
ing urea, Triton X-100, and acetate 
(13)-was assayed by fluorography (14). 
Figure 2A shows a fluorogram compar- 
ing globins synthesized in yolk-sac ery- 
throid cells with those synthesized in 
erythroid cells of the spleen 1 day after 
birth. In accordance with the terminolo- 
gy established for mice (1, 15), we identi- 
fy the embryonic a-like globin as band x 
and the two embryonic P-like globins as 
bands y and z (16). The same pattern of 
synthesis was obtained from liver ery- 
throid cells 1 day after birth. N o  embry- 
onic chain synthesis was detected in 
peripheral blood cells from any neonatal 
sampling. Five days after birth, synthe- 
sis of two embryonic globins (x and z) 
was barely detectable in spleen erythroid 
cells only. 

Further confirmation of the synthesis 
of embryonic globin chains in neonatal 
erythroid cells was provided by coelec- 
trophoresis. Tritiated hemoglobin from 
erythroid cells of the spleen 1 day after 
birth was mixed with unlabeled hemoglo- 
bin solution from yolk-sac erythroid 
cells. Bands 5 and 7 (Fig. 1B) were 
isolated and their globins were separated 
by electrophoresis in polyacrylamide gel 
(Fig. 2B). Each band resolved only into 
the two globin chains characteristic of 
that embryonic hemoglobin (Fig. 2B), 
and fluorography demonstrated syn- 
thesis of each of the three globins (Fig. 
2C). 

There are similarities between these 
findings for hamsters and observations in 
humans. Human adult-type P-globin 
chains first appear at a time in gestation 
(6 weeks) when yolk-sac erythropoiesis 
is being replaced by hepatic erythropoie- 
sis, but the earliest site of synthesis has 
not been defined. Trace amounts of a 
hemoglobin whose a-like globin is em- 
bryonic have been detected in cord 
erythrocytes from human neonates (1 7). 
Our findings demonstrate conclusively 
the coexistence of embryonic and adult 
globin gene expression over a range of 
developmental stages from prehepatic to 
early postnatal (18). The currently ac- 
cepted time span for the normal se- 
quence of globin gene expression during 
mammalian ontogeny may be too nar- 
row. 
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Mammalian Muscle Acetylcholine Receptor: 
A Supramolecular Structure Formed by Four Related Proteins 

Abstract. The nicotinic acetylcholine receptor has been pur$ed from fetal calf 
muscle. Amino terminal amino acid sequence data indicate that the mammalian 
receptor is formed from closely related but distinct subunits. A cytoskeletal compo- 
nent, actin, may be associated with the receptor. 

A human paralytic syndrome, myas- 
thenia gravis (MG), is due to an autoim- 
mune reaction against the nicotinic ace- 
tylcholine receptor (AcChR) (I).  Eluci- 
dation of its structure is therefore cru- 
cial. So far, AcChR's from the electric 
organs of fish (Torpedo, Narcine, and 
Electrophorus) have been well charac- 
terized (2). Studies of mammalian 
AcChR have been less sophisticated; its 
subunit complement has been widely de- 
bated; subunit patterns containing from 
one to six polypeptides have been re- 
ported (2). 

There are indications that mammalian 
muscle and piscine AcChR's are similar. 
Experimental autoimmune myasthenia 
gravis (EAMG) can be induced in mam- 
mals with the use of AcChR purified 
from electric fish (3), and polyclonal and 
monoclonal antibodies to Torpedo 
AcChR may precipitate mammalian 
muscle AcChR (4, 5). 

We now report evidence that the mam- 

malian AcChR is a complex of four ho- 
mologous peptides, and that a fifth pep- 
tide that copurifies with the receptor is 
actin. 

The AcChR was purified from fetal 
calf muscle (6) and upon sodium dodecyl 
sulfate (SDS) gel electrophoresis re- 
solved into five polypeptides having mo- 
lecular weights (M,) of 42, 44, 49 ,55 ,  and 
58 K (6) (Fig. 1A, lane 3). A sixth poly- 
peptide of M, 53 K was present in some 
preparations (6). The polypeptides were 
characterized by different methods: the 
presence of carbohydrate was assessed 
by binding of 125~-labeled conconavalin 
A (Con A) ( 7 )  which consistently labeled 
the peptides of M, 42, 49, and 55 K .  
When the polypeptide of M, 53 K was 
present it was consistently labeled while 
those of M, 58 K and 44 K were consist- 
ently unlabeled. The amino acid compo- 
sition of the latter is similar to that of 
actin (6), including the presence of 3- 
methylhistidine (8). We confirmed that 

/right % 1982 AAAS 1227 



gous sequences (Fig. 2). The polypeptide 
of 53 K yielded a sequence that was 

Fig. 1 .  (A) SDS gel electrophoresis of fetal 
calf AcChR (lane 3) and Torpedo AcChR (lane 
4) stained with Coomassie blue. Fluorogram 
of the SDS gel of fetal calf AcChR labeled 
with [3H]bromoacetylcholine (11) (lane 2). 
Lane I shows a control in which the fetal calf 
AcChR was first incubated with a 50-fold 
molar excess of Nuja naja siamensis a-toxin 
prior to labeling with [3H]bromoacetylcho- 
line. The arrow indicates that the 42 K sub- 
unit was labeled (lane 2). (B) Coomassie 
blue staining of fetal calf (lane 2') and Torpedo 
AcChR (lane 3') after separation by SDS gel 
electrophoresis. The 42 K component of fetal 
calf AcChR [see lane 3 in (A)] was partially 
degraded to give a doublet. Lane I '  shows 
that antibody to actin binds to fetal calf 
AcChR polypeptides; the 44 K component 
and its degradation products of lower molecu- 
lar weight were labeled by the antibody. 

this peptide was actin by the binding of 
antibodies to actin (9) (Fig. IB). The 
peptide of M, 42 K was labeled by the 
cholinergic ligand [3~]bromoacetylcho- 
line (BrAcCh) (10) (Fig. IA), which sug- 
gests that it corresponds to the lightest 
component ("a", M, = 40 K) of electric 
organ AcChR (2). 

Each polypeptide of fetal calf AcChR 
was subjected to amino terminal se- 
quence analysis (11). The subunits of 42 
and 49 K yielded distinct but homolo- 

homologous with those for the 42 and 
49 K subunits, that is, ? E H E N K L Q 
A H L F D D Y A S H / K K / P F P ? E / R  
(12). The polypeptide with the M, of 
44 K did not yield any sequence, an 
indication of the presence of a blocked 
amino terminus, in agreement with its 
identification as actin (13). Because of 
the lack of identifiable sequences associ- 
ated with the 55 and 58 K polypeptides 
(most likely due to blockage of their 
amino terminals during isolation) we 
used a different approach. As demon- 
strated for Torpedo (14) and Electropho- 
rus (15) AcChR, it is possible to deter- 
mine all four polypeptide subunit se- 
quences simultaneously to obtain exact 
subunit stoichiometry. Sequence analy- 
sis of whole calf AcChR preparations 
yield four homologous sequences (16). 
Three were identical with those indepen- 
dently determined for the 42, 49, and 
53 K polypeptides. The fourth sequence 
was deduced by difference, with the 
fourth amino acid being identified at 
each step. 

These four sequences of calf AcChR 
are distinct but structurally related. At 
five positions out of the first 23 residues 
all four subunits contain the same amino 
acid residue (positions 4. 7. 12, 15, and 
21). In several other positions two or 
three of the four amino acid residues are 
identical, and conservative substitutions 
(dotted circles in Fig. 2A) are frequent. 
Alignment of the subunits requires a 
single insertion of two amino acid resi- 
dues in one of the subunits of higher M, 
to bring all four sequences into register. 
The data strongly suggest that the four 
polypeptides are derived from a common 
ancestral gene. A comparison was made 
between the amino terminal sequences 

6 O O O Q  

EEL 

Fig. 2. (A) Amino terminal amino acid sequences in purified fetal calf AcChR. (B) Comparison 
between the a (molecular weight - 40 K) and P (- 50 K) subunits of AcChR from fetal calf 
muscle and the electric organs of Torpedo culiforniccr and Elecfropl~orirs e1ec1ric~rr.v (eel). 

Table I. Stoichiometry of fetal calf muscle 
AcChR subunits (Val. valine: Leu, leucine; 
Gln, glutamine; Ile, isoleucine). 

Subunit Residue 
(cycle 8) Ratio 

a Val 2.16 
P Leu .95 
x Gln .92 
v Ile .98 

of the two lighter subunits of AcChR 
from fetal calf muscle, a cartilaginous 
fish (Torpedo californica) and a teleost 
fish (Electrophorrds electricrrs), two high- 
ly diverged species (Fig. 2B). Among the 
lowest M, subunits ("a"), 51 percent of 
the residues were identical, and in an 
additional 36 percent of the positions two 
of the three polypeptides had the same 
residue. In the case of subunits of M,, 
approximately 50 K ("P"), 38 percent of 
the residues were identical. A compari- 
son of all six polypeptide sequences 
showed that 23 percent of all positions 
were identical for the first 26 residues 
and an additional 19 percent identity was 
observed in five out of the six polypep- 
tides at other positions. All the subunits 
forming the AcChR from these evolu- 
tionarily distant animal species must be 
derived from the same ancestral gene, 
probably by way of gene duplications 
occurring very early in animal evolution: 
this is likely since the degree of sequence 
identity is greater between subunits of 
similar molecular weight from different 
species than between the four subunits 
from a single species (14, IS). 

The stoichiometry of the subunits in 
the fetal calf AcChR molecule was ob- 
tained by simultaneous quantitative de- 
termination of the amino acid sequences 
present in intact preparations (16). A 
stoichiometry of 2: 1 : 1 : 1 was found (Ta- 
ble I), which demonstrates that mamma- 
lian muscle nicotinic receptor is a penta- 
meric complex composed of two equiva- 
lent and three pseudoequivalent subunits 
(17). 

From the stoichiometry and apparent 
molecular weight of fetal calf AcChR 
subunits, an M, of 241,000 to 246,000 can 
be calculated, which is compatible with 
its observed size (18) and sedimentation 
behavior (2). 

Actin consistently copurifies with the 
calf AcChR, suggesting a direct or indi- 
rect association of these two molecules 
in the intact cell. The known immobility 
of the AcChR in the postsynaptic mem- 
brane (2) could be due to AcChR-AcChR 
interactions or to interactions with cyto- 
skeletal components such as actin (or 
both). 
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The structure of the mammalian 
AcChR has ramifications with regard to 
human pathology. In myasthenia gravis 
the neuromuscular AcChR is destroyed 
mainly by specific autoantibodies, which 
accelerate the catabolisn~ of AcChR 
molecules as a result of cross-linking 
(I). Since mammalian AcChR is formed 
by similar subunits, one of which is 
present in two copies, repetitive homolo- 
gous antigenic determinants should be 
present on its surface. Antibodies direct- 
ed against such determinants would be 
inefficient in accelerating the degrada- 
tion of the AcChR because, instead of 
cross-linking adjacent AcChR mole- 
cules, they should preferentially bind to 
two homologous determinants within the 
same AcChR molecule (19). In addition, 
both in myasthenia gravis (20) and in 
EAMG, its experimental model (5 ) ,  a 
significant fraction of the antibodies 
present in the serum are directed against 
antigenic determinants on the "a" sub- 
units. Such considerations would explain 
the existing lack of correlation between 
titers of antibodv to AcChR and the 
severity of symptoms both in myasthenia 
gravis and in EAMG (21, 22), because 
only particular antibody subpopulations 
(that is, those directed against nonrepeti- 
tive antigenic determinants) should be 
able to induce acceleration of AcChR 
catabolism. 

The highly conserved pentameric sub- 
unit structure of the AcChR complex 
strongly suggests that each of the sub- 
units evolved to perform discrete, cru- 
cial functions in the physiological actions 
of the AcChR. In this respect, one could 
speculate about the existence of multiple 
binding sites for cholinergic ligands on 
the homologous domains of the AcChR 
molecules, whose binding could trigger 
different functions, such as activation, 
inactivation, or desensitization. The ex- 
istence of an ancestral gene for this ace- 
tylcholine-binding protein raises the pos- 
sibility of a shared ancestry with other 
acetylcholine-binding proteins, such as 
the muscarinic AcChR and cholinester- 
ases, at least regarding the recognition 
domains of these molecules. 
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DNA Sequence of the Gene Encoding the E, 
Ia Polypeptide of the BALBIc Mouse 

Abstract. A 3.4-kilobase D N A  jiagment containing the gene coding for the E, 
ch~iin of'  an Ia (I region-associated) ~intigen from the BALBic mouse h ~ i s  been 
sequenced. It contains at least three exotzs, which correl~te lrtith the mujor structurc~l 
domains of the E, chain-the two external domains a 1  und a2 ,  ~ i n d  the transmem- 
brane-cytoplasmic domain. The coding seqirence of the moirse Em gene shows 
striking homology to its human counterpart at the D N A  crnd protein levels. The 
translated a 2  exon demonstrates sign8cant similarity to  Pz-microglobulin, to 
immunoglobulin constant region domains, and to certain domains of transplantation 
antigens. These observcitions and those of others suggest that the Ia antigen, trans- 
plantation antigen, and immunoglobulin gene fcrmilies share a common ancestor. 

The major histocompatibility complex 
(MHC) of the mouse encodes several 
families of cell-surface glycoproteins 
which regulate various aspects of im- 
mune responsiveness (1, 2). Certain 
products of the class I genes, the trans- 
plantation antigens. serve as restricting 
elements in T cell immunosurveillance. 
The products of the class I1 genes, the I 
region-associated (Ia) antigens, play a 
fundamental role in determining the ef- 

fectiveness of cell-cell interactions be- 
tween regulatory T cells, B cells, and 
macrophages. A variety of recent data 
from genetic, functional, and biochemi- 
cal studies suggest that the Ia antigens 
are the products of the Ir (immune re- 
sponse) genes, which control the ability 
of an animal to respond to synthetic and 
naturally occurring antigenic determi- 
nants (3-7). 

Two Ia antigens, I-A and I-E, have 
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