
Does Godel's Theorem Matter to Mathematics? 
The recent discovery of two natural but undecidable statements indicates that 

Godel's theorem is more than just a logician's trick 

In the 1930's, Kurt Godel shook the 
world of mathematics by showing that 
there are statements in every logical sys- 
tem whose truth or falsehood simply 
cannot be determined by staying within 
the system. And if you try to fix up a 
logical system by calling the undecidable 
statements axioms and thereby declaring 
them to be true, new undecidable state- 
ments will crop up. 

This result made mathematicians won- 
der about many of the famous unsolved 
problems that plague them. Could it be 
that some of these problems are undecid- 
able? "What people would really like is 
to take a big unsolved problem like Fer- 
mat's Last Theorem and show it is unde- 
cidable. That would be spectacular," 
says Joel Spencer of the State University 
of New York in Stony Brook. 

But, so  far, that has not happened and 
mathematicians have engaged in philo- 
sophical debates over whether it ever 
will, whether Godel's theorem applies to 
statements that matter. Many think it 
does not. Craig Smorynski, a logician at  
Ohio State University, remarks, "It is 
fashionable to deride Godel's theorem as 
artificial, as dependent on a linguistic 
trick." Logician Robert Solovay of the 
University of California at Berkeley 
adds, "The feeling was that Godel's the- 
orem was of interest only to logicians." 

A few years ago, however, two logi- 
cians found an example of a "natural" 
statement, involving only finite quanti- 
ties, that cannot be proved true within 
the normal axiomatic structure of finite 
mathematics. In a sense, this statement 
just missed being provable. Now, anoth- 
er logician has found an even more "nat- 
ural" statement that cannot be proved 
true in an even stronger system of axi- 
oms. The proof of this second statement 
requires structure far beyond the mathe- 
matical system used for finite quantities, 
raising it to a much higher level of unde- 
cidability. These two results are leading 
a number of mathematicians to believe 
that Godel's theorem does in fact apply 
to problems that matter. 

The first of these undecidable state- 
ments was discovered by Jeff Paris of 
Manchester University and Leo Harring- 
ton of the University of California at  
Berkeley. The statement involves com- 
binatorics and is "natural" because it is 
not the sort of concocted statement that 
only logicians would devise. "The Paris- 

Harrington theorem looks like a natural 
mathematical question with no trace of 
logic about it. That's what's spectacu- 
lar-it is natural and combinatorial in 
character," says Solovay. 

The theorem is a statement in Ramsey 
theory, which is a branch of mathematics 
dedicated to the proposition that "com- 
plete disorder is impossible," according 
to Ronald Graham of Bell Laboratories. 
If you choose a big enough set, you are 
bound to find structure in it. The ques- 
tion is, however, how big must the set 
be' In the case of the Paris-Harrington 
theorem, the size of the set grows so  
large so quickly that the function de- 
scribing its growth simply cannot be 
shown to be well defined in Peano arith- 
metic, which is the ordinary axiomatic 
system used in mathematics to talk of 
finite things. Peano arithmetic, says 
Spencer, is "the accepted bedrock of 
mathematics." 

A special case of what is known as  
Ramsey's theorem is the party problem: 
How many guests must you have at your 
party to be assured that a certain number 
of them either all know each other or all 
are strangers to  each other? If you want 
to be sure that a t  least three guests are 
mutual acquaintances or mutual strang- 
ers, you must have at  least six people at  
your party. If you want four guests all to 
know each other or all to be strangers 
you need at least 18 people at  the party. 
But no one knows the minimum number 
of guests you need at  the party to guaran- 
tee a similar group of five. The number is 
somewhere between 42 and 55. Says 
Graham, "It is hopeless to try and com- 
pute the exact number. It is way beyond 
our present computing power." 

The Paris-Harrington theorem is a 
slight variation of Ramsey's theorem. 
According to Ramsey's theorem, if you 
have an infinite set and you assign a 
color, say red or blue, arbitrarily to  each 
pair of members of the set, then you can 
find an infinite subset, all of whose pairs 
are red or all of whose pairs are blue. 
More generally, if you pick numbers r 
and k and if you have an infinite set and 
you assign one of r colors arbitrarily to 
each k-element subset of the set, then 
there is an infinite subset, all of whose k- 
tuples have the same color. 

Paris and Harrington devised a finite 
version of Ramsey's theorem. They 
started out by defining a "large" set of 

integers to be one that has at  least as  
many elements as  its smallest integer. 
For  example, the set 3, 15, 25, 26, is 
"large" because it has at  least three 
elements. The set 100, 102, 104, 106, 108 
is not "large" because it has fewer than 
100 elements. Then Paris and Harrington 
showed if you take a big enough set of 
integers and assign colors, such as red or 
blue, to each pair of integers you can find 
a "large" set, all of whose pairs are red 
or all of whose pairs are blue. Or, more 
generally, if you choose r and k and 
assign r colors to  the k-element subsets 
of your initial set, you can always find a 
"large" subset, all of whose k-tuples are 
the same color. 

How big must your original set be? It  
depends on how many colors and how 
you partition the subsets, but Solovay 
found that the lower bound on the size of 
the set grows so fast that it isn't even 
well defined in Peano arithmetic. Says 
Graham, "The lower bound for haw 
large the initial set must be grows fast. It 
is hard to grasp how fast it grows. It 
grows so quickly that the numbers some- 
how begin to lose all meaning." 

The way the lower bound grows is 
analogous to the way a function, called 
the Ackermann function, grows. This is 
a function of two variables that is recur- 
sively defined: fla,  h) = fl(a - I),  j ( a ,  
b - I)] where f(1, 6) = 26 and 
f(a, 1) = a for a greater than I.  With this 
function, 

J13, 2) = 2** = 16, 
22222 - 265536 J 1 3 , 4 ) = 2  - 

a number with more than 19,000 digits. 
(When evaluating towers of exponents, 
mathematicians work from the top of 
the tower down.) The term 8 6 ,  6) is 
so large that if you wanted to eval- 
uate it you couldn't write it on a 
piece of paper. And these are just 
the initial values of the function- 
the values that are very close to  
the origin. 

Paris and Harrington used model the- 
ory, a standard method of mathematical 
logic, to show that their theorem is unde- 
cidable in Peano arithmetic. Harrington 
explains that they produced two models 
for Peano arithmetic-two equivalent 
sets of axioms. In one of these models, 
the theorem was true and in the other it 
was not true, indicating that the theorem 
is undecidable. The analogy is with the 
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axioms for geometry. In Euclidean ge- 
ometry, one model, parallel lines never 
meet. In non-Euclidean geometry, a dif- 
ferent model, they can meet. 

After proving that the Paris-Harring- 
ton theorem is undecidable in Peano 
arithmetic, Harrington wrote a letter to 
Solovay noting that they had obtained 
this result but not saying how they got it. 
Solovay and his colleague Jussi Ketonen 
then devised their own proof that the 
theorem is undecidable, a proof that is 
more combinatorial in nature. 

Solovay and Ketonen showed that be- 
cause the lower bound on the size of the 
initial set grows so fast, you need a 
structure just beyond Peano arithmetic 
to prove it is well defined and thus to 
prove the Paris-Harrington theorem. 

Peano arithmetic contains all the inte- 
gers up to "infinity," which is denoted 
w. Then, after the first copy of the inte- 
gers, it continues with the terms w + 1, 
o + 2, and so  on up to 20.  (Spencer 
likens the system to the children's book 
On Beyond Zebra which goes on after 
the alphabet ends at  z for zebra.) But 
Peano arithmetic does not end at  20 .  It 
continues to 

Yet even the exponential tower of w's 
is not large enough to deal with the Paris- 
Harrington theorem. What is needed is 
€0, defined as the limit to which wwW" 

converges. Asked how you know that 
the tower of w's converges, Spencer 
replies, "It takes a leap of faith." 

Very recently, Harvey Friedman of 
Ohio State University found a second 
undecidable theorem, but his theorem 
involves a function that grows so  fast 
that it dwarfs the function of the Paris- 
Harrington theorem. Even eo is not 
enough to prove Fr~edman ' s  theorem. 
"The Paris-Harrington theorem lies just 
barely beyond Peano arithmetic," says 
Spencer. "Friedman's theorem is much 
farther out." 

Friedman's theorem is a finite version 
of a well-known result discovered by 
Joseph B. Kruskal of Bell Laboratories. 
Kruskal's theorem involves "trees," 
which are sets of points connected by 
lines and containing no cycles. Evolu- 
tionary biologists draw trees when they 
describe the ancestors of species and 
geneologists draw family trees. 

Collections of trees can be infinite as 
well as finite and, if they are infinite, 
complete disorder is impossible, accord- 
ing to Kruskal's theorem. The theorem 
states that if you have an infinite collec- 
tion of finite trees ordered in any arbi- 
trary way, then at  least one of those trees 
must fit into a later one so that the 
branches of the first fit inside those of 
the second. Kruskal's theorem forms the 
basis for a branch of combinatorics 
called "well-quasi-ordering." 

Famous Large Numbers 
Large numbers have an inherent fascination for mathematicians who 

sometimes compete among themselves to see who can write the largest 
number on a 3 by 5 card. And when enormous numbers come up naturally in 
proofs, they achieve a sort of notoriety. 

Early in this century, the champion large number was the Skewes 
number, discovered by S .  Skewes in his attempt to determine when the 
values of a function in number theory change from negative to positive. In 
1933, he proposed his number as  an upper bound on the solution. 
The number is 

1 0 ~ 0 1 ~ 3 4  

The Skewes number has been greatly superseded in recent years, and the 
current world's champion large number used in a serious mathematical 
proof is a number derived by Ronald Graham of Bell Laboratories. 
(Graham's number is in the Guiness Book of World Records.) The number is 
an upper bound on a combinatorial problem and even to write the number 
takes a special "arrow" notation. The notation 3 T 3 means (3) (3) (3). The 
notation 3 T T 3 means 3 T (3 T (3 T 3)). The notation 3 T T T 3 means 3 T T 
(3 T T (3 T T (3 T T 3)). 

Graham's number starts with 3 T T T T 3-but that is just the top number 
in a tower of exponents. There are 64 layers of exponents in the tower, each 
of which is the number 3 T T T T 3. Says Craig Smorynski of Ohio State 
University, "Now this is something that the mathematician of today regards 
as large. "-G.K. 

i 

To make a finite version of Kruskal's 
theorem, Friedman said that you don't 
need an infinite collection of trees. All 
you need is a sufficiently large finite 
collection of trees. How large is large? 
That is where the enormous function 
comes in. "It is gigantic. I mean it's 
really gigantic," says Graham. Accord- 
ing to Smorynski, it is "the most rapidly 
growing computable function that has 
ever been described. " 

The observation that Friedman's theo- 
rem is far beyond the reach of Peano 
arithmetic demonstrates, to Spencer at  
least, that Kruskal's theorem is indeed a 
deep one. "Friedman's result bears this 
out since he shows that if you turn 
Kruskal's theorem into a finite theorem, 
the proof is beyond the normal methods 
of finite mathematics." Harrington is im- 
pressed by the extreme naturalness of 
Friedman's theorem. It is the sort of 
theorem, he says, that could have arisen 
in combinatorics with no reference to 
mathematical logic and undecidability. 
"I found it easy to convince myself that 
combinatorialists could have thought of 
this," Harrington says. 

Friedman also demonstrated that if 
you take a large enough collection of 
finite trees and ask whether a finite tree 
of a particular size (as opposed to any 
arbitrarily chosen size) must fit into an- 
other tree, you can use Peano arithmetic 
to show that it must. But the proof 
requires an enormous number of steps. 
Friedman showed that if, for example, 
you want to prove that a tree containing 
ten nodes must fit into another tree, the 
proof would require more than 

2)  1000 times 
2 2 2  steps. 

Smorynski predicts that the enormous 
function Friedman has described is just 
the beginning. Friedman has only dealt 
with a weak form of Kruskal's theorem. 
H e  is now working on a finite version of 
the full form of Kruskal's theorem and, 
according to Smorynski, "when these 
results are finitized, they will yield func- 
tions that dwarf F [the function Fried- 
man has so far described]." 

The more natural but undecidable the- 
orems that are found, of course, the 
more willing mathematicians are to be- 
lieve that Godel's theorem might apply 
to important results. The recent discov- 
eries of the Paris-Harrington and Fried- 
man theorems might also lead mathema- 
ticians to a greater appreciation of math- 
ematical logic, including infinite objects 
such as  w" and EO. "It shows the mathe- 
matical reasonableness of these weird 
objects," says Harrington. 

-GINA KOLATA 
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