observed in other lesioned groups (Fig.
1). Thus, ethanol abolished two parame-
ters of lesion-induced axonal sprouting
in the dentate gyrus. This could reflect
inhibition of sprouting in the CA or scp-
tal cholinergic ncuron systcms to various
degrees. Alternatively, sprouting of CA
fibcrs may have occurred without being
observable because the AChE-positive
fibers did not retract from the CA zone.
Indeed, the outer (AChE-positive) zone
on the side of the lesion was larger in the
ethanol-fed lesioned rats than in the pair-
fed lesioned and lesioned control groups.
However, the failure of the AChE-posi-
tive fibers to withdraw from the CA zone
would be inconsistent with the critical
afferent theory (/6) of sprouting axons.
Further experiments are required to de-
termine which of these systems is most
sensitive to the inhibitory effects of etha-
nol on axonal sprouting.

There is little doubt that prolonged
heavy consumption of alcohol interferes
with the structural and functional integri-
ty of the brain. In rats, long-term expo-
sure to ethanol results in loss of dendritic
spines from neurons in the hippocampus
and dentate gyrus (3). Moreover, ethanol
exacerbates the destructive effects of
cerebrospinal trauma in cats (20). In-
creased cerebral atrophy in alcoholic pa-
tients has been identified by computer-
ized axial tomography (4, 5, 21), pneu-
moencephalography (6), measurement of
brainstem-evoked potentials (22), and
autopsy (7). Wc have now shown signifi-
cant inhibition of axonal sprouting with
daily exposure of rats to ethanol for 2
weeks before and 9 days after an ento-
rhinal lesion, High levels of ethanol may
cxert a toxic cffect on sprouting axons.
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Synchronous Neural Afterdischarges in Rat Hippocampal

Slices Without Active Chemical Synapses

Abstract. Extracellular field potential and intracellular recordings from neurons in
rat hippocampus show that, even with synaptic transmission blocked, antidromic
electrical stimuli can trigger afterdischarges of up to 9 seconds duration; during
these discharges action potentials of a single neuron were synchronized with
extracellularly recorded population spikes. Apparently mechanisms other than
recurrent chemical synapses can synchronize and recruit epileptiform events.
Measurements of transmembrane potential indicate that transient extracellular
clectrical fields (ephaptic interactions) contribute to the observed synchrony; elec-
trotonic coupling and changes in the concentration of extracellular ions may also

contribute.

During scizurcs, bursts of action po-
tentials and membrane depolarizations
are abnormally synchronized across
large populations of cortical neurons.
The electrical properties of individual
neurons that appear epileptic have been
investigated (/, 2), but the mechanisms
that synchronize epileptiform discharges
and cause their local spread are not
known. Seizures can spread from one
area of the brain to a rcmote region
through projection pathways. involving
chemical synapses (3). Some investiga-
tors (/, 2, 4-6) have suggested that chem-
ical synapses also locally synchronize

810 0036-8075/82/1119-0810501.00/0  Copyright @ 1982 AAAS

and propagate epileptiform activity, es-
pecially by recurrent excitation. Howev-
er, other local synchronizing mecha-
nisms may include electrotonic synapses
(5, 7-9), electrical field effects (ephaptic
interactions) (/0), and changes in con-
centration of extracellular K' and Ca®"
(1, 11, 12). We investigated the possibili-
ty that synchronized epileptiform cvents
can occur when chemical synaptic trans-
mission is inoperative.

Extraccllular and intracellular record-
ings of CAl pyramidal cells were made
by conventional techniques (/3). I'rans-
verse slices (450 pm thick) of freshly
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dissected rat hippocampus (Fig. 1A)
were bathed in an oxygenated physiolog-
ical solution (/4) containing Mn?* (2.3
mM) and lowered concentration of Ca’*
(0.5 mM), which blocked evoked chemi-
cal postsynaptic potentials (Fig. 1B).
With prolonged incubation (> 1 to 2
hours), however, the excitability of neu-
rons gradually increased, and in each of
14 experiments antidromic extracellular
stimulation evoked afterdischarges of 0.2
to 9 seconds. The cause of such hyperex-
citability is not known (/5). During the
afterdischarges, repetitive population
spikes (/6) of large amplitude (Figs. 1C
and 2A) revealed that action potentials
were synchronized across a large portion
of the CAl population. Intracellularly
recorded action potentials coincided
with large population spikes more fre-
quently than with small ones. In two
cases additional bursts of population
spikes followed the evoked burst after a
delay of 1 or 10 seconds.

Several observations indicated syn-
chronizing effects other than the electri-
cal stimulus. (i) Intracellularly recorded
neurons that became silent during an
afterdischarge always resumed firing
synchronously with population spikes
(Fig. 1C). (ii) Instead of progressive de-
synchronization, large population spikes
were still seen at the end of an afterdis-

A ) Intracellular Extracellular
Antidromic '
extracellular Orthodromic

stimulus extracellular

<% iy,

CH

f l |
rJW\ ’\J NN

stimulus

charge, indicating maintained synchrony
(Fig. 1C). (iii) In one experiment syn-
chronous firing occurred without any
electrical stimuli (Fig. 2, A and B). (iv)
When early action potentials of the after-
discharge were blocked with hyperpolar-
izing current in the impaled neuron, sub-
sequent action potentials were synchro-
nous with the population spikes. We
conclude that one or more mechanisms
other than chemical synapses or the ap-
plied electrical shocks synchronized fir-
ing in these experiments. The synchro-
nizing mechanisms must have involved
interactions among neurons.
Depolarizations due to electrically re-
mote action potentials (/7) or electroton-
ic postsynaptic potentials (7) initiate ac-
tion potentials in hippocampal neurons.
In five of nine intracellular recordings
during afterdischarges, depolarizations
were observed that were synchronous
with population spikes. The two depolar-
izations shown in Fig. 2B were of similar
amplitude, but in another recording the
depolarizations ranged from 2 to 15 mV.
Relatively weak hyperpolarization (~ 10
mV) blocked these potentials, which
suggests that they were active responses
generated electrically near the recording
site. These depolarizations could be
electrotonic postsynaptic potentials or
partially blocked spike activity in the

Normal ‘

impaled cell; our data do not distinguish
between these possibilities.

In the experiments described above,
intracellular membrane potential was
measured in a conventional manner (that
is, with reference to a distant bath elec-
trode). However, since large extracellu-
lar population spikes would distort con-
ventional intracellular recordings, a dif-
ferent method was also used: the voltage
from a nearby extracellular micropipette
was subtracted from the intracellular
voltage, thus producing a differential
voltage recording across the cell mem-
brane (Fig. 2, C and D) (/8). These
experiments revealed small rapid sub-
threshold depolarizations that had been
previously masked by population spikes
and were closely related to them in time,
wave form, and amplitude (Fig. 2C, bot-
tom trace). If these subthreshold depo-
larizations were electrotonic postsynap-
tic potentials, one would expect the time
course of the depolarizations to reflect
the slow decay of the depolarizing after-
potentials observed intracellularly in all
CAIl pyramidal cells incubated in Mn?*
medium (9). Hyperpolarizing current in-
jection had no observable effect on the
depolarizations revealed with differential
recording. Accordingly, we suggest that
these masked depolarizations represent
a voltage drop of the extracellular field

“ Low [Ca2*] with Mn2*

10 msec

W WMNWf\MWN\/\WﬁmWWWW’W

Fig. 1. (A) Diagram of hippocampal slice and electrode placement. Antidromic electrical stimuli were applied to the alveus (Alv).

). Stimulation of

CA3 Schaffer axon collaterals (Sch) caused an orthodromic excitatory postsynaptic potential (EPSP) in CA1. (B) Blockade of chemical synapses.
In both superimposed intracellular recordings (top traces), 1 nA of hyperpolarizing current (dark bar) accentuated EPSP’s, probably reversed
intracellular PSP’s and delayed action potentials of the impaled cell. In normal physiological solution, an alvear stimulus (black arrow) caused an
action potential (top traces) and a negative population spike recorded extracellularly (bottom traces). Orthordromic stimulation (open arrow)

caused an EPSP that could fire the cell and also evoked a population spike. In a solution with Mn?*

and lowered Ca*®* concentration (/4), EPSP’s

of a nearby cell were blocked even at five times the original stimulus intensity (right panel). Chemical synapses on remote dendrites, which would
normally cause smaller EPSP’s at the somatic impalement site, were also presumably blocked. (C) Afterdischarge produced by antidromic

stimulus (arrow) after 3 hours of incubation in Mn?*

medium. Note synchrony of individual action potentials (upper trace) with population spikes

(broken lines). All but two intracellularly recorded action potentials occurred within 2 msec of the negative peaks of individual population spikes

(S.D. =
19 NOVEMBER 1982

1.14 msec, N = 20 intracellular action potentials). Deflection at the beginning of the record is a 10-mV, S-msec calibration pulse.
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Fig. 2. (A) Spontaneous syn- A
chronous bursting recorded
from hippocampal slice that
was bathed in solution con-
taining Mn®* (2.3 mM) and
Ca’* (0.5 mM) for 4 hours.
Intracellularly recorded action
potentials (top trace) occurred
synchronously with many of
the spontaneously recurring
bursts of population spikes. A
portion of this record (dark
bar) is expanded in (B). Note
depolarizations (open arrows).
(C) Extracellular electrode
was moved close to the intra-
cellular recording site (inset).
Differential voltage recording
indicates true membrane volt-
age of CAl pyramidal cell
(bottom trace) and reveals
small subthreshold depolariza- C
tions which mirror the extra-

cellularly recorded field poten-

tial. Dashed line indicates neu- ‘

ron resting potenlizil, (D) 1 A‘\\»
Proximity of the two elec- —JJ

‘trodes used in (C) was con-
firmed by withdrawing the in-
tracellular electrode § pm.
Differential recording reveals
only a small error potential “‘
(bottom trace) and indicates W\
that the errorin the differential | ‘ A

ml/ ﬁf\\‘l/\“‘w

<
|
|
|

40
:8’10 msec

mV

\ 1-2 mvV
recording of (C) was probably 1—2N \J\\w/\ A ‘“"""\{r“'“"‘”“‘”‘"‘r"“"m
insignificant. - Bl -

potential across pyramidal cell mem-
branes and thus are¢ purely passive
events—that is, electrical field effects.
The subthreshold depolarizations could
sum with depolarization from current
injected through the recording electrode
to elicit somatic action potentials (/9).
Therefore, the mechanism that caused
these depolarizations contributed to syn-
chronization.

Our data indicate that synchronization
of hippocampal pyramidal cells can oc-
cur without active chemical synapses,
probably through some combination of
mechanisms including fluctuations in
extracellular ions, electrotonic coupling,
and electrical field effects. Although
slow changes in the concentrations of
extracellular ions such as K' probably
occurred during the afterdischarges, it
seems unlikely that the concentrations
could oscillate rapidly enough to syn-
chronize individual spikes (20). Other
evidence has indicated electrotonic cou-
pling between some CA1 pyramidal cells
(7, 9, 21), but whether it is sufficient to
synchronize neuronal firing is not
known. Weak or strong -electrotonic
junctions might be undetectable in our
recordings. The rapid depolarizations re-

vealed with differential recordings of

transmembrane potential from hippo-
campal pyramidal cells, which are tightly
packed and arranged in parallel (22),
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indicate that transient electrical ficlds
(population spikes) contribute to the pre-
disposition of the hippocampus to epilep-
Sy.
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