
Research News- 

Number Theory Connections 
An unusual meeting honoring mathematician John Tate had as its theme 

connections between number theory and diverse areas of mathematics 

When Harvard mathematician John 
Tate turned 60 recently, some of his 
students and collaborators planned a 
most unusual meeting to commemorate 
the occasion. The conference organiz- 
ers, Barry Mazur of Harvard, Jean- 
Pierre Serre of the College de France, 
and Stephen Schatz of the University of 
Pennsylvania, invited Tate's former stu- 
dents, his collaborators, and mathemati- 
cians with interests similar to Tate's to 
Harvard from 29 April to 3 May. But 
only one formal talk, by John Coates of 
the University of Paris at Orsay, was 
prearranged. The program for the rest of 
the meeting was decided in two plenary 
sessions in which the participants decid- 
ed whom they wanted to hear speak, 
what they wanted to hear them speak 
about, and in what order. 

The speakers were not necessarily 
asked to discuss their own work-the 
only criterion was that they speak of as 
many new and important developments 
as possible. Only three talks a day were 
scheduled, leaving lots of time for infor- 
mal discussions. Once the participants 
decided on the first 2 days' speakers and 
their topics, the newly scheduled speak- 
ers dashed off to their hotel rooms to 
prepare their lectures. The second plan- 
ning session was held midway through 
the meeting to determine the schedule 
for the last 2 days. 

The conference organizers say that 
this style of conference is very rare in the 
United States but that it is similar to 
meetings organized by F.  Hirzebruch of 
the University of Bonn and known as the 
Mathematische Arbeitstagung. These 
meetings have been held almost every 
year for the past quarter century in 
Bonn. 

In the opening planning session for the 
Bonn conference, any subject in mathe- 
matics is fair game, and although this 
was also the case at the conference at 
Harvard, the talks tended to be on num- 
ber theory and its connections to other 
areas of mathematics, which is Tate's 
special interest. 

Two talks at the meeting were a for- 
gone conclusion. Very recently, two of 
the meeting participants independently 
made progress on a long-standing con- 
jecture of Tate's. Gerd Faltings of 

Princeton solved the problem while 
Jean-Marc Fontaine of Grenoble, work- 
ing with William Messing of the Univer- 
sity of Minnesota, proved a refinement 
of Tate's conjecture using another meth- 
od. Faltings and Fontaine were at the 
meeting and, naturally, they were asked 
to speak about their work. 

The newly resolved conjecture con- 
cerns a theory based on number systems 
called p-adic fields. These fields sound 
strange but, Tate remarks, they are, "ac- 
tually no more abstract than the real 
numbers [the ordinary number line]. It is 
just that the real numbers are used to 
measure the variation of physical quanti- 
ties and so everyone can visualize the 
real number line. Logically, the p-adics 
are on exactly the same footing as the 
real numbers." Yet the p-adics are not of 
interest merely because they are an odd 
analog of the ordinary numbers. It turns 
out that they frequently are just what is 
needed to analyze certain solutions of 
equations. 

The program was 
decided in two plenary 
sessions in which the 
participants decided 

whom they wanted to 
hear speak, what they 
wanted them to speak 

about, and in what order. 

To build the p-adics, mathematicians 
start with ordinary integers, which are 
whole numbers such as 1, 2, and 3. Then 
they choose a prime number, p .  They 
say that two numbers are p-adically 
"close" if their difference is divisible by 
a high power of p .  So if p is 5, two 
numbers are 5-adically close if their dif- 
ference is divisible by a high power of 5. 
That means that 6 is close to 1 because 
6-1 is 5, but that 26 is even closer to 1 
because 26-1 is 25, or 52-an even higher 
power of 5. Still closer to 1 is 126 and 
closer still is 626. 

P-adic numbers, says Mazur, "are 
limits of infinite sequences of ordinary 
integers whose terms get p-adically clos- 

er and closer. At first glance this seems 
very bizarre, but the usefulness of p-adic 
numbers comes in when we try to solve 
certain equations." For example, the 
equation might be Y 2  + y = x3 - X. "If 
you're looking for ordinary integers that 
are solutions to such equations, it can be 
quite hard," Mazur remarks. "But sup- 
pose you ease up a bit. Suppose you 
choose a power of a prime number p ,  say 
pn, and look instead for x and y such that 
the two sides of the equation differ by a 
multiple of p." This turns out to be much 
easier than the original question. Any 
pair of integers x and y that is a solution 
to the original equation is a solution to 
this easier problem as well. But for cer- 
tain important classes of equations, 
called indefinite quadratic forms, math- 
ematicians have shown that if they can 
find solutions of these easier problems 
for all powers of prime numbers, then 
the original equation has integer solu- 
tions. So, says Mazur, looking at these 
easier problems, "is not a completely 
ridiculous thing to do. " 

The p-adics come in because solving 
the easier form of these equations for all 
primes is the same as finding a solution 
in the p-adics. For this reason, Tate 
notes, mathematicians find it convenient 
to work in thep-adics. And, adds Mazur, 
"there are certain geometrical theories 
involving the real numbers that have 
close analogies in the p-adics where the 
geometry is less evident." One of these 
is Hodge theory, which seems crucially 
built on real numbers. But Tate formulat- 
ed a conjecture saying that an analogous 
theory holds in the p-adics. This is the 
conjecture that has now been resolved. 

Other speakers talked on recent re- 
sults in factoring (Science, 19 April, p. 
310), on the solution to the class number 
problem (Science, 7 October 1983, p. 
40), and on a number of as yet unsettled 
conjectures. For example, Theodore 
Chinburg of the University of Pennsylva- 
nia gave a talk on "Galois structure and 
Stark's conjecture." 

Stark's conjecture connects number 
theory to analysis and involves an ab- 
straction of the concept of a unit integer. 
In the ordinary integers, the only units 
are 1 and - 1. These are the whole num- 
bers whose reciprocals are also whole 
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numbers. But, says Mazur, "the more 
general definition of a unit comes into 
play when mathematicians look at what 
they call algebraic integers. These are 
expressions that act like integers but are 
a bit more complicated. " 

An example of a system of algebraic 
integers is the collection of all numbers 
of the form A+B-. where A and B are 
ordinary integers. You can add and mul- 
tiply numbers of this form and the an- 
swer will always be a number of the 
same form. The units of a system of 
algebraic integers are those algebraic in- 
tegers whose reciprocals are also alge- 
braic integers. So, for example, in the 
system of algebraic integers of the form 
A+B*, 1 + fi is a unit since its re- 
ciprocal is - 1 + ~. In fact, Mazur 
notes, any unit in this system is either a 

power of 1 + fi or a power of its recip- 
rocal or the negative of any of these. 

Other systems of algebraic integers 
can be more complicated and their units 
can be difficult to determine. Harold 
Stark of the Massachusetts Institute of 
Technology and the University of Cali- 
fornia in San Diego conjectured that 
there is an amazing relationship between 
certain expressions involving the loga- 
rithm of these units of algebraic integers 
and the behavior of particular functions, 
called non-Abelian L functions, L(s), at 
the point where s is 0. He proposed that 
you can start with these functions from 
analysis, L(s), and get expressions in- 
volving the logarithms of units of alge- 
braic integers and, in special cases, get 
the logarithms of the units themselves. 
What is surprising is that Stark thereby 

connects analysis and number theory. 
Stark showed that his conjecture is 

true in some cases. And although no one 
yet has an inkling of how to prove the 
conjecture in general, work on it has 
suggested several new mathematical 
ideas. 

Tate recently wrote a book on these 
developments and proved the conjecture 
in another special case. Tate's proof then 
led to new questions about the units of 
algebraic integers and Chinburg reported 
on recent research on these questions. 

Other talks at the meeting were on 
problems relating number theory to alge- 
bra, algebraic geometry, and analysis. 
The theme, says Mazur, "is connecting 
what once seemed to be the unconnecta- 
b1e"-a possiblity that is bound to be 
exciting.-GINA KOLATA 

When Are Viscous Fingers Stable? 
Recent research concludes that a single, stable finger can form 

when a lower viscosity fluid pushes against one of higher viscosity 

Interest in viscous fingering, a dec- 
ades-old problem in the fluid dynamics 
literature, has taken on new life in the 
last few months. Activity is on two 
fronts, which already look as though 
they are quite closely related. 

In the first area, theorists find they can 
now explain the persistence over long 
times of the distinctive finger patterns, 
although a complete quantitative de- 
scription of the shapes is not yet in hand. 
At the same time, experimentalists and 
theorists have been jointly exploring the 
limits of the fingers' stability and find it 
to be not unlimited. A low surface ten- 
sion at the interface between the two 
fluids, a large interface velocity, and 
fluctuations or noise at the interface all 
degrade the stability and give rise to 
distortions in the fingers in both numeri- 
cal simulations and experiments. 

The second area concerns the recently 
fashionable topic of fractal behavior in 
physical systems. Fractal objects have a 
property called self-similarity-that is, 
they have similar features at all length 
scales and therefore look the same at all 
magnifications-and are characterized 
by an effective fractional dimension, 
rather than the integer 1, 2, and 3 of 
curves, surfaces, and volumes. 

Self-similarity is a kind of symmetry, 
in this case invariance under a change in 
length scale. This sort of symmetry was 
a crucial ingredient in the development 
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of the theory of phase transitions (critical 
phenomena) over a decade ago, and 
more recently it has figured in the behav- 
ior known as chaos in nonlinear dynami- 
cal systems (Science, 5 November 1982, 
p. 554). Now scientists hope that it will 
play a similarly powerful role in under- 
standing other physical phenomena. The 
recent observation of fractal viscous fin- 
gers, to be discussed in a second article, 
is therefore causing much excitement. 

The question of the stability and shape 
of viscous fingers is part of a more 
general domain of inquiry called pattern 
formation. Physical systems that evolve 
under conditions far from equilibrium 
often take on characteristic shapes or 
patterns that are governed by a balance 
between competing forces acting on the 
system during its growth. Fluids are an 
especially fertile ground for such pro- 
cesses, as exemplified by the wonderful 
patterns of whorls and swirls that occur 
at flow rates between the laminar and 
completely turbulent regimes (Science, 8 
July 1983, p. 140). 

The mathematically simplest example 
and hence the prototype whose under- 
standing should help with the solution of 
more complex problems in pattern for- 
mation is the single finger that can occur 
when a lower viscosity fluid pushes 
against one of higher viscosity. 

A key event in the modern history of 
viscous fingering was a 1958 publication 

by Philip Saffman (now at the California 
Institute of Technology) and the late Sir 
Geoffrey Taylor of the University of 
Cambridge describing the displacement 
of a viscous fluid, such as oil, by a less 
viscous fluid, such as water, in a cell 
comprising two closely spaced flat 
plates. This flat-plate configuration is 
called a Hele-Shaw cell, after the British 
engineer J. H. S. Hele-Shaw, who in- 
vented it in 1898. As a kind of two- 
dimensional wind tunnel for liquids, it 
was useful for studying fluid flow past 
obstructions, such as ship hulls. 

Saffman and Taylor were more in- 
trigued, however, that the mathematics 
of their two-fluid experiment was also 
the same as that for flow in porous 
media, a problem of great interest to 
petroleum engineers and civil engineers. 
For example, one of the methods of 
enhancing the productivity of an oil field 
is by pumping water or carbon dioxide 
gas into the ground through one well in 
order to force more oil to flow to neigh- 
boring wells. The formation of fingers of 
water or gas in the oil, as was observed 
to occur in laboratory models, plainly 
affects the efficiency of the recovery, 
although there are probably other equal- 
ly important factors in real oil fields, 
such as faults in the rock. 

Whether or not the Hele-Shaw cell 
really does provide a model system for 
fluid flow in porous media, the distinc- 
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