
production ecology of the marine pico- 
plankton community. While other ma- 
rine organisms may assimilate a limited 
amount of stored nitrogen by the expan- 
sion of metabolic pools (14), the exis- 
tence of functionally distinct macromo- 
lecular reserves af this element in a 
member of the marine phytoplankton 
appears to be a novel observation. Not 
only is the potential productivity of ma- 
rine cyanobacteria enhanced by their 
ability to accumulate substantial reser- 
vairs of nitrogen, but the same strategy 
may be of further significance in that the 
availability of nitrogen to potential com- 
petitors is restricted. 

Alkaline Hydrogen Peroxide Treatment Unlocks Energy in 
Agricultural By-Products 

Abstract. Lignocellulasic residues (wheat straw, corncobs, and cornstalks) were 
treated with a dilute alkaline solution of hydrogen peroxide and suspended in cattle 
rumen in situ to measure microbial degradation. The rate and extent of dry matter 
disappearance were markedly increased as a result of the treatment. Results in vivo 
indicate that this treatment increases the fermentability of wheat straw structural 
carbohydrates such that this agricultural by-product may be considered an accept- 
able energy source for the ruminant animal. Treatment of wheat straw allowed more 
complete bacterial colonization and more rapid degradation of the cell wall. 

efficients and digestible and metaboliz- 
able energy contents of feed contain- 
ing alkaline hydrogen peroxide-treated 
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wheat straw. In experiment 1, 12 grow- 
ing lambs (average initial weight, 22.5 
kg) were assigned to one of four diets 
containing treated or untreated wheat 
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such that lambs fed the diets containing 
36 and 72 percent treated wheat straw 
consumed 122 35.8 and 335 * 35.8 
glday more qigestible dry matter, respec- 
tively, than did lambs fed untreated 
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acid detergent fiber (cellulose and lig- 
nin), and cellulose digestibilities were 
approximately twice as great for lambs 
fed the treated wheat straw diets as for 
those fed the untreated wheat straw di- 
ets. The digestible and metabolizable en- 
ergy content of diets increased approxi- 
mately 1.5 times as a result of treatment. 
Animals onsuming the diet containing 
72 perced f untreated wheat straw lost an 
average of 106 g of body weight per day, 
whereas lambs consuming the diet con- 
&ing 72 percent' treated wheat straw 
gained weight at a rate (235 g/day) com- 
parable to that of lambs consuming a diet 
composed predominantly of corn (241 
glday). 

In experiment 2, the digestibilities of 
dry matter, neutral detergent fiber, and 
acid detergent fiber were greatly in- 
creased by treatment with alkaline hy- 
drogen peroxide (Table 1). Cellulose di- 
gestibility increased from 56 to 85 per- 
cent and froni 57 to 86 percent for diets 
containing low and high levels, respec- 
tively, of treated straw. 

The results of experiment 3 indicate 
that treatmefit bf wheat straw overcomes 
the intake restrictions imposed by this 
agricultural reddue in its native form. 
The data on digestibility (Table 1) indi- 
cate that sheep can extensively digest 
the treated material when it is fed to 

Fig. 1 .  Scanning electron micrographs of straw particles isolated from the rumen of fistulated 
mature sheep fed diets containing 72 percent untreated wheat straw (a and b) or 72 percent 
wheat straw treated with alkaline hydrogen peroxide (c). 

them ad libitum, supporting the conten- 
tion that treatment of lignocellulosic ma- 
terial with alkaline hydrogen peroxide 
results in a feedstuff that may be used for 
production purposes. 

The degree of microbial colonization 
of wheat straw in the rumeti, as affected 
by treatment, was estimated by examin- 
ing samples of niminal contents from 
sheep being fed diets containing 72 per- 
cent untreated or treated wheat straw. 
Because cellulose degradation in the ru- 
men requires attachment of cellulolytic 
bacteria to the substrate (12), straw par- 
ticles were collected from ruminal fluid 
and examined by scanning electron mi- 
croscopy (13). 

The pattern of attachment of ruminal 
bacteria to untreated wheat straw parti- 
cles was very similar to that observed 
previously with other lignocellulosic 
substrates (14). Bacteria were attached 
primarily to cut or broken tissue edges, 
along the inner surfaces of some cells, 
and in areas that had been physically 
damaged during feed preparation or by 
chewing (Fig. 1, a and b). Large areas of 
the straw particles were almost com- 
Pletely devoid of attached bacteria. In 
contrast, straw particles obtained from 
sheep fed treated wheat straw were uni- 
formly covered by a dense population of 
bacteria (Fig. lc). Although the factors 
regulating the attachment of ruminal 

Table 1. Feed intakes, appafent digestibilities, digestible and metabolizable energy vuues, and weight gains of lambs and mature sheep 
consuming diets containing alkaline hydrogen peroxidetreated and untreated wheat straw at two different concentrations. Values are means. 

Treatment Apparent digestibility (%) Digestible Metabo- 
and Feed 

Neutral Acid 
energy lizable Weight 

percent of intake (percent 
Dry 

energy 
deter- gain 

wheat straw 
wday) matter deter- dellulose of gross (percent of gross 

in diet gent gent (glday) 
fiber fiber energy) energy) 

Experiment 1 
Alkaline peroxide 

36 985* 72.2* 63.4t 60.2t 64.8t 72.lt  69.6t 24 1 
72 769* 67.4* 73.6t 72.6t 76.6t 66.5t 63.8t 235* 

None 
36 863 53.4 28.0 30.0 26.8 52.8 50.1 202 
72 434 48.5 43.0 44.3 43.4 48.8 43.2 - 106 

Standard error 35.8 2.55 3.87 4.04 4.46 2.62 3.33 23.0 
fiperiment 2 

Alkaline peroxide 
37 1048 86.4t 85.6t 78.4t 8 4 3  
72 1070 79.3t 84.3t 79.3t 85.7t 

None 
37 1026 68.3 54.7 49.1 56.0 
72 1034 56.1 48.7 48.2 56.5 

Standard error 7.2 2.77 4.52 3.% 4.17 
Experiment 3 

~ikaline peroxide 
33 2234 82.7t 78.6t 73.9t 77.8t 
70 2526* 70.7t 72.9t 68.0t 74.6t 

None 
33 227 1 68.4 49.4 42.2 43.8 
70 1297 58.0, 51.6 49.5 54.3 

Standard etror 253.2 3.70 4.57 3.08 2.79 

*Significantly different from corresponding value for untreated wheat straw (P < 0.05, least significant diierence test). tP < 0.05, factorial arrangement of main 
effect. 
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microorganisms to lignocelluosic sub- 
strates are unknown, it is clear that alka- 
line hydrogen peroxide treatment re- 
moves a significant barrier to attach- 
ment, allowing more rapid cell wall colo- 
nization and digestion. 

The finding that alkaline hydrogen per- 
oxide renders plant fibers more digest- 
ible by ruminants suggests that many 
alternative feed sources, including crop 
residues and other cellulosic plant bio- 
mass, may be used in animal production. 
Utilization of cellt~lose in this way makes 
available a nearly inexhaustible feed sup- 
ply. Furthermore, the ability to feed 
highly digestible cellulosic materials to 
ruminants would eliminate competition 
between present animal production prac- 
tices and the demands of an expanding 
world population for cereal grains. 
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Synthesis of Fibrils in Vitro by a Solubilized 
Cellulose Synthase from Acetobacter xylinum 

Abstract. A digitonin-solubilized cellulose synthase was prepared from Acetobac- 
ter xylinum. When this enzyme was incubated under conditions known to lead to 
active synthesis of 1 ,4-P-D-glucan polymer (cellulose), electron microscopy revealed 
that clusters ofjibrils were assembled within minutes. Individualjibrils are 17 & 2 
angstroms in diameter. Evidence that the jibrils were freshly synthesized and 
cellulosic in nature was their incorporation of the tritium from U D P - [ ~ H ] ~ ~ U C O S ~  

(UDP, uridine 5'-diphosphate), their binding of gold-labeled cellobiohydrolase, and 
an electron diffraction pattern with 004, 200, and 012 rejections (characteristic of 
cellulose synthesized in vivo) but missing 110 and 710 reflections. The small size of 
the jibrils is atypical of native A. xylinum cellulose microjibrils. The jibrils 
synthesized in vitro resemble, in morphology and size, the jibrillar cellulose 
produced when A. xylinum is cultured in the presence of agents that interfere with 
the normal process of crystallization of the microjibrils. The solubilized enzyme unit 
may therefore be producing a basicjibrillar structure that, in vivo, interacts laterally 
with other fibrils to produce native cellulose microjibrils. 
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Cellulose, a polymer of 1,4-P-D-glu- 
can, is the most abundant biopolymer on 
Earth. It is the primary component of 
such products as wood, cotton, and pa- 

per. Cellulose exists in nature as microfi- 
brils, which form the structural frame- 
work of the cell walls of plants, some 
algae, and certain fungi (I). Among the 
few bacteria that synthesize cellulose, 
Acetobacter xylinum has been studied 
intensely because it produces abundant 
amounts in growth medium. The cellu- 
lose is extruded from a row of pores 
aligned along the longitudinal axis of the 
cell (2) and forms an extracellular pelli- 
cle, which consists of ribbons of cellu- 
lose microfibrils. Freeze etching of A. 
xylinum cells has revealed in the outer 
membrane a row of particles, comple- 
mentary to the pores, which may take 
part in the synthesis of cellulose (3). 

Fig. 1. (A) Dark-field microscopy of in vitro reaction product. Scale bar, 1.0 km. (B) 
Fluorescence microscopy image of the product in the presence of 0.5 percent Tinopal LPW 
(Ciba-Geigy). Scale bar, 1.0 km. 
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