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Impulse Conduction in the Mammalian Brain: Physiological 
Properties of Individual Axons Monitored for Several Months 

Abstract. Microelectrode recordings were used in conjlrtzctiotz n,ith antidromic 
activation to tnonitor iinpulse conduction along individlial tncitntnalirrtz cerebi.al 
axons for periods of up to 165 days. Approximately ha l fo f the  (rsons st~rdied .sho~r:ed 
a stable conduction velocity and stable afterefects oj'i~nplil,re ~rctil,ity. The rernriin- 
itzg axons showed slow andprogressive increases or decreases in condlrc,tiotz velocity 
overlime. In these latter axons, clzatzges in the tnagtzitlrde of tlze ~rftei.efects of 
impulse conduction were far less pronounced than were changes in (ixoncil conduc- 
tion b'elocity. 

Little is known about the long-term 
stability of axonal conduction properties 
in the central nervous system. It is not 
known, for example, whether the veloci- 
ty of impulse conduction and the after- 
effects of impulse activity in individual 
axons of adult mammals remain stable 
for long periods of time. The paucity of 
such information is primarily attributable 
to the lack of a method with which to 
study individual axons for more than a 
few hours. Such information is important 
for the understanding of progressive 
pathological influences on impulse con- 
duction. In the study reported here, 
extracellular microelectrode recording 
methods were combined with antidromic 
activation of axons at  one or  several 
sites. These methods enabled the contin- 
uous study of conduction properties of 
individual axons in the mammalian brain 
for several months. 

Recordings were obtained from the 
cell bodies of visual callosal axons in 
adult Dutch Belted rabbits. This axonal 
system consists of both nonmyelinated 
and small myelinated axons (1) which 
conduct impulses relatively slowly ( 2 4 ) .  
The aftereffects of impulse conduction in 
this system have been documented (2, 4, 

5).  Microelectrodes were permanently 
implanted near the border of visual areas 
I and I1 (Fig. 1) (6). Stimulating elec- 
trodes activated the callosal axon near 
the midline (7) and in some cases near 
the terminals in the contralateral hemi- 
sphere. Recording sessions began ap- 
proximately 1 week after surgery (8) .  
Antidromic activation was differentiated 
from synaptic activation by means of 
collision tests and other criteria (9). 
Brain temperature was monitored (10) to 

P 
Stimulate 

Corpus 
callosum 

Fig. 1 .  Schematic illustration of the experi- 
mental setup. Microelectrodes were implant- 
ed into superficial cortical layers near the 
border of visual areas I and 11. Banks of 
stimulating electrodes were implanted in the 
splenium of the corpus callosum (Y)  and, in 
some cases, in the contralateral hemisphere 
(Z). 

ensure that the observed variations in 
conduction properties were not tempera- 
ture-dependent (11). At the end of the 
experiments the animals were killed and 
the tissue was prepared for histological 
analysis (12). 

The present results are for 23 neurons 
studied for 20 to 165 days (mean, 48 
days). An additional 40 neurons were 
studied for 5 to  19 days and provide 
confirmatory data. This report focuses 
on conduction velocity, supernormal 
conduction velocity, and the minimum 
interspike interval, since these three 
conduction properties were either very 
stable over time or  showed progressive, 
systematic changes. Other measures 
studied were less stable over time (13). 

Figure 2 shows oscilloscope tracings 
illustrating these measures. The records 
were obtained on the 60th day of record- 
ing from a cell that was studied for 165 
days. Antidromic latency (25.3 msec) to  
a single antidromic test stimulus is 
shown in Fig. 2A. In Fig. 2B the super- 
normal conduction velocity that follows 
a single prior impulse is shown. The 
increase in conduction velocity is mani- 
fested as a decrease in antidromic laten- 
cy to a test stimulus that follows a spon- 
taneous spike or an electrically elicited 
spike at appropriate intervals (14). The 
minimum interspike interval (2.15 rnsec), 
shown in Fig. 2C, is the minimum inter- 
val between two conducted action poten- 
tials elicited by two stimuli presented at  
an interval near the absolute refractory 
period of the axon (1.3 msec). 

Eleven of the 23 axons studied at 
length demonstrated a stable antidromic 
latency, with a variation of < 5 percent 
from the first to  the last day of recording. 
In four of the remaining neurons, cumu- 
lative decreases in antidromic latency 
(increases in conduction velocity) of 8 to 
14 percent occurred at  a mean rate of 0.2 
percent per day, while in eight neurons 
cumulative increases in antidromic laten- 
cy (decreases in conduction velocity) of 
6 to  8 1 percent occurred at  a mean rate of 
0.5 percent per day (15). Figure 3A 
shows data for three neurons studied for 
78 days, 101 days, and 165 days. They 
demonstrated stable, decreasing, and in- 
creasing antidromic latencies, respec- 
tively. 

The minimum interspike interval re- 
flects the recovery processes of the en- 
tire axon between stimulating electrode 
and soma and is the recivrocal of the 
maximum firing frequency that may oc- 
cur along this length of axon. Although 
the value of this measure varied signifi- 
cantly between cells (1.55 to 3.25 msec 
for the 23 cells studied at length), little 
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Fig. 2. Oscilloscope tracings showing three of the measures studied. Each trace consists of two 
superimposed traces of a digital oscilloscope (temporal resolution. 0.05 msec). These records 
were obtained after 60 days of recording from a cell (cell 3) that was studied for 165 days. Filled 
circles identify antidromic spikes. (A) Antidromic latency (25.3 msec) to a single antidromic test 
stimulus (arrowhead). (B) Supernormal antidromic latency. Here the antidromic test stimulus 
(second arrowhead from left) is preceded at an interval of 10 msec by an antidromic 
conditioning stimulus (first arrowhead), which also results in a spike. and the response to the 
test stimulus is now reduced to 23.5 msec (15).  (C) Minimum interspike interval (2.15 msec) 
elicited by two stimuli presented at an interval very near the absolute refractory period of the 
axon (1.3 msec) (arrowheads). The right portion of the figure shows expanded sweeps of the 
records on the left. Calibration: 20 msec on the left and 5 msec on the right. Brain temperature: 
39.2"C. 

Cel l  1 

variation was seen within cells from day 
to day. Of the cells showing either stable 
or progressively decreasing antidromic 
latencies, the total range of fluctuations 
in a given cell never exceeded 13 percent 
(range, 4.5 to 12.7 percent; mean, 8 
percent) of the mean value of this mea- 
sure for the cell. However, cells that 
showed progressive increases in anti- 
dromic latency also showed progressive 
increases in the minimum interspike in- 
terval (range, 2.5 to 21.5 percent; mean, 
13.4 percent). These increases, however, 
were not as  great as  those seen in laten- 
cy. Figure 3B shows this measure for the 
three cells represented in Fig. 3A. Note 
the lack of overlap in this measure de- 
spite the progressive increase seen in cell 
3 (which also showed a progressive in- 
crease in antidromic latency). Of all 
the cells with decreasing or  stable anti- 
dromic latencies, cell 1 showed the wid- 
est fluctuations in the minimum inter- 
spike interval (12.7 percent). 

Also showing remarkable stability 
over time was the supernormal conduc- 

Cel l  3 

Cel l  2 

D a y s  D a y s  

Fig. 3. Records for three axons studied for 78 days 
(cell I), 101 days (cell 2), and 165 days (cell 3). 

D a y s  
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tion that follows the relative refractory 
period of a single impulse. While signifi- 
cant differences in the magnitude of this 
variable were seen between cells, differ- 
ences within cells were slight over time. 
Thus, for the 23 cells the maximal de- 
crease in antidromic latency varied from 
3 to 15 percent of the control antidromic 
latency, but the total range of variations 
over time within single cells rarely ex- 
ceeded 2 percent of the control anti- 
dromic latency. However, three of the 
eight cells that showed progressive in- 
creases in antidromic latency also 
showed a progressive increase in the 
magnitude of supernormal conduction. 
Figure 3C shows this measure over days 
for the three cells represented in Fig. 3, 
A and B. Note the stability of this mea- 
sure in cells l and 2 and the progressive 
increase of this measure in cell 3, which 
also showed a progressive increase in 
antidromic latency and minimum inter- 
spike interval. 

These experiments leave questions re- 
garding the underlying mechanism of the 
slow and progressive increases and de- 
creases in conduction velocity and other 
conduction properties observed in some 
axons. Changes in conduction velocity 
could result from a number offactors (for 
example, changes in axonal diameter o r  
ion channel density). Such changes may 
occur naturally, or they may result from 
subtle pathological changes elicited by 
the recording (12) or stimulating elec- 
trode. It seems unlikely, however, that 
increases in conduction velocity would 
result from pathological conditions. 

I have shown that the physiological 
properties of individual cerebral axons 
may be monitored over a period of sever- 
al months. Three measures of impulse 
conduction properties (conduction ve- 
locity, supernormal conduction velocity, 
and the minimum interspike interval) 
were found to be very stable over time or  
to vary in a progressive and systematic 
fashion. Systematic changes generally 
occurred at  a rate of less than 1 percent 
per day and were often not detectable for 
several days or  even weeks. Thus, these 
three measures provide an unequivocal 
signature with which to identify a neuron 
if recordings are obtained at relatively 
short intervals (2 to 3 days). The stability 
of the above conduction properties and 
the slow, systematic nature of the 
changes that do occur suggest the feasi- 
bility of studying the long-term effects of 
pharmacological, toxicological, o r  other 
variables on the conduction properties of 
individual cerebral axons. 

HARVEY A. SWADLOW 
Department of Psychology, 
University of Connecticut, Storrs 06268 
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Rapid and Precise Down Regulation of Fast Axonal 

Transport of Transmitter in an Identified Neuron 

Abstract. Within 1 day after the removal of one branch of the bifurcated axon of an 
identijed neuron in Aplysia, the cell body reduced its output of transmitter storage 
vesicles to adjust precisely for the decreased need. This adjustment terminated the 
initial consequence of the removal, the transport of an inappropriately large number 
of vesicles to the remaining synapses. The most likely cause of the reduction of 
transport of transmitter is the loss of information normally provided by the dis- 
connected axon or synapses. 

The axon and synapses of a neuron, 
which lack ribosomes and most nucleic 
acids, depend on fast axonal transport 
for the delivery of newly synthesized 
organelles from the cell body (I). To  
fully understand expressions of plasticity 
in axons and synapses, such as those 
occurring during development and re- 
generation, it will be important to deter- 
mine how the cell body is guided to 
adjust its output of rapidly transported 
material to meet changing demands from 
its periphery. We are interested in under- 
standing how the neuron regulates the 
transport of material destined for use 
at functioning synapses. Is the normal 

amount transported in a mature neuron 
influenced by informational feedback 
from the neuronal periphery? To  address 
this question we studied the changes in 
the amount transported when a neuron 
suddenly had fewer synapses to supply. 

For  this study we used an identified 
serotonergic neuron, the giant cerebral 
neuron (GCN) in the central nervous 
system of the sea hare Aplysia calfor- 
nica. The axon of this monopolar neuron 
bifurcates within the neuropil of the gan- 
glion, close to the cell body, into 
branches of similar diameter which 
course essentially unbranched in sepa- 
rate nerves to innervate separate post- 
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