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ammonium chloride (2). Plateau poten- 
tials probably represent an endogenous 
property of the neurons since they could 
be evoked by depolarizing current pulses 
even in the presence of tetrodotoxin, 
which blocks action potentials and post- 
synaptic potentials (2). 

During the refractory period between 
successive plateau responses, another 
type of slow regenerative potential was 
at times apparent (Fig. 1, A and B). 
These potentials reached a maximum 
value of -30 mV and had a short dura- 
tion (0.2 to 4 seconds). They were 
blocked by agents that interfere with 
calcium channels (2). The application of 
tetraethylammonium chloride converted 
them to plateau potentials lasting more 
than 20 seconds, but no responses of 
intermediate duration were observed. In 
some cases, we could only record slow 
potentials lasting up to 4 seconds but no 
associated plateau potential. Whether 
they should be regarded as partially inac- 
tivated plateau responses or  as an inde- 
pendent form of response is not clear. 

After electrophysiological character- 
ization, a number of neurons were inject- 
ed with Lucifer yellow or  horseradish 
peroxidase, tracers that diffuse through- 
out the cells and permit their total visual- 
ization (6). The neurons varied in their 
morphology, ranging from small. bipolar 
forms (cell body diameter, 5 to 10 pm) to 
large multipolar elements. Of the latter. 
one type was easily distinguishable by its 
large, oval cell body (diameter, 15 to 25 
pm), two or three tapering dendritic-like 
processes, and long, thin untapering 
axon-like process which was occasional- 
ly branched and often showed dilatations 
(Fig. 2A). The neurons from which pla- 
teau potentials were recorded were in- 
variably of this type and had a striking 
resemblance to adult magnocellular cells 
in vivo revealed by immunocytochem- 
istry (7) or  by Golgi impregnation (8). In 
addition, cultures incubated for equiva- 
lent periods of time as those used for 
recording were found to contain many 
neurons that displayed ultrastructural 
features typical of neurosecretory cells 
(Fig. 2, D and E). We therefore stained 
our cultures immunocytochemically (9) 
using rabbit antisera to vasopressin and 
oxytocin. 

Positively immunoreactive cells were 
found in each of the cultures treated with 
serum against vasopressin (N = 20). No 
immunoreactive cells were found in cul- 
tures treated with serum against oxyto- 
cin (N = lo), or  in cultures treated with 
preimmune or adsorbed serum. All im- 
munoreactive cells had a similar form 
(Fig. 2, B and C) that closely corre- 
sponded to that of the large multipolar 

neurons rendered totally visible by dye- 
filling (Fig. 2A) and from which the pla- 
teau potentials were recorded (Fig. 1, A 
and B). Moreover, in three out of five 
cultures, the same neuron that displayed 
a plateau potential showed positive im- 
munoreactivity to antiserum to vaso- 
pressin (Fig. 2C). 

The long duration regenerative poten- 
tials observed in our cultured neurose- 
cretory cells may represent mechanisms 
underlying the phasic activity of magno- 
cellular neurons in vivo. The duration of 
the plateaus and their variability corre- 
spond roughly to the duration of the 
bursts offiring in vivo, and the refractory 

Fig. I. Penwriter record- 
ings of plateau potentials 
observed in dissociated 
hypothalamic neurons in 
culture for 6 weeks. (A) 
Spontaneous plateau po- 
tentials (V) that recurred A 
periodically. During these I - I 1 n A  
depolarizations, there is 
a dramatic drop in the 
input resistance (85 per- 
cent) which was visual- 

10 sec 

parent bdtween 'the two 
consecutive plateau po- 
tentials. (B) Plateau po- I 

B I l l l l l l l , l r l l l l l l l l L l l n A  

tentials (V) evoked peri- 
odically by repetitive de- 5 s s c  

polarizing pulses (I) (50 msec, 0.4 nA). After each plateau, there is a refractory period during 
which only slow potentials of short duration (arrows) could be ellicited. 

ized by passing hyperpo- 

Fig. 2. (A) Example of a dissociated hypothalamic neuron that displayed slow responses (Fig. 1) 
and was then injected with horseradish peroxidase (Sigma, type 6). Note that numerous spines 

larking pulses of current 
( I )  (50 msec, 0.3 nA). 
Slow potentials of shorter 

cover the cell body and dendritic processes but not the thinaxonal process that emergeshm 
one of the dendrites (arrow) (~200).  (B and C) Hypothalamic cultures treated with serum 
against vasopressin. The immunoprecipitate, made evident by peroxidase, was localized in cell 
bodies and axonal-like processes and their swellings. The darkly stained neuron in (C) (arrow) 
had displayed electrical responses similar to those described in Fig. 1. Cells of the basal layer 
and adjacent neurons showed no or very faint immunoreactivity ( ~ 2 5 0  and ~ 3 5 0 ,  respectively). 
(D and E) Electron micrographs of horizontal sections through 30-day old hypothalamic 
cultures. Fixation by 2.5 percent glutaraldehyde in O.1M sodium cacodylate buffer followed by 1 
percent osmium tetroxide and embedding in epon were done directly in culture dishes. In (D), 
dense-cored secretory vesicles (120 to 180 nm) (sv), lysosomes (L) ,  and well-developed Golgi 
complexes (G) identify the cell body as neurosecretory. In (E), a large dilatation is filled with 
lysosomes and secretory vesicles (sv), shown at higher magnification in the inset. Such 
dilatations, similar to Hening bodies in the adult neurohypophysis, presumably correspond to 
the axonal swellings in (B). Scale bar, Ipn. 
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period following the plateaus corre- 
sponds to the silent periods separating 
the bursts (1). The frequency of recur- 
rence of the plateaus and of the bursts 
also shows parallel behavior. It  is thus 
tempting to speculate that the phasic 
pattern of firing recorded extracellularly 
from vasopressin-secreting cells in vivo 
may be triggered by endogenous plateau 
potentials. Indeed, such potentials are of 
appropriate form and magnitude to serve 
as driver potentials supplying depolariz- 
ing current to an axonal impulse-initiat- 
ing zone (10). Nevertheless, in contrast 
to in vivo experiments where action po- 
tentials are recorded from the somata in 
vitro, we observed no action potentials 
superimposed on the plateau depolariza- 
tions. This is not surprising since action 
potential generation would be inactivat- 
ed by a depolarization and fall in the 
input resistance of the magnitude record- 
ed in our cells. If plateau potentials do 
exist in vivo, they must be of smaller 
magnitude to  permit somatic impulse 
generation. The magnitude of the depo- 
larizations recorded in our cultured neu- 
rons may be due to the in vitro condi- 
tions in which the cells are raised, to  
their stage of maturation, or to both. 
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Differential Effects of Classical and Atypical 
Antipsychotic Drugs on A9 and A10 Dopamine Neurons 

Abstract. Prolonged treatment with classical antipsychotic drugs decreased the 
number of spontaneously active dopanzine neurons in both the substantia nigra (A9) 
and the ventral tegmental area (AlO) of the rat brain. In contrast, treatment with 
atypical antipsychotic drugs selectively decreased the number of A10 dopamine 
neurons. Related drugs lacking antipsychotic eflcacy failed to decrease dopamine 
activity. These j~zdings suggest that the inability of atypical antipsychotic drugs to 
decrease A9 dopamine neuronal activity may be related to their lower potential for 
causing tardive dyskinesia and that the inactivation of A10 neurons may be involved 
in the delayed onset of therapeutic effects during treatment. 

The dopamine (DA) hypothesis of 
schizophrenia postulates hyperactive 
DA neurotransmission as  an etiological 
factor in schizophrenic symptomatology 
(1). Despite continued efforts to provide 
direct support for DA overactivity in 
unmedicated schizophrenics, the avail- 
able evidence remains largely uncom- 
pelling (2). Therefore, the DA hypothesis 
continues to rest primarily on a pharma- 
cological foundation, which has as  its 
cornerstone the evidence that effective 
antipsychotic drugs (APD's) dampen DA 
activity by blocking brain DA receptors 
(3). However, this cornerstone is struc- 
turally flawed because DA receptor an- 
tagonism is an almost immediate conse- 
quence of APD administration whereas 
antipsychotic efficacy becomes manifest 
only during prolonged treatment with 
APD's (4). Although this flaw could lead 
to the eventual collapse of the DA hy- 
pothesis, the foundation might be rein- 
forced by demonstrating effects of 
APD's that develop only as a secondary 
effect of long-term DA receptor blockade 
and, therefore, may be causally related 
to  the delayed onset of therapeutic effi- 
cacy. However, most reports have sug- 
gested that the efficacy of DA receptor 
antagonism diminishes during treatment 
with APD's (9, a finding that seems 
incompatible with the slowly developing 
onset of therapeutic efficacy. 

Recently, we confirmed (6) the previ- 
ous finding (7) that prolonged haloper- 
idol (HAL) treatment decreases the 
number of spontaneously active DA- 
containing neurons in the rat substantia 

nigra zona compacta (A9) and extended 
this finding to DA-containing neurons in 
the ventral tegmental area (A10) (6). The 
nigrostriatal A9 DA system is thought to 
be involved in APD-induced extrapy- 
ramidal side effects such as tardive dys- 
kinesia (TD) (8), whereas the mesolimbic 
and mesocortical A10 DA systems have 
been implicated in the therapeutic ac- 
tions of APD's (I). Our experiments 
demonstrated that the decline of sponta- 
neously active DA neurons during H A L  
treatment is a slowly developing process 
that occurs earlier and to a greater extent 
in A10 than in A9. Since the time courses 
for the decline of A10 and A9 DA activi- 
ty correspond to the fact that the thera- 
peutic effects of APD treatment precede 
the onset of TD, we proposed that the 
inactivation of A10 and A9 DA neurons 
may be related to the delayed onset of 
pharmacotherapy and TD, respectively. 
If this is the case, then it would be 
expected that "atypical" APD's, which 
possess a low potential for causing extra- 
pyramidal side effects and TD, would 
preferentially inactivate A10 DA neu- 
rons. This hypothesis was tested in the 
present experiments by comparing the 
effects of prolonged treatment with vari- 
ous classical and atypical APD's on the 
number of spontaneously active A9 and 
A10 DA neurons as determined using 
extracellular single-unit recording tech- 
niques. We report that atypical APD's 
differ from classical APD's in that they 
selectively inactivate A10 DA neurons 
(9). 

In these experiments we investigated 

SCIENCE, VOL. 221 




