and grew up with but are willing to learn a new language if their
livelihood or interests depend on it. Probably the only two argu-
ments that could effect a change of language or computer system are
faster computation and easier programming. Speed is easy to
measure, but ease of use is somewhat subjective, and both require
the user to invest substantial time just to make a comparison. Thus,
change has been slow to come.

Applicative and functional programming languages (21) and new
languages with low- and high-level parallelism constructs (22) have
been advocated for use with parallel processors, as have extensions

to existing imperative programming languages (23). Our own work
in program restructuring has focused on Fortran because it is so well
established as a high-level language and yet is difficult to restructure
automatically. Because we have achieved good results by restructur-
ing Fortran code (24), we believe that the future looks bright for
developing and exploiting powerful restructuring tools for a wide
range of languages. We feel, however, that even for languages with
explicit parallelism, automatic restructuring will always be important
for advanced computer organizations. This is es~ecidv true because
of the difficulty &at mog users have in expliiting Lese systems
effectively (25).

 ASS&^ that a user has a good algorithm to solve a problem on
some machine, the remaining problem is to obtain high perform-
ance as easily as possible. A good programming environment is
essential for this conversion and should include a good program-
ming language, a powerful editor, compiler, and debugger, as well
as a rich library of software packages. Using these program develop-
ment tools, a programmer can transform an algorithm into a good
parallel supercomputer program (the TAMPR system at ~ r g n n e
and the proposed Gibbs Project at Cornell are examples).

Program development is an iterative process (Fig. 3). The user
enters a program-into the program-de~elopment~system, which
analyzes it and possibly restructures it for the target machine. The
system can query the user to get additional information that can lead
to a better opt&ization of the program. Findy, the program can be
compiled and tested. Program testing on a supercomputer involves
speed measurement (including bottleneck identification), which can
be done at both compile- and execution-time, and numerical quality
measurement, which-may depend on how the program was mapped
onto the system (26). Debugging the execution of a parallel
computation can be particularly difficult without effective system
aids because the logic of the program may be very complex, and the
execution may be nondeterministic in that independent operations
may be executed in a different order on different runs, exposing bugs - - -
in ways that are not always reproducible (27).

Applications programs must be handwritten or restructured by a
compiler to put parallelism in the preferred form for the target
supercomputer. Program restructurers can automatically effect sim-
ple algorithm changes, as illustrated in a simple vector-matrix
product. Program 1 implements

and is coded as follows:

do j = l , n
cj = 0
d o i = 1 , n

c. J = c. J + ai * bij
enddo

enddo

Program 2 implements
n

and is coded as follows:

d o i = 1 , n
q = 0

enddo
d o i = 1 , n

do j = l , n
c. = c. + a. * b..

J J I B
enddo

enddo

ARTICLES 971 28 FEBRUARY 1986

Interact ive supercompiler and
code development system

r New language program -T-'--l
Old language program

Queries

Restructured source program

'ig. 3. Program development with automatic restructuring for parallel
recessing. In the source-to-source scheme illustrated here, an automatic
:structurer takes a user's source program, asks questions, receives answers
nd other statements, and then produces a new source program that can be
ompiled and executed. The arrow returning to the user indicates that this
rocess is iterative and that the new language program derived in this
lanner may be maintained and compiled without further restructuring.
Iowever, today's intricate supercomputers are best exploited by having the
ser write an abstractly "highly parallel" program and letting the software
:structure it for fast execution.

luite different code would be generated for these two loops, and
he machine architecture would dictate which to choose. Program 1
elks on reduction of vectors to a scalar (inner product) and is
dvantageous in many vector processors because it requires only two
ector memory accesses. Program 2 does (vector = scalar x vector
- vector), which can be executed on a vector processor or spread
cross the processors. However, in a vector processor, it may be less
esirable than Program 1 since it requires three vector references
including the store) and hence may stress the memory hierarchy
lore than an inner product.
Innermost loops should contain vectors to exploit vector proces-

xs, but outermost loops should contain doacross concurrency
Fig. 2) that allows execution of multiple iterations in parallel.
'igure 4 is a simple illustration of a doacross to solve a lower
:iangular system h =f: If A = [au], f = {&), x = {ti), and i,
= 1, 2, . . . , n, a sequential program for solving this system is
iven by the following program:

d o j = 1 , n
tj = 4lj/CY$

if (j.eq.n) exit
d o i = j + l , n

+.. = 4. -
1. I

enddo
enddo

The main point of a doacross is that computing each tj need not
rait for the completion of the whole inner iteration i = j + 1, . . . ,
. In fact, one processor may compute Sj soon after another
rocessor has computed +j: = +j - aj,j-lk-l. To minimize the
rnchronization overhead in a doacross, the computation is per-
xmed by blocks. For example, ifA = [A,,], x = {x,), f = up}, and
, q = 1, . . . , 4 , where each block is of order n/4, then the doacross
n two processors may be illustrated as shown in Fig. 4. Vectoriza-
on can be exploited in each of the calculations shown if each
rocessor has vector capabilities. Independent tasks should be
:ranged for simultaneous execution on multiple clusters. Also, the
ata must be restructured so that it flows smoothly through the
lemory hierarchy and arrives at the correct processors at the right
me. Thus, loops may be blocked so that, for example, operations
n large two-dimensional arrays are not carried out on whole rows
r columns but rather on small rectangular blocks that can be
~ntained in private memory and referenced many times before the
rogram accesses other blocks of the large array. The resulting code
m be effective on a supercomputer with cache hardware or with
bcal memory that requires explicit move operations (for example,
:ctor register loads and stores). The same ideas have been shown to

be effective between main memory and secondary memory in any
virtual memory system for a wide range of computations (28).
Finally, it must be remembered that the time required to synchro-
nize various parts of the computation can overwhelm any speedup
obtained through parallelism. Thus the program and data restruc-
turing mentioned above must be carried out with an eye to avoiding
synchronization whenever possible (29).

How to exploit a parallel processor to speed up each job is
currently a serious question in machine design as well as software
design. We describe three levels of granularity in program parallel-
ism that one could attempt to exploit on a correspondingly parallel
machine organization. The highest level is that of separate subrou-
tines, separate loops within a subroutine, and so forth. Most
programmers can easily find some independent tasks at this level in
their programs. However, it is unlikely that factors of mu, : than a
small constant in speedup are possible in most programs using such
high-level granularity.

Medium granularity is represented by parallelism between indi-
vidual loop iterations. Here, the discovery of parallelism is some-
times rather intricate. For example, in weather prediction code, it is
easy to see that the Northern and Southern hemispheres can be
computed simultaneously, but exactly how to break a program up so
that all the mesh points can be computed at once may be trickier,
because there are many dependences between program variables.
Nevertheless, the potential for parallelism here is enormous, because
of the large number of mesh points involved. In general, the
potential speedup is proportional to the loop limit or to the product
of nested loop limits. Nested loops provide the potential for loop
interchanging to move the appropriate type of parallelism to a
nesting level that best exploits the machine organization. Experi-
mentally, we have observed that medium granularity parallelism is
by far the most important in program speedup (30).

Compared to vector machines, parallel processors can deal more
efficiently with conditional branching and with random memory
accessing caused, for example, by subscripted array subscripts. When
program dependence graphs contain cycles with linear recurrences,
fast algorithms are available for multiprocessors or properly de-
signed vector machines (31) . However, parallel processors using
doacross (Fig. 4) can also deal with nonlinear recurrences by simply
delaying subsequent iterations properly, whereas vector machines
must execute them in scalar mode. All these cases can be compiled
from sequential programs by a p o w e h l restructuring compiler.

The lowest granularity of parallelism includes arithmetic expres-
sions and blocks of assignment and control statements. Methods of
speedup with optimizing compilers are well understood at this level,
but the potential speedups are relatively small because of the limited
complexity of individual statements or even blocks of statements.
Speedup factors of 2 or 3 are possible here, as judged from extensive
measurement of real Fortran programs (32).

Applications
The main driving force for higher supercomputing performance is

the fact that some important applications in engineering and science
currently consume excessive amounts of time or are infeasible to
attempt at all on available vector computers. To describe physical
phenomena, one must resort to simulation of complex models on
the computer. The closer the model is to a physical phenomenon,
the more extensive are the required computational resources. For
example, to simulate certain aerodynamic flows around a three-
dimensional aircraft configuration, one needs to solve time-depen-
dent partial differential equations that require a capacity of fast
storage and a sustained computational rate that exceed by several

SCIENCE, VOL. 231

orders of magnitude those offered by the fastest existing vector
machines (33). This exponential growth in the running time of time-
dependent problems in three space dimensions can be easily appreci-
ated by considering the refinement of the space mesh by halving the
distance between the nodes and halving the time step, as well as by
using a more realistic physical model. Such requirements can be
made feasible only by parallel processors that incorporate innovative
hardware organization, together with well-suited software develop-
ment tools and algorithms. In addition to this three-dimensional
fluid flow example, we expect to see other important uses of parallel
processors in the near fiture (34). Among these are computer
simulation of gauge theory and elementary particle physics, multidi-
mensional semiconductor devices, electronic circuits, weather circu-
lation, and oil reservoirs, as well as studies in chemical quantum
dynamics and molecular scattering, seismic imaging, and dynamic
structural analysis.

On the basis of experiments with automatic program restructur-
ing for multiprocessing, we have found that potential bottlenecks in
taking advantage of parallelism in these applications are most
obvious from analyzing a few important building blocks. These
buildmg blocks are Monte Carlo calculations, table look-up, and
various numerical linear algebra algorithms for unstructured and (to
a certain extent) structured sparse problems. Some parallel algo-
rithms, primarily in computational linear algebra, have been devel-

Processor 1 Processor 2

solve A r q

Fig. 4. ILlustration of a doacross.

28 FEBRUARY 1986

oped in an abstract setting (35); some of these are ideally suited to a
 allel el Drocessor such as Alliant's FX/8 and the new ~ r a v multi-
processors (36). On one cluster of Cedar, we have achieved perform-
ance rates that exceed 20 megaflops for dense matrix calculations.
This performance ranges from 0.1 to 0.2 of that on one central
processing unit (CPU) of the Cray X-MP. Whlle performance on
such problems is widely quoted, it seldom reflects system perform-
ance on whole applications. For example, in the eigenvalue problem
of symmetric tridiagonal matrices, where vector calculations do not
play a significant role, the achieved performance on one cluster is 0.5
that of one CPU of the Cray X-MP. On complete application codes,
we expect the performance of one Cedar cluster relative to one Cray
X-MP processor to range from 0.2 (the ratio of their peak perfor-
mances for 64-bit arithmetic) to 1.

In general, a parallel algorithm is one where the various computa-
tional steps can be divided among a number of processors. The
performance of such an algorithm depends primarily on the organi-
zation of the multi~rocessor on which the algorithm is to be used. It "
is natural, therefore, to associate particular algorithms with major
architectural features. Perhaps the most obvious question to be
considered by an algorithm designer is whether the multiprocessor
consists of a relatively small or large number of processors, which
dictates the granularity of the parallelism to be exploited. In the
former case, it is usually possible to decompose a problem into tasks
that need to communicate only infrequently. For the latter case,
tasks that can be executed independently in each processor are
usually short-lived, and interprocessor communication may domi-
nate. with many processors, k g h efficiencies are often more difficult
to achieve than with few processors (37). For a particular applica-
tion, the number of processors that can be efficiently used depends
on both the degree of parallelism that can be achieved for the
application and the size of the problem being solved. By using a
powerful restructuring compiler on most of a program and basic
algorithms with high parallelism whenever necessary, parallel pro-
cessor users with large jobs will achieve high performance, even on
systems with hundreds of processors (38). In designing parallel
algorithms, it is also important to distinguish between systems with
a shared memory and those with private memories only. For the
private memory model, the interconnection geometry plays a vital
role in the choice of an algorithm for solving a given problem (39).
If the number of processors is large, so that communication between
distant processors becomes slow, the algorithm, if possible, should
be designed such that a given processor needs to communicate
predominantly with those few processors in its immediate neighbor-
hood. As the number of processors grows larger, algorithm design-
ers on such parallel processors have increasing difficulty in achieving
high speedup, except for Monte Carlo methods (40) and asynchro-
nous iterative schemes (41).

In the Cedar architecture, we adopt the shared memory model for
which algorithm design is more flexible. Furthermore, to accomrno-
date a large number of processors without suffering from high
synchronization overhead, we introduce eight-processor clusters
with fast intracluster synchronization and local cluster memory.
Thus, there are three levels of system parallelism at the disposal of
the Cedar algorithm designer. The first step is to decompose the
problem among the available clusters such that the time consumed
h the computational tasks within a cluster far exceeds that con-
sumed in intercluster communication. At the second level, the tasks
within a cluster are allowed to be more communication intensive:
with self-scheduled doacross (Fig. 4), the synchronization penalties
are not high. At the innermost level the vector capabilities of each
processor are used. Judging from our experience, we expect that
Cedar will deliver more uniform speedup from application to
application than has been possible on today's supercomputers.

ARTICLES 973

Finally, we emphasize two points. First, in developing parallel
algorithms to solve problems in the shortest time possible on a given
multiprocessor, one should not sacrifice either robustness (graceful
failure of algorithms on the machine) or, more important, numerical
stability. Second, whenever possible, one should keep in mind the
issue of portability of these algorithms, at least among members of
the same class of multiprocessors. Here again, automatic program
restructurers can be useful in limiting the damage to the perform-
ance of an algorithm as it is moved to another multiprocessor for
which it was not originally designed (42).

REFERENCES AND NOTES

I. S. C. Chen, in High Speed Computation, J. Kowalik, Ed. (Springer-Verlag, Berlin,
198q), p 59 67 J L. Larson, Computer 17, 62 (1984).

2. P. B. &neck el i., Com uter 18, 43 (1985); J. T, Schwartz, ACM Trans. Prog.
Lang. Syst. 2,484 (1980); R. Gottlieb et al., I E E Trans. Cornput. C-32.175 (1983);
G. F. Pfister et al., in Pvoceedings of the 198s International Conference on Parallel
Processing, D. Degroot, Ed. (IEEE, Piscataway, NJ, 1985), p p 764771.

3. C. Seitz, Commun.ACM28, 22 (1985); D. J. Kuck, inPardle Procerslngsystems, D.
J. Evans, Ed. (Cambridge Univ. Press, New York, 1982), pp. 193-214; M. J. Flym,
LEEE Trans. Comput. C-21, 948 (1972); J. Schwarrz, aper presented at the
Conference on Vector and Parallel Processors for Sciendc Computation, Rome,
Italy, 27 to 29 May 1985; SIrliMNms 17, 6 (1984); J. C. Browne, ihd. 16,8 (1983); in
ComputerArchztecture Technical CommunicatwnsNewsletter (IEEE, Piscataway, h7,
1984, pp. 77-191.

4. D. J. Kuck, The Structure of Computers and Computations (Wdey, New York, 1978).
5. J. R. Lineback, Ele&onta 58, 32 (1985).
6. C. Seitz, Commun. ACM 28, 22 (1985).
7. K. E. Batcher, in Proceedings ofthe MIPS National Computer Conference (AFIPS

Press, Montvale, hJ, 1974) 405-410; in Proceedings of the &Annual Symposium
on Com~uterArchitecture &$E. Piscatawav. h7. 1980). 00. 168-171. ,, -, - , . L L

8. See R. P. Gabriel, Science'ajr, 9;5 (1986).
9. D. J. Kuck et al., in Proceedings of the 1984 International Conference on Parallel

Processin , Robert M. Keller, Ed. (IEEE, Piscataway, NJ, 1984), pp. 129-138.
10. D. P. ~fandarkar, EEE Trans. Comput. C-24, 897 (1975); F. A. Briggs and E. S.

Davidson, ibid. C-26,162 (1977); P. Budnik and D. J. Kuck, ibid. C-20, 1566 (1971);
D. Chang, D. J. Kuck, D. Lawrie, ibid. C-26,480 (1977); D. H. Lawrie and C. R.
Vora, in Proceediws of the 1980 Internatwnal Conference on Parallel Proces* (IEEE,
Piscataway, N, 1980), P P 81-90; K. Padmanabhan and D. H . Lawrie, ACM
Trans. Comput. Syrt. 3,117 (1985); J. H . Patel, LEEE Trans. Comput. C-30, 771 (1981);
D. W. L. Yen, J. H. Patel, E. S. Davidson, ibid. C-31, 1116 (1982); P. C. C. Yeh, J.
H. Patel, E. S. Davidson, ibid. C-32, 38 (1983).

11. J. E. Smith, in Proceedings of the 9th Annual International Symposium on Computer
Architecture (IEEE, Piscataway, NJ, 1982), pp. 112-119; A. R. Pleszkun, G. B. Sohi,
B. Z. Kahhaleh, E. S. Davidson, in preparation.

12. C. Seitz, Commun. ACM 28, 22 (1985); A New Direction in ScientGc Computing
(Intel, Beaverton, OR, 1985).

13. E. F. Gehringer, A. K. Jones, Z. Z. Segall, Computer 15,40 (1982); B. Lint and T.
Agerwala, IEEE Trans. SoJhvare Eng. SE-7, 174 (1981).

14. V. E. Benes. Mathematical Theow o f Connectilyl Networks and Telephone Traffic
(Academic Press, New York, 1965j. . -

15. V. E. Benes, Bell Syst. Tech. 1. 162, 499 (1983); P.-Y. Chen, P.-C. Yew, D. L.
Lawrie, in Proc~edings of the 3rd International Conference on Distributed Computing
Systems (IEEE, Piscataway, NJ, 1982), pp. 622-629; N.-F. Tzeng, P:C. Yew, C:Q.
Zhu, in Pvoceedings of the 12th Annual International Symposium on Computw
Architecture (IEEE, Piscataway, NJ , 1985), pp. 368-375; K. Padmanabhan and D.
H . Lawrie, ACM Trans. Comput. Syst. 3, 117 (1985); A. Gottlieb et al., IEEE Trans.
Comput. C-32, 175 (1983); G. F. l'fister et al., in Pvoceedings of the 198s International
Conference on Parallel Processing, D. Degroot, Ed. (IEEE, Piscataway, NJ, 1985),
pp. 764-771; J. H. Patel, IEEE Trans. Cmnput. C-30, 771 (1981).

16. J. R. Goodman, in Proceedings of the 10th Annual International Symposium on
ComputerArchitecture (IEEE, Piscataway, hJ, 1983), pp. 124-131; J. H. Patel, EEE
Trans. Comput. C-31, 296 (1982).

17. K Y. Lee, W. Abu-Sufah, D. J. Kuck, in Proceedings of the 1984 Internatwnal

Conference on Parallel Processing, R. M. KeUer, Ed. (IEEE, Piscataway, NJ, 1984),
pp. 269-277; H . Husmann, thesis, University of Illinois, Urbana, in preparauon.

18. B. J. Smith, Proc. Int. Soc. Opt. Eng. 298, 241 (1981).
19. A. Gottlieb et al., IEEE Trans. Comput. C-32, 175 (1983); G. F. Pfister et al., in

Proceediws ofthe 198s International Conference on Parallel Processitg, D. Degroot,
Ed. (IEEE, Piscataway, NJ, 1985), pp. 764771.

20. C.-Q. Zhu and P:C. Yew, in Proceedzngr o f the 4th International Conference on
DiFtributed Computing System (IEEE, Piscataway, N J , 1985), pp. 486-493.

21. J. R. McGraw, Phys. Toahy 37, 66 (May 1984).
22. R. 'Taylor and P. Wilson, Electronics 55, 89 (1982); C. A. R. Hoare, Commun. ACM

21, 666 (1978).
23. "Fortran 8X," Doc. X3J31S8, Version 97 (American National Standards Institute,

New York, 1985; D. J. Kuck and M. J. Wolfe, Phys. Today 37, 67 (May 1984).
zq. D. J. Kuck et al., in Proceedingr o f the 1984 International Conference on Parallel

Processing, Robert M. Keller, Ed. (IEEE, Piscataway, hJ,1984), pp. 129-138; D. J.
Kuck, R. H . Kuhn, B. Leasure, M. Wolfe, in Tutorial on Supercomputeus: Des$n
andApplications, K. Hwang, Ed. (IEEE, Piscataway, NJ, 1984),fp. 168-178.

25. D. Kuck, D. Padua, A. Sameh, M. Wolfe, in Proceedings o f t e IFIP Workzng
Conference on The Relationship Between Numerical Computatwn and Programming
Languages, J. Reid, Ed. (ElsevierNorth-Holland, New York, 1982), pp. 205-221.

26. J. L. Larson and A. H. Sameh, Computing 24, 275 (1980).
27. T. W. Pran, So@are 2, 7 (1985); J. Griffin and H . Wasserman, paper presented at

the Second SIAM Conference on Parallel Processing for Scientific Computauon,
Norfolk, VA, 18 to 21 November 1985

28. W. Abu-Sufah, D. J. Kuck, D. Lawrie, IEEE Trans. Comput. C-so, 341 (1981); W .
Abu-Sufah, R. Lee, M. Malkawi, P. Yew, in Proceedings of the 6th Internatmad
Conference on So are Engineering (IEEE, Piscataway, NJ, 1982), pp. 110-117.

19. Z Li and W A t S u f a h , in Proceedings ofthe 12th Annual Intematwnal Symposium
on Computer Architecture (IEEE, Piscataway, h7, 1985), pp. 284-291; S. Midkiff,
thesis, University of Illinois, Urbana, in preparation.

30. D. J. Kuck et al., in Proceedings of the 1984 Intemationd Conference on Parallel
Processing, R. M . Keller, Ed. (IEEE, Piscataway, NJ, 1984), p p 129-138; D. J.
Kuck, R. H. Kuhn, B. Leasure, M. Wolfe, in Tutorial on Supwcumputeus: Design
andApplications, K. Hwang, Ed. (IEEE, Piscatawa , NJ, 1984), p p 168-178.

31. A. H . Sameh and R. P. Brent, SW. Numw. ~na?14,147 (1977); S. C. Chen, D.
J. Kuck, A. H. Sameh, ACM Trans. Math. Sofhvare 4,270 (1978); S. C. Chen and
D. J. Kuck, IEEE Trans. Comput. C-26, 712 (1977).

32. R. Cytron, D. J. Kuck, A. Veidenbaum, Comput. Phys. Commun. 37, 39 (1985).
33. V. Peterson, Proc. IEEE 72, 68 (1984).
44. C. C. Hsiung and W. Butscher, Parallel Computin I, 113 (1984); K. C. Bowler and

G. S. Pawley, Proc. IEEE 72,42 (1984); D. L. damson and P. N. Swarzuauber,
ibid., p. 56; R. P. Kendall, J. S. Nolen, P. L. Stanat, ibid., p. 8s.

35 D. J. Kuck and A. H . Sameh, in InformationProcessingn (ElsevierNorth-Holland,
New York, 1972), p ~ . 1266-1272; A. H. Sameh, in H$h Speed Compum and
Abrithrn Organbatwn, D. Kuck, D. Lawrie, A. Sameh, Eds. (Academc Press,
New York, r977), p. 207 228, A H Sameh and D. J. Kuck, J. ACM 25,81 (1978);
D. H. Lawrie a n 1 A. ~ Y S h e i , A'CM Trans. Math. SoJhvare 10, 185 (1984); C.
Kamath and A. Sameh, in Proceedingr of the sth IMACS Internatwnal Symposium on
Com uter Methoak for Paflial Differential Eguatwns, R. Vichnevetsky and R.
Stepfernan, Eds. (IMACS, New Brunswick, NJ, 1984), p p 210-217.

36. A. Sameh aper presented at the Second SIAM Conference on Pardel Processing
for Scientg Computation Norfolk, VA, 18 to 21 November 1985; J. Dongarra and
D. Sorensen, ibid.; S. Lo, B. Philippe, A. Sameh, ibid.; J. Dongarra andT. Hewin,
Argonne Natl. Lab. Tech. Memo. ss (1985).

37. T. Rieanati and P. Schneck. Computer 17. 97 (1984): B. Buzbee and D. H. Sharp, - . . A . , ' .
ScieItE'e 227, 591 (1985).

38. D. J. Kuck et al., in Proceedings of the 1984 International Conference on Parallel
Processing, R. M. Keller, Ed. (IEEE, Piscataway, N, 1984), pp. 129-138.

39 G. Fox, Phys. Today 37, 50 (May 1984); A. Sameh, Comput. Phys. Commun. 37, 159
(1985).

40. B. Lauuup, Commun.ACM28, 358 (1985); E. Clementi, G. Corongiu, J. Deuick, in
Proceedings ofthe 2nd International Confereence on Vector and Parallel Processm in
Computational Science, I. Duff and J. Reid, Eds. (ElsevierNorth-Holland, New
York, 1985), p 287 294, L Delves, ibid., pp. 295-302.

41. G. ~aude t ,P~Cl i i ; s , 2;6 i1978); D. Chszan and W. Miranker,,. LinearAlgebra
Appl. 2, 199 (1969); B. W. Wah, G. J. Li, C. F: Yu, Com uter 18, 93 (1985).

42. D. J. Kuck, D. Padua, A. Sameh, M. Wolfe, m Procee& of the IFIP W i n g
Conference on The RelationshiP Behveen Numerical Computation and Pmgramming
Languqges, J. Reid, Ed. (ElsevierNorth-Holland, New York, 1982), p 205 221

41. Supported in part by Department of Energy grant DE-FGO~-~IE&OOI ,~SF
grants DCR-8410110, DCR-8406916, and DCR-8509970, U.S. Air Force grant
AFOSR-85-0211, and a gift from IBM.

SCIENCE, VOL. 231

