
Physicists Try to Find Order in Chaos 
Physical systems governed by nonlinear equations 

or chaotic behavior, but the transitions to 

Many physical systems exhibit a range 
of dynamical behaviors from smooth and 
ordered to turbulent and disordered. The 
transition from laminar fluid flow to tur- 
bulence as the velocity of the fluid in- 
creases is a notable example that has 
never succumbed to a comprehensive 
mathematical analysis. Recently, physi- 
cists have turned their attention to cer- 
tain quite simple nonlinear equations, 
well known to mathematicians, that also 
show transitions from order to a special 
kind of disorder called chaos as a param- 
eter in the equations changes. 

Building upon the pioneering work of 
Mitchell Feigenbaum of Cornell Univer- 
sity, theoretical physicists are showing 
that there is a universal character to the 
transition to chaos-that is, there are a 
few numbers that describe the transition, 
and these numbers are the same for all 
equations that exhibit the transition. The 
hope, as yet unproven, is that there may 
be only a few general classes of transi- 
tions. For their part, experimental physi- 
cists are coming up with persuasive evi- 
dence that real physical systems ranging 
from simple electrical circuits to com- 
plex fluids undergo transitions to chaos 
in quantitative agreement with the pre- 
dictions of the theorists-that is, the 
universal numbers are the same for phys- 
ical systems of widely varying character. 

The mathematics of chaos, says Jerry 
Gollub of Haverford College and the 
University of Pennsylvania, provides a 
new handle on one of the oldest prob- 
lems in physics: how to understand sys- 
tems comprising large numbers of parti- 
cles that exhibit apparently random be- 
havior. In the 1950's and 1960's, interest 
in fluctuations (random variations in the 
value of some property of the system) 
revived as physicists began making de- 
tailed experimental and theoretical in- 
vestigations of critical phenomena (sec- 
ond-order phase transitions such as the 
disappearance of ferromagnetism in per- 
manent magnets above their Curie tem- 
peratures, or of any distinction between 
gas and liquid above the critical tempera- 
tures of fluids). 

In the early 1970's, a mathematical 
technique called the renormalization 
group (for the development of which 
Kenneth Wilson of Cornell received this 
year's Nobel physics prize) provided an 
accurate way to calculate the properties 
of physical systems near a critical point. 

In chaos, the interest is on the time 
evolution of the states of physical sys- 
tems. Nonetheless, the change from a 
smooth, ordered dynamics to a turbu- 
lent, disordered one is a kind of phase 
transition. In retrospect, therefore, it is 
not surprising that techniques such as 
the renormalization group can be tai- 
lored to the study of chaos, although 
Feigenbaum encountered some difficulty 
in getting his early work published. 

For the moment, such practical appli- 
cations as analyzing turbulent fluids in 
realistic conditions by this method are 
distant at best, and the emphasis is on 
studying chaos as a phenomenon in its 
own right, cautions Eric Siggia, also of 
Cornell. Nonetheless, it is hard to keep 
fluids out of mind. The recent investiga- 
tions of chaos directly relate to an old 
fluid dynamics conjecture, for example. 

In 1971, David Ruelle of the Institute 
of Advanced Scientific Studies at Bures- 
sur-Yvette near Paris and Floris Takens 
of the Mathematics Institute of the State 
University of Groningen proposed that 
the onset of turbulence in fluids could be 
described by a succession of three transi- 
tions at most. For laminar flow, the 
velocity at a point in the fluid would be 
constant. Then there would be a transi- 
tion to a state in which the velocity 
oscillated between two values with a 
specific frequency. Subsequent transi- 
tions would add new frequencies. But 
they argued that after the appearance of 
three frequencies, the fluid would be- 
come unstable and aperiodic-that is, a 
Fourier analysis of the time evolution of 
the velocitv would reveal no discrete 
frequencies. This scenario was a radical 
departure from the older picture of the 
late Soviet physicist Lev Landau, who 
had proposed that an infinite number of 
new frequencies could be added and that 
the fluid would never be truly aperiodic. 
Experiments in 1975 by Gollub and Har- 
ry Swinney of the University of Texas at 
Austin and subsequently by many other 
investigators corroborate the Ruelle- 
Takens proposal. No one has been able 
to see more than three frequency compo- 
nents in any fluid before it became turbu- 
lent. 

Ruelle and Takens did not describe 
any particular mechanism for the transi- 
tion to chaos that could be compared in 
detail with experiment. The renormaliza- 
tion group permits physicists to con- 
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of motion exhibit turbulent 
chaos seem to be orderly 

struct detailed models. The most recent 
theoretical work by David Rand, Stellan 
Ostlund, James Sethna, and Siggia (who 
were members of a 15-month study of 
nonequilibrium phenomena by an inter- 
disciplinary group of mathematicians 
and physicists at the University of Cali- 
fornia at Santa Barbara's Institute for 
Theoretical Physics) and by Scott 
Shenker and Leo Kadanoff of the Uni- 
versity of Chicago and Feigenbaum 
worked out the case that physicists call 
quasiperiodicity in which chaos ensues 
after the appearance of two frequencies. 

Physicists describe the time evolution 
of a physical system by a trajectory in a 
mathematical space whose coordinates 
are the variables of interest. For fluid 
flow, the variables could be the compo- 
nents of the velocity for each fluid parti- 
cle, a rather large number. After a long 
enough time, the system will settle down 
to its steady-state orbit (also called an 
attractor because it attracts all trajector- 
ies starting from some range of initial 
conditions). Chaos involves a special 
kind of attractor for which Ruelle and 
Takens coined the term strange attrac- 
tor. Motion on the strange attractor is 
unpredictable, although the nonlinear 
equations of motion are completely de- 
terministic. This unpredictability led 
James Yorke of the University of Mary- 
land at College Park to apply the word 
chaos to this behavior several years ago. 

A key feature of strange attractors was 
identified as far back as 1963 by Edward 
Lorenz of the Massachusetts Institute of 
Technology, who was interested in long- 
range weather forecasting. The feature is 
extreme sensitivity to initial conditions. 
The idea is that trajectories beginning 
from arbitrarily close initial conditions 
will exponentially diverge. The trajector- 
ies are all on the strange attractor, but 
over the course of time they follow quite 
different paths on it. 

Although fluids are naturally de- 
scribed by sets of differential equations, 
trajectories can be rigorously determined 
by difference equations or maps that give 
the value of a variable at one time in 
terms of its value and the values of the 
other variables at the preceding time. To 
obtain a trajectory, one iteratively ap- 
plies the map to a set of initial values of 
the variables. In the case of a single 
variable, the map is one-dimensional and 
of the form x,,, = Ax,, A), where A is a 
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parameter that measures the departure 
of the system from equilibrium and n is 
the number of the iteration. . 

The quasiperiodic route to chaos in- 
volves trajectories in a space of two 
dimensions. At small 'values of the A 
parameter, the steady-state trajectory is 
a fixed point (that is, %,+I = x,, and so 
on). As A increases past a critical value, 
the trajectory oscillates between two 
points with a certain frequency. This 
would correspond to the velocity of a 
point in a fluid, for example, that oscil- 
lated between two values with this fre- 
quency. As A increases further past a 
second.critical value, the trajectory be- 
comes quasiperiodic motion on a circular 
attractor in such a way that it never 
returns to its initial value. The time de- 
pendence of the fluid velocity would be 
quite complicated, but a Fourier analysis 
would reveal two fundamental frequen- 
cies that are irrational multiples of one 
another (that is, the frequencies are in- 
commensurate). There would also be 
peaks in the Fourier power spectrum for 
all integer combinations of the funda- 
mental frequencies. The final transition 
at a third critical value of the A parameter 
is to chaos. 

Rand, Ostlund, Sethna, and Siggia and 
Shenker, Kadanoff, and Feigenbaum 
considered cases such as those in which 
the incommensurate frequencies are in 
the ratio of successive Fibonacci num- 
bers. Using the renormalization group, 
the two groups independently showed 
that the transition occurs in a universal 
way. Here "universal" means that cer- 
tain numbers that describe the transition 
to chaos are the same for all maps exhib- 
iting this route to chaos. The theorists 
have calculated the values of these num- 
bers. 

Universality of this type, which is also 
observed in critical phenomena, is tied in 
with another property called scale invari- 
ance. In the most general case of maps of 
several dimensions, scale invariance can 
be seen by looking at the structure of 
strange attractors. For example, Celso 
Grebogi, Edward Ott, and Yorke at 
Maryland have computer studies of sev- 
eral multidimensional maps. One of 
these is a certain three-dimensional map 
for which the strange attractor is toroi- 
dal. The surface of the toroid is highly 
wrinkled. Upon taking a closer look, one 
sees that the pattern of wrinkles contin- 
ues at all scales of magnification. The 
situation is completely in the spirit of 
Jonathan Swift's 1733 jingle "So, natu- 
ralists observe, a flea/ Hath smaller fleas 
that on him prey;/ And these have small- 
er fleas to bite 'em,/ And so proceed ad 
infiniturn," points out Kadanoff, 
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There are no experimental tests of 
quasiperiodicity as yet. However, the 
so-called period doubling route to chaos, . 
which was the object of Feigenbaum's 
earlier work, has been extensively veri- 
fied. Feigenbaum analyzed a class of 
one-dimensional nonlinear maps that ex- 
hibit a unique maximum, typified by 
the logistic map: x,+, = A x,(l - x,), 
where x can occupy any value on the 
interval 0.1 and A from 0 to 4. Prior 
to Feigenbaum's investigations, which 
were published in 1978 and 1979, it was 
well known, for example, that the 
steady-state trajectory is a fixed point for 
all maps with A less than a certain value 
XI. But at At ,  there is a sudden bifurca- 
tion to two steady-state solutions. With 
each iteration of the map, the solution 
oscillates between the two, such that 

leigh-B6nard instabilities in a liquid heli- 
um convection cell with a temperature 
gradient from the bottom to the top. At 
or near thermal equilibrium, there is no 
fluid motion, but farther from equilibri- 
um, there is a cyclical flow referred to as 
a convection roll. Still farther from equi- 
librium (larger temperature gradients), a 
secondary instability yields oscillations 
of the convection roll. One manifestation 
of the oscillation is a cyclic temperature 
variation at any one point in the liquid 
helium. 

As the investigators increased the tem- 
perature difference (which corresponds 
to the A parameter) even more, the peri- 
od doubling began. The first bifurcation 
gives rise to a temperature variation with 
two maxima that are reached on alternat- 
ing cycles. Subsequent bifurcations give 

X,+Z = x,. AS A increases further, the 
two solutions split into four, and so on. 
At a critical value L, bifurcation has 
occurred an infinite number of times, 
and x randomly assumes any value-that 
is, chaos arrives. Period doubling has 
only one fundamental frequency (the 
others are subharmonics). 

Feigenbaum analyzed period doubling 
in one-dimensional maps using empirical 
methods to uncover the theoretical 
method, which proved to be a variant of 
the renormalization group. He showed 
that period doubling occurs in a univer- 
sal way; all maps with the same kind of 
maximum have the same characteristic 
numbers. Among the characteristic num- 
bers calculated by Feigenbaum are 
6 = 4.6692016 . . . , which is defined by 
the values of A, at successive bifurca- 
tions, and a = 2.502907875 . . . , which 
is defined by the x, values at successive 
bifurcations. Subsequently, other char- 
acteristic numbers have been calculated 
by several theorists. 

The first really decisive experiment 
was that in 1980 by Albert Libchaber and 
Jean Maurer of the Ecole Normale Su- 
p6rieure in Paris, who investigated Ray- 

rise to more complex temperature pat- 
terns that can be unraveled by Fourier 
analysis. By this means, Libchaber and 
Maurer were able to resolve up to four 
bifurcations. Subsequent bifurcations 
were not observable because the spacing 
in the A parameter becomes too small to 
control experimentally. 

Last year, Marzio Giglio, Sergio Mu- 
sazzi, and Umberto Perini of the Center 
of Information, Studies, and Experi- 
ments in Milan reported their results for 
a similar experiment in a water-filled 
convection cell. They likewise observed 
four bifurcations, but were also able to 
estimate the 6 parameter and another 
parameter p,. This number is related to 
the ratio of the amplitudes of successive 
subharmonics (Fourier components) of 
the time-varying temperature as bifurca- 
tion proceeds to chaos. 

Even more complex period doubling 
behavior has been quantitatively verified 
for A values exceeding L. Almost a 
decade ago, Nicholas Metropolis, Myron 
Stein, and Paul Stein of Los Alamos 
National Laboratory showed that one- 
dimensional nonlinear maps of the type 
analyzed by Feigenbaum exhibited 
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"windows" over certain ranges of A in 
which the bifurcation scheme repeated 
itself. Out of chaos, as it were, a solution 
of the nonlinear map which repeats ev- 
ery three iterations (period three solu- 
tion) would emerge, and this would dou- 
ble to six, and so on to a new chaos as 
the value of A increased in the window. 
Similar windows exist in principle for 
perioddoubling sequences of any peri- 
od. James Testa, Jose Perez, and Carson 
Jeffries of the University of California at 
Berkeley have recently reported observ- 
ing several of these windows and the 
sequences in them. 

As compared to a convecting fluid, the 
physical system studied by these re- 
searchers is quite simple. It is a series 
LRC electrical circuit, which is driven 
by a sinusoidal voltage source. There are 
at least three dynamical variables arising 
from the inductor, the capacitor, and the 
time-dependent driving voltage. In the 
Berkeley experiment, the capacitor is a 
nonlinear device whose capacitance de- 
pends on the voltage across it. The am- 
plitude of the sinusoidal applied voltage 
corresponds to the A parameter, and the 
current through the nonlinear capacitor 
corresponds to the variable x in the non- 
linear map. Although simple nonlinear 
electrical circuits are not themselves of 
current interest, Gollub comments that 
investigations of this type do help experi- 
menters to model chaotic behavior. 

One of the things Testa, PBrez, and 
Jeffries could do, for example, is directly 
measure a bifurcation diagram by plot- 
ting the current through the nonlinear 
capacitor as a function of the amplitude 
of the driving voltage. The figure shows 
an oscilloscope trace of the so-called 
period 3 window. The researchers were 
also able to make estimates of the values 
of many of Feigenbaum's universal num- 
bers (6, a, and p) in the main (period 1) 
bifurcation sequence as well as the 6 
value in the period 3 window. 

It is also possible to generate a one- 
dimensional map experimentally in a 
system that has many variables. That has 
been done by Reuben Simoyi, Alan Wolf, 
and Swinney at Texas. These physicists 
studied the Belousov-Zhabotinskii reac- 
tion, which involves about 25 chemical 
species. Chemicals flow through a reac- 
tion vessel at a fixed rate, which corre- 
sponds to the A parameter. The vessel 
is well stirred, so the concentrations of 
the 25 species, which are the variables 
of interest, are uniform throughout the 
reactor. 

With 25 variables in the system, the 
resulting trajectory could conceivably be 
traced, but this is not practical. The 
Texas researchers drew on an earlier 
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method of Norman Packard, James 
Crutchfield, Doyne Farmer, and Rob 
Shaw of the University of California at 
Santa Cruz, who followed up an idea of 
Ruelle's that an equivalent trajectory 
could be obtained by monitoring just one 
variable in a special way-that is, in a 
multidimensional plot, where x(tR), 
Mtk + T), ~ ( t k  + 2 ~ ) ,  and so on are the 
variables. T is a somewhat arbitary inter- 
val. In practice, one limits the number of 
variables to a number such that adding 
further variables does not change the 
form of the trajectory. The figure shows 
a two-dimensional projection of a three- 
dimensional strange attractor obtained at 
Texas in this way by Jean-Claude Roux 
of the University of Bordeaux I, Simoyi, 

Strange attractor k . 2  
-- 

The time evolution of the concentration of 
bromide ion in the Belousov-Zhabotinskii re- 
action at t and t + 53 seconds yields this 
dimensional projection of a three-dimensional 
trajectory. 

and Swinney for the Belousov-Zhabo- 
tinskii reaction under investigation. The 
single variable measured was the con- 
centration of bromide ion. 

From the topology of the trajectory, 
the investigators conjectured that a one- 
dimensional map would suffice to ex- 
plain the data, and they were able to 
deduce its form. Their map possessed a 
shape similar to that of the logistic map. 
For example, Simonyi, Wolf, and Swin- 
ney observed the same types of windows 

. in the chaotic region that the Berkeley 
group had seen. Their map successfully 
reproduced the sequence of x values on a 
trajectory in a window region that were 
determined first experimentally and then 
from the logistic map. 

An obvious question is: How does one 
know whether a physical system will 
reach chaos by period doubling, by qua- 
siperiodicity, or by some other route? In 
general, the answer is not known. Jef- 
fries, for example, says he has a drawer 
full of nonlinear capacitors, and he has 
no way of knowing which ones will ex- 

hibit period doubling other than inserting 
them into his LRC circuit and trying 
them out. One recent set of experiments 
on liquid mercury-filled convection cells 
by Libchaber and Stephen Fauve of the 
Ecole Normale SupBrieure may provide 
a clue, however. These researchers add- 
ed a new feature to the study of the 
Rayleigh-BBnard instabilities, an applied 
magnetic field parallel to the axis of the 
convection rolls. At low field strengths, 
period doubling predominated, where- 
as at high fields, a behavior similar 
to Ruelle-Takens quasiperiodicity pre- 
vailed. In between, still other routes to 
chaos were observed. Libchaber specu- 
lates that the effect of the magnetic field 
on the electrically conducting liquid mer- 
cury is to stiffen it against the oscilla- 
tions. This permits larger temperature 
gradients to exist before the transition to 
chaos takes place, which corresponds to 
a larger A parameter. In effect, there is a 
kind of hierarchy of less and less period- 
ic routes to chaos with period doubling 
occurring in only weakly nonequilibrium 
systems, and so on. 

Several other routes to chaos have 
been proposed for which some experi- 
mental evidence exists. One is called 
intermittency in which there are alternat- 
ing periods of stable and chaotic behav- 
ior, with no period-doubling cascades at 
any point. Intennittency was proposed 
in 1979 by Yves Pomeau and Paul Mann- 
ville of the Saclay Nuclear Studies Cen- 
ter near Paris. A detailed analysis result- 
ing in the calculation of characteristic 
numbers for intermittency has been giv- 
en by Jorge Hirsch and Douglas Scala- 
pino of Santa Barbara and Bernardo Hu- 
berman of the Xerox Palo Alto Research 
Center. Several others have since done 
renormalization group calculations. 

So, chaos is drawing considerable at- 
tention at the moment. Its long-range 
influence on practical fluid dynamics 
problems is still speculative, however. 
Chaos as now understood occurs only in 
fluid systems whose behavior is effec- 
tively low-dimensional by virtue of their 
confining physical configurations, points 
out Libchaber. The 1978 experiments in 
liquid helium convection cells of Giinter 
Ahlers and Robert Behringer (then at 
Bell Laboratories) clearly show the dis- 
appearance of the temporal periodicity 
characteristic of period doubling and 
quasiperiodicity prior to the onset of 
chaos as the width of the cell 'is in- 
creased, for example. 

-ARTHUR L. ROBINSON 

Additional Reading 
Proceedings of the Conference on Order in Chaos, 
Los Alamos National Laboratory, 24 to 28 May 
1982, to be published in Physica D. 
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