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Photoreceptor Membrane Shedding and Assembly 

est during the morning (6). However, in 
some arthropods, assembly of new mi- 
crovillar PRM is restricted to a few hours 
just after dusk and, like shedding, ap- 
pears to be controlled both endogenous- 
ly and by a change in the ambient lighting 
(2, 5, 7). 

Attempts to localize the control mech- 
anisms of PRM turnover have shown 
that in various animals both shedding 
and assembly are controlled separately 
in each eye. Shedding in the frog Rana is 
prevented in one eye if that eye is 
masked at dawn, while shedding in the 
unmasked eye is not affected (8). When 
one eye of a crab is masked in the 
afternoon, new PRM is soon assembled 
in that eye but not in the other (7). 
Initiation of shedding, as well as syn- 
chronization of its circadian timing by 
the central nervous system, occurs uni- 
laterally in rat eyes (9). Similarly, Limu- 
lus lateral eyes are affected independent- 
ly by efferent input that is necessary for 
normal turnover (4). Isolation of single 
eyes in vitro does not prevent light- 
stimulated shedding of PRM in Xenopus 
eyes (lo), or assembly of PRM in a locust 
(11) or crab eyes (12). 

Can Be Initiated Locally Within an Insect Retina In the present experiments, I have 
attempted to localize the control of PRM 

Abstract. Photoreceptors of locust compound eyes add new receptor membrane at shedding and assembly to within discrete 
dusk and shed membrane at dawn. When part of an eye is masked before dusk, regions of single compound eyes of a 
premature assembly of new membrane is initiated in the masked ommatidia but not locust. Whereas all the photoreceptors 
in the adjacent unmasked ommatidia. Similarly, masking some ommatidia just of a vertebrate eye share one lens sys- 
before dawn prevents normal shedding only in the masked ommatidia. Therefore, the tem, the compound eyes of insects such 
shedding and assembly phases of photoreceptor membrane turnover can be initiated as locusts are composed of many optical- 
by a change in the state of illumination of individual ommatidia. ly isolated units known as ommatidia. I 

have taken advantage of this arrange- 
The photoreceptor membrane (PRM) and the rhabdomeres in arthropods nor- ment by using simple masking experi- 

in vertebrates (I) and arthropods (2) mally reaches a peak after dawn, under ments to ascertain if shedding or assem- 
turns over according to a daily cycle. the influence of the onset of light and of bly can be initiated locally in the retina 
During turnover, the amount of shedding endogenous factors (1-5). Assembly of without affecting adjacent regions. 
of the rod outer segments in vertebrates new rod outer segment disk is also great- Each locust ommatidium has eight re- 

ceptor cells that contribute to a rhabdom 
of photoreceptive microvilli and share 

". T*, '%-k' 2&+@,9!iy . , -. '. .rr. m e %  the same visual field (13). As in many 
I S .  3. . t . . h, - -  . h' " 
c - -. '-5 3 - --. :$R , .  arthropods, locust rhabdoms vary in size ., a : ,'* .? . . .,. A;:<". - w .  ' r:; t .  . . . c +".. . as a result of daily turnover (5, 14). 

a-.;,. . -- .% . , P' . .. " 1 . ,  - . . .,. . . -. * A.' -,-* . - Shedding by pinocytosis from the bases 
of the microvilli reduces their cross-sec- 
tional area four- to fivefold at dawn, 

k < . . . 2 , s . m I  .. while at dusk, assembly of newly synthe- 
. ? .  .". ' 

* %  . . .. . . sized PRM increases it by a correspond- 
* s > ',,: 

b.. $, a:: 

, S  - - *  
1 . . 3 : ing amount (5); the night rhabdom is 

w*& . -..-. , .  - larger than the day rhabdom mainly be- - , 
% * ? '  

a cause its microvilli are twice as long (5, 

Fig. I. Electron micrograph of a transverse section of ommatidia across the boundary between 14). A change in rhabdom cross-section- 

masked (right) and unmasked (left) parts of an eye. The ventral half of the eye was masked with al area is therefore a convenient and 
tape 5 hours before dusk, and the eye was fixed 4 hours later. Over the central region of a locust clear indication of the occurrence of 
compound eye, rhabdom size is normally the same among different ommatidia. Masking, PRM shedding or assembly. 
however, has induced the four rhabdoms on the r~ght to enlarge (they average 13 prn2 cross- when locusts are placed in darkness sectional area) by assembling new microvillar membrane. The four rhabdoms on the left have 
remained in the day state (average cross-sectional area is 5.3 pm2). The two central rhabdoms hours before the normal time of 
may be in an intermediate state (6.5 pm2) (19). The masked rhabdoms are surrounded by a premature initiation of the assembly of 
"palisade" (P) of endoplasmic reticular vacuoles. Scale bar, 10 pm. R,  rhabdom. new PRM increases rhabdom cross-sec- 
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Fig. 2. Graphs of rhabdom cross-sectional area across the boundaries 
between masked and unmasked regions of an eye. Each point 
represents the mean of five rhabdoms from a horizontal row of 
ommatidia. The histograms represent measurements of controls. The 
mean size of 30 rhabdoms sampled from the unmasked eye contralat- 16 

era1 to the masked one is on the right. On the left is the mean of 30 5 
rhabdoms measured from three animals (ten rhabdoms from one eye 3 
of each animal) that were placed in darkness (A) or retained in dim red 5 
light (B) during the period that the other animals were masked. All 12 
bars extend 2 1 standard deviation. Measurements were made from a ,O 
transverse section taken 50 to 100 km from the distal ends of the % 
rhabdoms, where their diameter is nearly uniform (5). The centers of 
thex-axes of the graphs correspond to the centers of the sections. The 
interommatidial angle along the vertical axis of the eye is only about 
lo; therefore, all rhabdoms were considered to be in true transverse 5 
section. (A) The eye was masked with a 0.3-mm horizontal strip of 2 
black tape 5 hours before dusk and fixed after 4 hours. A 0.3-mm strip 
should cover eight to ten horizontal rows of facets. This number 
corresponds to the number of ommatidia affected by the masking. 
Masked rhabdoms underwent assembly of new membrane and thus 
enlarged to the size of rhabdoms in locusts that were placed entirely in 
darkness (left histogram). In contrast, adjacent unmasked rhabdoms Animal Masked eye Unmasked Animal Masked eye Unmasked 
remained at a day-state size, comparable to that of rhabdoms in the in dark D o ~ a l  Ventral -. eye in dark D o z a l  ~ ~ t r a l  eye 
other eye, which was left completely unmasked (right histogram). (B) 
The dorsal half of the eye was masked just before dawn, and the eye was fixed 1 hour after lights-on. Unmasked rhabdoms shed their membrane 
and thus diminished in size, while the masked rhabdoms remained in the night state, comparable to the rhabdoms of animals that were not 
exposed to light at dawn (left histogram). Localization of the effects of masking, as shown by (A) and (B), were also found with a vertical 
boundary, formed by masking the anterior or posterior halves of eyes. 

tional area to about three-fourths that of 
the normal night state (5). In the first 
experiment, young adult Valanga irregu- 
laris that had been reared under cyclic 
lighting (15) had part of one of their 
large, light-colored eyes covered with 
black tape 5 hours before "dusk." Half 
of the eye (three animals) or a 0.3-mm 
horizontal strip across the middle of the 
eye (three animals) was masked. The 
other eye was left unmasked and served 
as a control. For additional control, 
three animals were placed entirely in the 
dark. Eyes were fixed for electron mi- 
croscopy 4 hours after they were masked 
(16). Examination of sections of the eyes 
showed that the rhabdoms of masked 
ommatidia-and only those of the 
masked ommatidia-had enlarged and 
therefore undergone assembly of new 
PRM (Figs. 1 and 2A). Another indicator 
of the occurrence of PRM assembly is a 
characteristic disarray of the rhabdoms 
during the process of assembly (5). In 
other eyes, fixed 0.5 to 1 hour after they 
were masked, the rhabdoms of masked 
ommatidia were found in this state. 

When locusts are maintained in dark- 
ness past dawn, rhabdom size diminishes 
gradually, but there is no significant 
change in size for the first few hours (5). 
In a second experiment, this fact was 
used to localize initiation of normal shed- 
ding. Seven animals were kept overnight 
under a dim red safelight (Kodak lA, 15- 
W bulb). Just before exposure to light at 
"dawn," half of one eye was masked in 
each of four animals. Again, the un- 
masked eye served as a control, as did 
one eye from each of three animals that 

were not exposed to light. Eyes were 
fixed 1 hour after lights-on. The rhab- 
doms of ommatidia that were not masked 
had shed their membranes and were 
smaller than those of masked ommatidia, 
which were still in a night state (Fig. 2B). 
In addition, the characteristic secondary 
lysosomal products of shedding (17) 
were evident in the photoreceptor cells 
of the unmasked ommatidia and absent 
in the others. 

A further effect of dark-light adapta- 
tion was also correlated with the masked 
or unmasked condition of the ommatidia. 
Masked rhabdoms were surrounded by a 
clear "palisade" of endoplasmic reticu- 
lar vacuoles, and the unmasked rhab- 
doms, by dense cytoplasmic contents 
(Fig. 1); the first state is characteristic of 
dark adaptation and the second of light 
adaptation (18). This finding shows that 
the masked ommatidia were indeed in 
darkness, while the unmasked ommatid- 
ia were light-adapted. 

Thus, changes in rhabdom size indi- 
cate that the initiation of shedding at 
dawn and the initiation of assembly at 
the onset of darkness are localized to the 
individual ommatidium (19). This result 
raises the possibility that the individual 
photoreceptor cells may have autono- 
mous control over the daily turnover of 
their transductive membrane (20). The 
possibility that efferent nervous input to 
the photoreceptors (21) is a source of 
extraretinal control has not been elimi- 
nated by the present experiments. How- 
ever, this input, although required for 
turnover in Limulus (4) ,  has been found 
to be unnecessary for the assembly of 

PRM in the crab, Leptograpsus (12), 
which has a pattern of turnover similar to 
that in the locust (7). 

Changes in the sensitivity of photore- 
ceptors and the position of photorecep- 
tor cell pigment granules during dark- 
light adaptation in arthropods are local 
effects (22). These changes appear to be 
mediated through changes in intracellu- 
lar Ca2+ concentration (23). Since PRM 
assembly and shedding are likewise local 
events and associated with dark and light 
adaptation, perhaps they are controlled 
by the same signal. 
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Role of Serotonergic Input in the Regulation of the 

P-Adrenergic Receptor-Coupled Adenylate Cyclase System 

Abstract. The action of desipramine on the norepinephrine-sensitive adenylate 
cyclase system and the density of P-adrenergic receptors in rat cortex was stirdied 
after selective lesioning of serotonergic neurons with 5,7-dihydroxytryptamine. In 
animals with lesions desipramine failed to reduce the density of P-adrenoceptors but 
decreased the response of adenosine 3',5'-monophosphate to isoproterenol und 
norepinephrine to the same degree as in animals without lesions. The results 
demonstrate a functional linkage between serotonergic and noradrenergic systems in 
the rat cortex, with p-adrenergic receptors and neurohormonal sensitivity of the 
adenosine 3',5'-monophosphate-generating system being under separate regulatory 
control. 

Various prototypes of clinically effec- 
tive antidepressant drugs have been 
shown to down-regulate the noradrener- 
gic adenosine 3',5'-monophosphate (cy- 
clic AMP)-generating system and its P- 
adrenergic receptor population in the 
brain (1-3). The ability of antidepres- 
sants to reduce the sensitivity of the 
system and the density of p-adrenergic 
receptors depends on an intact norad- 
renergic neuronal input ( 4 4 ) .  However, 
an increased availability of norepineph- 
rine (NE) appears to be only one prereq- 
uisite for the regulation of the receptor 
system. Thus, iprindole, which does not 
increase the availability of NE, never- 
theless reduces both the sensitivity to 
N E  and the density of P-adrenergic re- 
ceptors (4, 7, 8) .  Conversely, cocaine, 

which increases the availability of NE,  
does not change the density of p-adren- 
ergic receptors (3, 9). Since the terminal 
fields of serotonergic projections in the 
cortex overlap those of noradrenergic 
projections, we studied the conse- 
quences of selective lesioning of seroto- 
nergic neurons on the regulation by des- 
ipramine of the N E  receptor-coupled 
adenylate cyclase system in the rat cor- 
tex. Our results demonstrate that desip- 
ramine fails to decrease the density of P- 
adrenergic receptors in the absence of 
serotonergic input while still reducing 
the sensitivity of the cyclic AMP-gener- 
ating system to N E  and the p-adrenergic 
agonist isoproterenol. 

As subjects we used male Sprague- 
Dawley rats (250 to 300 g) kept under 

Table I .  Effect of DHT lesions of the central serotonergic system on the recognition and action 
functions of the NE receptor-coupled adenylate cyclase system. The lesions were made 10 to 12 
days before treatment with desipramine (15 mglkg, intraperitoneally) daily for 7 days. Twenty- 
four hours after the last desipramine injection, the animals were decapitated and the cyclic AMP 
responses to N E  and the density of p-adrenergic receptors were determined. Each response 
equals the stimulated concentration of cyclic AMP minus the basal level. For the determination 
of specific [3H]DHA binding. no fewer than five different concentrations of ligand (0.3 to 3.5 
nM) were used. Numbers in parentheses indicate the number of animals, each sample being 
analyzed in duplicate (cyclic AMP) or  in triplicate (DHA binding). Values are means t stan- 
dard errors. 

Cyclic AMP (pmolelmg protein) ['HIDHA binding 
-~ 

Maximum 
Treatment Basal Resoonse to number of Attinitv 

concentration 1 0 0 ' ~ ~  N E  sites (fmolel ( n ~ ) '  
mg protein) 

No lesion; saline 18.0 ? 2.5 (10) 65.2 t 6.3 (17) 100 t 10 (8) 1.31 t 0.13 
No lesion; desipramine 17.4 2 2.0 (12) 27.0 + 3.6* (17) 68 +. 4 t  (8) 1.32 t 0.07 
Lesion; saline 18.1 2 1.3 (13) 50.7 + 4.6 (23) 131 + 4: (7) 1.56 f 0.08 
Lesion; desipramine 17.7 t 1.7 (13) 23.9 f 3.11 (20) 133 t 25 (7) 1.71 1: 0.21 

- --- - -. --- - -- -- -- 
*Significantly different from corresponding value for nonlesioned animals given saline (P < ,001). 4P < 
,025. $Significantly different from corresponding value for lesioned animals given saline (P  < ,001). 
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