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RESEARCH ARTICLE 

Role of the Conserved AAUAAA Sequence: 
Four AAUAAA Point Mutants Prevent 

Messenger RNA 3' End Formation 

Marvin Wickens and  Pauline Stephenson 

In bacteria, messenger RNA's 
(mRNA's) generally are primary tran- 
scripts and are exact replicas of DNA 
sequences in the genome. In eukaryotes, 
however, a primary transcript becomes 
an mRNA only after a collection of phys- 
ical modifications: capping, cleavage to 
form a new 3' terminus, polyadenyla- 
tion, splicing, base methylation, and the 
transport of mRNA from nucleus to cy- 
toplasm (1-3). In principle, each matura- 
tion step provides a means of regulating 
mRNA formation. This article focuses 
on defining the sequences within a pri- 
mary transcript that are necessary for 
three of these steps: cleavage, polyade- 
nylation, and transport. 
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Interest in these three steps stems first 
from their universality (1-3). Almost all 
cellular and viral mRNA precursors that 
have been examined are cleaved to gen- 
erate a new 3' terminus to which poly- 
adenylic acid [poly(A)] is added (1-4) 
[for an exception, see (5, 6)]. Only 
mRNA's with a mature 3' terminus are 
transported to the cytoplasm. Cleavage 
involves at least one endonucleolytic 
scission (9. The site of this scission is 
unknown; it may coincide with the pol- 
yadenylation site, or may lie down- 
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stream. Similarly, the protein or nucleic 
acid factors that catalyze the reaction 
have not yet been characterized. 

Interest in these maturation steps also 
stems from their potential to determine 
how much mRNA, and what type of 
mRNA, a cell contains. For example, the 
same gene can produce two or more 
mRNA's with different 3 '  termini in dif- 
ferent cell types (8-10) or at different 
stages of viral infection (2). 

Formation of SV40 (simian virus 40) 
mRNA's, like that of most mRNA's, 
involves posttranscriptional processing. 
This small double-stranded DNA virus 
genome is transcribed into two families 
of mRNA's in monkey cells (Fig. 1A). 
All mRNA's that accumulate late in viral 
infection (late mRNA's) are cleaved (11) 
and polyadenylated at the same site (12). 

Sequences involved in cleavage, poly- 
adenylation, and transport of mRNA in 
animal cells have not yet been complete- 
ly defined, but must include the highly 
conserved AAUAAA sequence located 6 
to 26 bases before the polyadenylation 
site of nearly all animal cell mRNA's 
(13). Fitzgerald and Shenk (10) demon- 
strated that deletion of this sequence 
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cessing by analyzing whether such 
"fused" pBR3221SV40 primary tran- 
scripts are processed even in the absence 
of most of the normal mRNA sequence. 

The construction of a pBR3221SV40 
plasmid (22) is summarized in Fig. 1A. 
The SV40 fragment contains 141 bases 
before and 802 bases after the polyade- 
nylation site of late mRNA's; the plas- 
mid is therefore designated pSVL- 1411 
+802. The C (cytosine) preceding po- 
ly(A) is designated - l .  The 141 residues 
before the polyadenylation site contain 
the entire 3' untranslated region of late 
mRNA's, including the AAUAAA se- 
quence. 

Transcripts of pSVL- 1411+802 are 
accurately and efficiently cleaved in oo- 
cytes (Fig. 1C). RNA purified (23) from 
oocytes injected with pSVL-141/+802 
or with SV40 DNA (24) was analyzed by 
Sf mapping (25, 26, 27). The labeled 
DNA fragment that was used as probe 
spans the 3' terminus of late mRNA's 
(Fig. 1C). RNA that has been cleaved 
(that is, processed RNA) should protect 
a 143 base fragment from nuclease S1 
digestion, whereas RNA that has not 
been cleaved (that is, unprocessed RNA) 
should protect a 240-base fragment (Fig. 
1C). RNA from oocytes that had been 
injected either with SV40 DNA (Fig. lC, 
lane 11) gr with pSVL- 141/+802 DNA 

Abstract. A small region (220 bases) of SV40 sequence information-141 bases 
before the polyadenylation site and 79 beyond--are su@cient for cleavage of an 
messenger RNA precursor (that is, the formation of a mature 3' terminus), the 
addition of polyadenylic acid, and the transport of messenger RNA from the nucleus 
to the cytoplasm. These 220 bases include: a highly conserved sequence-AAUAAA 
(A, adenine; U ,  uracil). Four point mutations in this sequence-AACAAA, 
AA UUAA, AA UACA, and AA UGAA (C, cytosine; G,  guanine)--prevent cleavage. 

plus ten adjacent nucleotides prevents 
the formation of stable mRNA. Monte11 
et al. (14) have reported that the 
AAUAAA (A, adenine; U, uracil) se- 
quence of the adenovirus ElA gene is 
necessary for cleavage. 

In this article, we present our analysis 
of the expression of recombinant SV401 
pBR322 DNA's after they have been 
injected into the nucleus of Xenopus 
oixytes. Oocytes provide a valuable as- 
say system for RNA processing because 
(i) DNA, RNA, or protein can be inject- 
ed into the nucleus or cytoplasm; (ii) a 
wide spectrum of maturation steps are 
carried out; and (iii) abnormal transcripts 
often are stable (5, 15-17). Moreover, 
frog oocytes efficiently process RNA 
precursors from other species and cell 
types. For example, oocytes injected 
with SV40 DNA produce late region 
transcripts that are cleaved, polyadenyl- 

ated, spliced, transported to the cyto- 
plasm (18), and translated (19). 

A small region of SV40 encodes 3' end 
formation. Prokaryotic DNA templates, 
like pBR322, are transcribed by RNA 
polymerase I1 after injection into the 
nucleus of frog oocytes (20). In fact, 
functional mRNA can be produced from 
recombinant plasmids in which a eukary- 
otic gene, lacking its own promoter, is 
inserted into pBR322 (21). In the follow- 
ing experiments we exploited this find- 
ing. Small fragments of SV40 DNA, 
lacking a promoter, were inserted into 
pBR322. These pBR3221SV40 recombi- 
nants were then injected into oocytes. 
RNA polymerase I1 initiates transcrip- 
tion in pBR322 sequences, elongates 
through the SV40 insert, and continues 
into the pBR322 sequences beyond. We 
then determined whether the SV40 se- 
quences present were sufficient for pro- 
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(lane 1) yield the same result; two frag- 
ments are protected, one consisting of 
240 bases and the other of 143 bases, in a 
molar ratio of 1 to 6 (determined by 
microdensitometry). As we expected, 
RNA from uninjected oocytes did not 
protect any probe (Fig. lC, lane 2). We 
conclude that primary transcripts con- 
taining only 943 bases of SV40 sequence 
are cleaved as efficiently and as accu- 
rately as primary transcripts of intact 
SV40 DNA. (We define efficiency as the 
fraction of accumulated RNA that is 
processed.) 

To further delimit the sequences re- 
quired for processing, we constructed 
(22) a series of plasmids bearing dele- 
tions of the 3' flanking sequence present 
in pSVL-141/+802 (Fig. IB). RNA's 
prepared from oocytes injected with 
each deletion DNA were analyzed by Sf 
mapping (Fig. lC, lanes 3 to 10). Each 
template directs cleavage with the same 
efficiency and accuracy as wild-type 
SV40 DNA (lane 11). The smallest re- 
gion of SV40 DNA tested in Fig. 1, 
present in pSVL- 141/+79, is 220 bases 
long. it contains 141 bases before and 79 
bases after the polyadenylation site. 

Cleavage of RNA's transcribed from 
these templates is due to the SV40 se- 
quence they contain. We constructed 
plasmids in which the pSVL- 141/+79 
fragment is inverted with respect to 
pBR322. The SV40 late-region tran- 
scripts of these plasmids necessarily 
contain different pBR322 sequences, 
since these transcripts initiate on the 
opposite strand of pBR322. Nonetheless, 
they are cleaved as efficiently as tran- 
scripts of pSVL-141/+79 (data not 
shown). 

Polyadenylation and nucleocytoplas- 
mic partitioning. To determine whether 
transcripts of pSVL- 141/+79 are polya- 
denylated, RNA that had been extracted 
from oocytes injected with pSVL-1411 
+79 was fractionated into polyadenylat- 
ed and nonpolyadenylated components 
(Fig. 2A). These two RNA fractions 
were analyzed by S1 mapping. Nonpoly- 
adenylated RNA protects a fragment of 
220 bases, corresponding to uncleaved 
RNA, but does not protect the 143-base 
fragment that corresponds to cleaved 
RNA. Polyadenylated RNA protects pri- 
marily the 143-base fragment, and only a 
very small amount of the 220-base frag- 
ment. Thus, cleaved RNA is polyadenyl- 
ated and uncleaved RNA is not. 

Transcripts of pSVL- 141/+79 are 
properly partitioned between nucleus 
and cytoplasm (Fig. 2B). Oocytes were 
injected with pSVL- 141/+79 (oocytes 1 
and 2) or with pSVL- 141/+802 (oocytes 
3 and 4). After 24 hours, nuclei and 

cytoplasms were isolated manually (24). 
RNA was prepared from the separated 
nucleus and cytoplasm of single oocytes. 
The level of processed and unprocessed 
RNA in each fraction was determined by 
S1 mapping. 

Both templates yield the same result 
as wild-type SV40 (18): nuclear RNA 
protects both the 220 and 143-base frag- 
ments, while cytoplasmic RNA protects 
only the 143-base fragment (Fig. 2B). 
One obvious explanation of these data is 
that only those RNA's that have been 
cleaved enter the cytoplasm. An alterna- 
tive possibility (28), which we have not 
eliminated, is that all transcripts emerge 
into the cytoplasm but that unprocessed 
RNA's are rapidly degraded. 

Isolation of point mutations in 
AAUAAA. The highly conserved se- 
quence AAUAAA is contained within 
the 220-base-pair SV40 fragment present 
in pSVL- 141/+79. To isolate point mu- 
tations in the AAUAAA sequence, a 16- 
base-pair fragment of the SV40 late re- 
gion, containing AAUAAA, was cloned 
into the P-galactosidase gene of MI3 
mp8 (Fig. 3, top). In this clone, Eco RI 
and Hind I11 linkers flank the insert; 
they were introduced to simplify subse- 
quent manipulations. The translational 
reading frame of p-galactosidase is pre- 
served; ribosomes initiating translation 
at the AUG of the lac Z gene are still in 
frame after passing through the SV40 
insert. However, cells containing the 

Fig. 2. Polyadenylation and A pol,,de- 
transport. (A) Nonpolyadenyl- nylation 
ated (A-) and polyadenylated A- A+ 
(A+) RNA from oocytes in- - ? -- 
jected with pSVL- 1411+79 
was subjected to SI mapping Unpro- 
with the same method and cessed- .) 
probe described in Fig. I .  
RNA that had not been pro- 
cleaved (unprocessed) pro- cessed- m 
tects 220 bases of the probe 
(-141 to +79). (B) RNA was 
obtained from the nucleus (N) 
or cytoplasm (C) of oocytes 
injected with pSVL- 1411+79 
(oocytes 1 and 2) or pSVL 
-1411+802 (oocytes 3 and 4). 
SI mapping as in Fig. I but 
with a probe extending from 
-141 to only +79. 

Unpro- 
cessed- 
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Fig. 3. Isolation of 
point mutations in 
AAUAAA (40, 41). 
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phage produce no p-galactosidase be- 
cause the UAA termination codon which 
by chance is found in the AAUAAA 

tant insert was transferred to a plasmid, 
pSVL1. This plasmid contains the same 
region of SV40 as pSVL- 141/+ 103, but, 
in addition, includes single-copy Eco RI 
and Hind I11 linkers to either side of 
the AAUAAA sequence. The linkers lie 
at the same positions as in the M13 
clones. 

Point mutations in AAUAAA prevent 
cleavage. To determine the effect of 
AAUAAA point mutations on mRNA 
processing, oocytes were injected either 
with pSVLl or with a pSVLl deriva- 
tive containing AACAAA, AATTAA, 
AATACA, or AATGAA in place of 
AATAAA (designated, for example, 
pSVL1: AACAAA). RNA was prepared 
at various times after injection, ranging 
from 15 to 300 minutes. Processing effi- 
ciency was determined by S1 mapping 
(Fig. 4). Cleaved and polyadenylated 
RNA should protect a fragment of 159 
bases, while unprocessed RNA should 
protect 257 bases. As controls, RNA 
from oocytes injected with each DNA 
plus a-amanitin, or with buffer only, 
were analyzed in parallel. 

1) Wild-type template. RNA tran- 
scribed from the wild-type template was 
first detectable after 15 minutes. At that 
time, 70 percent of it was unprocessed. 
By 60 minutes, the level of unprocessed 
RNA increased by a factor of 5 and 
reached a plateau value that did not 

change over the next 4 hours. In con- 
trast, the level of processed RNA in- 
creased steadily over the entire incuba- 
tion period. As a result, the ratio of 
processed to unprocessed RNA gradual- 
ly increased during the incubation peri- 
od, from 0.5 at 15 minutes to 8 after 5 
hours. 

Two aspects of these data merit dis- 
cussion. First, whereas unprocessed 
RNA reaches a plateau after about 60 
minutes, processed RNA accumulates 
gradually from 45 minutes to 5 hours. We 
conclude that the unprocessed molecules 
detected by S1 mapping are cleaved to 
form processed RNA and are not inert 
with respect to processing. This interpre- 
tation is consistent with the observed 
nucleocytoplasmic partitioning of tran- 
scripts (Fig. 2). Second, the 10- to 15- 
minute delay between the accumulation 
of unprocessed and processed RNA's 
suggests that, on average, transcripts are 
cleaved after 10 minutes. 

In principle, the Eco RI and Hind I11 
linkers in pSVLl might have affected 
processing themselves, and so might 
have complicated analysis of mutants. 
However, in a group of control experi- 
ments we found that these foreign se- 
quences do not reduce the efficiency or 
accuracy of cleavage. The details of 
these control experiments are presented 
in Fig. 5. 

sequence is in frame with respect to 
translation from the lac AUG (G, gua- 
nine). As a result, plaques of this phage 
are clear on plates containing the indica- 
tor dye, BCIG (29). Point mutations that 
convert the UAA codon to a missense 
codon should permit ribosomes to read 
through the SV40 insert and synthesize 
functional p-galactosidase. Plaques of 
such AAUAAA mutants therefore 
should be blue on plates containing the 
indicator dye. 

Phage carrying the wild-type 
AATAAA sequence were mutagenized 
with ultraviolet light and plated onto an 
indicator strain on plates containing 
BCIG. Of roughly 50,000 plaques exam- 
ined, four were blue. The SV40 region in 
these four genomes was sequenced (30). 
Each phage contained a single base pair 
change in the TAA (T, thymine) trip- 
let, such that the AATAAA sequence 
was converted to AACAAA, AATACA, 
AATGAA, and AATTAA (Fig. 3, bot- 
tom). The AATGAA mutation produces 
blue plaques because the UGA termina- 
tion codon is suppressed by the endoge- 
nous UGA suppressor of wild-type bac- 
teria (31). 

To assay the effect of these point mu- 
tations on mRNA processing, each mu- 
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Fig. 4. Point mutations in AAUAAA affect cleavage. The time after injection (in minutes) at which the RNA was prepared is indicated above each 
lane of the autoradiogram. RNA was prepared from roughly ten oocytes per time point. Sl mapping was carried out as diagrammed in Fig. 6. The 
probe is homologous to pSVLl over the entire length of the SV40 insert (259 bases), then diverges in sequence for its last 225 bases (see diagram 
at bottom of Fig. 6). The first two lanes in each autoradiogram are controls: C lanes: control, uninjected oocytes; a a lanes: oocytes injected with 
a-amanitin (5 pglml) and DNA simultaneously. Lower panels: intensity of bands corresponding to processed and unprocessed RNA (quantitated 
by laser microdensitometry) versus time; 0, the 257-base band; 0, the 159-base band. The intensity scale is not the same from one template to the 
next since experiments were performed with probes of different specific activities. 
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2) Mutant templates. Each point mu- ratio of processed to unprocessed RNA pSVL1:AACAAA or pSVL1:AATGAA. 
tation in AAUAAA dramatically affects in oocytes injected with pSVL1:AA- The AATGAA transcripts yield a faint 
processing (Fig. 4). At time points when TAAA is 8, that ratio is only 0.13 for band of 140 + 5 nucleotides, which is 
most transcripts of the wild-type tem- oocytes injected with pSVLl:AATACA, artifactual (32). 
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barely detectable in the exposure shown 
in Fig. 4. However, the data in Fig. 6 
confirm that a low level of accurate 
cleavage does occur with these tem- 
plates. 

The absolute amounts of RNA in do- 
cytes injected with different templates 
cannot be determined from Fig. 4, since 
the hybridizations and S1 analyses were 
performed with different probes of differ- 
ent specific activities. However, from 
seven independent experiments (33) in 
which RNA's from all five templates 
wei-e analyzed in parallel, we know that 
tlie amount of SV40-specific RNA in 
oocytes injected with any one of the five 
templates is approximately equal. 

The 257-base fragment protected by 
mutant RNA preparations could, in prin- 
ciple, result from hybrids between the 
probe and either unprocessed RNA or 
the injected DNA template. Several ex- 
periments indicate that protection is due 
to RNA. Protection is abolished if the 
template DNA is mixed with a-amanitin 
(5 p,g/ml) before injection (lanes aa), or if 
the RNA preparation was treated with 
alkali or ribonuclease before the hybrid- 
ization (not shown). Furtherinore, addi- 
tion of 100 ng of template DNA (that is, 
roughly ten times the amount that was 
injected) to a single hybridization reac- 
tion before hybridization results in no 
protection of the probe. 

In principle, these mutations might 
exert their effect either by preventing the 
cleavage reaction or by causing mutant 
RNA's to be rapidly degraded. Rapid 
degradation of mutant RNA's could re- 
sult directly from the mutation; alterna- 
tively, the mutations could prevent poly- 
adenylation and thereby indirectly cause 
cleaved RNA's to be degraded. 

Three lines of evidence led us to the 
conclusion that the mutations affect the 
cleavage reaction, not polyadenylation 
or stability. (i) Whereas the level of 
unprocessed RNA plateaus after 60 min- 
utes in oocytes injected with the wild- 
type template, the level of unprocessed 
RNA in oocytes injected with the mutant 
templates continued to increase over the 
full incubation period. We infer that mu- 
tant unprocessed RNA's accumulate be- 
cause they are not cleaved. (ii) If mutant 
RNA's were rapidly degraded, then oo- 
cytes injected with mutant templates 
should accumulate less total RNA (pro- 
cessed plus unprocessed) than oocytes 
injected with the wild-type template. 
However, to the contrary, oocytes in- 
jected with either wild-type or mutant 
templates accumulate the same amount 
of RNA (33). (iii) The point mutants do 
not prevent polyadenylation, since the 
small amount of cleaved RNA found in 
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Fig. 6. Polyadenylation of mutant RNA's. SI 
nuclease analysis was performed as described 
at the bottom of the figure. The probe was a 
532-base single-stranded Bam HIISal I frag- 
ment of pMWIl5 (26) that had been 3' end- 
labeled at the Bam HI site. One oocytes' 
equivalent of nonpolyadenylated RNA and 
three oocytes' equivalent of polyadenylated 
RNA were analyzed. 

oocytes injected with pSVL1:AATACA 
or with pSVL1:AATTAA is polyadenyl- 
ated (see Fig. 6). 

As a test of whether the AAUAAA 
sequence is necessary for polyadenyla- 
tion, RNA from oocytes injected with 
either pSVLl (wild type), pSVL1: 
AATACA or pSVL1 :AATTAA were 
separated into polyadenylated (A+) and 
nonpolyadenylated (A-) fractions by 
chromatography on oligo(dT) cellulose 
(Fig. 6). These fractions were then as- 
sayed by S1 mapping to determine what 
proportion of the cleaved RNA had been 
polyadenylated. Three times as much 
polyadenylated RNA was analyzed as 
nonpolyadenylated RNA. With each 
template, more than 90 percent of the 
molecules that have been cleaved also 
have been polyadenylated. We conclude 
that the same two point mutations which 
reduce the efficiency of cleavage do not 
affect the efficiency of polyadenylation. 

Cleavage, polyadenylation, and trans- 
port encoded by a local region of the 
mRNA precursor. Transcripts contain- 
ing only 220 bases of SV40 sequence are 
cleaved, polyadenylated, and transport- 
ed, even though they lack more than 
3000 bases present in SV40 pre-mRNA's 
(Figs. 1 and 2). These three processing 
steps therefore are independent of initia- 
tion at the normal site, of splicing of the 
SV40 late mRNA introns, and of termi- 
nation at a specific sequence in the SV40 
3' flanking region. 

These data do not bear on whether 
capping is required for cleavage or poly- 
adenylation. Polymerase I1 synthesizes 
the pBR3221SV40 transcripts (Fig. 4), 
and capping may be coupled to initiation 
by this polymerase (34). 

Transport of RNA's that have been 
cleaved and polyadenylated, but not 
spliced, may indicate that, in the oocyte, 
transport requires only a mature 3' ter- 
minus. Intron removal appears not to be 
essential. This is consistent with previ- 
ous studies of injected transfer RNA 
genes (17) and intact SV40 DNA (18). 
Oocytes may possess only a part of the 
transport apparatus present in somatic 
cells. 

AA UAAA point mutants. AAUAAA 
point mutations reduce cleavage efficien- 
cy in oocytes (Fig. 4). The magnitude of 
the reduction, calculated by comparing 
the fraction of mutant RNA that is pro- 
cessed to the fraction of wild-type RNA 
that is processed, is by a factor of 8 for 
AAUACA, by a factor of 25 for 
AAUUAA, and by a factor of 50 or more 
for AACAAA and AAUGAA. 

Although cleavage of AAUUAA and 
AAUACA mRNA precursors is ineffi- 
cient, once they have been cleaved, they 
are polyadenylated as efficiently as with 
AAUAAA (Fig. 6). Similarly, a mutation 
converting AAUAAA to AAGAAA in 
the adenovirus E lA gene (14) or to 
AAUAAG in the human a-globulin gene 
(34a) prevents cleavage but not polyade- 
nylation. 

The inference that AAUAAA is not 
required for polyadenylation is subject to 
two limitations. First, it is possible that 
some mutant RNA's fail to be polyade- 
nylated but, as a result, are degraded so 
rapidly as to never be detected. Howev- 
er, nonpolyadenylated SV40 late mRNA 
precursors synthesized in vitro have a 
half-life of more than 10 hours after 
injection (not shown), as does deadenyl- 
ated globin mRNA (20 hours) (35). If 
mutant transcripts were comparably sta- 
ble, they would have been detected. The 
second limitation is that polyadenylation 
might require AAUAAA yet not be abol- 
ished by a single point mutation. Thus, 
strictly speaking, our results demon- 
strate that the requirement, if any, for 
AAUAAA in polyadenylation is less 
stringent than the requirement for 
AAUAAA in cleavage. 

If the AAUAAA sequence is not di- 
rectly involved in polyadenylation, then 
what does encode polyadenylation? Two 
possibilities exist. Another sequence, as 
yet unidentified, could be involved. 
Alternatively, as discussed below, poly- 
adenylation could require the interaction 
of the cleavage factor with AAUAAA. 
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For instance, the polyadenylation activi- 
ty might recognize the cleavage factor 
bound near an RNA 3' hydroxyl, or 
cleavage and polyadenylation activities 
might be physically associated. 

Neither our mutants nor the mutant of 
Monte11 et al. (14) cause inefficient po- 
lyadenylation of cleaved RNA's. Simi- 
larly, cleaved but nonpolyadenylated 
transcripts are not detectable in isolated 
nuclei (36). In general, it appears that 
any cleaved molecule is efficiently poly- 
adenylated. This suggests that polyade- 
nylation rapidly follows cleavage, and 
that, as Manley has proposed (4, 36), the 
two reactions may be coupled. Howev- 
er, since synthetic pre-mRNA's that are 
not cleaved but contain AAUAAA are 
efficiently polyadenylated in vitro (4), 
cleavage in itself must not be required 
for polyadenylation in vitro. 

Although the conservation of the 
AAUAAA sequence is dramatic, natural 
variants do occur. The two mutant se- 
quences that were found to produce de- 
tectable levels of cleaved RNA are also 
found in natural genes. From a comput- 
er-assisted comparison of the 3'  terminal 
sequences of 134 mRNA's from verte- 
brates (37), we derived the following 
consensus sequence: 

where the subscripts indicate the per- 
centage of mRNA's containing that base. 
(This consensus sequence excludes his- 
tone mRNA's.) The only variations of 
AAUAAA that were observed were 
AUUAAA (12 percent), AAUUAA (2 
percent), AAUACA (2 percent), 
AAUAAU (2 percent), AAUAAC (1 per- 
cent) and CAUAAA (1 percent). Thus 
AAUUAA and AAUACA, which direct 
cleavage in oocytes, albeit inefficiently, 
are found in natural mRNA precursors. 

Although the AAUAAA sequence is 
necessary for the cleavage of mRNA 
precursors, it clearly is not sufficient: 
AAUAAA is found in the protein coding 
region of mRNA's where it does not 
direct 3'  end formation (4, 10). Thus at 
least one other feature of the precursor 
mRNA must be necessary. This addi- 
tional element could be a simple linear 
sequence or a secondary structure. The 
latter possibility seems more likely, both 
because RNA processing enzymes gen- 
erally recognize the conformation of 
RNA precursors (38,39) and because no 
other sequence near the 3'  end of 
mRNA's is dramatically conserved. 

Whatever signals other than 
AAUAAA are involved in cleavage must 

reside in the -1411+79 domain of SV40 
late mRNA precursors. Studies anala- 
gous to those described should reveal 
those additional signals and establish 
whether the processing apparatus recog- 
nizes primary or  secondary structure. 
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