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Melting of Two-Dimensional Solids 
W. F. Brinkman, Daniel S. Fisher, D. E. Moncton 

The establishment of order in two- The mechanism of two-dimensional 
dimensional structures is of considerable melting that has captured physicists' at- 
interest to condensed matter scientists. tention was originally suggested by Kos- 
Although it is not obvious, nature terlitz and Thouless ( I ) .  They showed 
abounds with two-dimensional forma- that a simple defect in the regular lattice 
tions. Liquid crystals and lipids form structure, called a dislocation, could be 

Summary. Recent theoretical predictions indicate that melting of a two-dimensional 
solid may be caused by spontaneous creation of dislocations. The theory predicts that 
melting occurs by a two-step process involving an intermediate phase, called the 
hexatic phase, in which there is order in the local crystalline axes but not In the 
positions of atoms. These ideas are being tested by numerical simulations and by 
experiments on electrons on liquid helium, liquid crystal films, and rare gas layers 
adsorbed on graphite. Experiments on liquid crystal films indicate that the three- 
dimensional analog of the hexatic phase exists, and xenon on graphite exhibits a 
melting transition close to the form predicted. 

films one or two molecules thick. Single 
layers of atoms can be deposited on 
crystalline surfaces o r  other flat sub- 
strates. In fact, solid surfaces them- 
selves often undergo structural rear- 
rangements of their outermost atomic 
layers. Such systems, which have re- 
ceived a great deal of experimental atten- 
tion recently, are intrinsically two-di- 
mensional. 

Perhaps the most fundamental transi- 
tion that occurs in condensed matter is 
melting from solids to liquids. Theorists 
have conjectured that in the two-dimen- 
sional world melting may occur by a 
process in which the order is gradually 
destroyed, quite unlike the abrupt occur- 
rence of three-dimensional melting. The 
universal nature of the theoretical pre- 
dictions near this continuous melting 
transition provides a challenge for ex- 
perimentalists. In addition, the results 
may ultimately affect our understanding 
of three-dimensional melting phenome- 
na. 
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the vehicle for the destruction of the 
regular crystalline periodicity that oc- 
curs during melting. Although many 
years ago Shockley (2) suggested that the 
melting of three-dimensional solids 
might be understood in terms of disloca- 
tions, the current view is that such a 
mechanism is more likely to apply direct- 
ly in two dimensions. 

One of the advantages of the Koster- 
litz-Thouless dislocation theory of melt- 
ing is that detailed predictions can be 
made of both static and dynamic effects 
near the phase transition, which are uni- 
versal in the sense that they are indepen- 
dent of the detailed form of microscopic 
forces. In particular, the theory predicts 
that, in contrast to the three-dimensional 
case, the transition is higher order with 
no latent heat-in fact, only an unob- 
servably weak essential singularity 
should occur in the specific heat (3). 
Thus, a two-dimensional solid just below 
its melting temperature and the fluid just 
above look very similar on microscopic 

length scales, in contrast to  the usual 
behavior in three dimensions, where the 
transition is first order. 

Recently, Halperin and Nelson (4) 
showed that the two-dimensional melting 
process may be even more remarkable. 
They predicted that a new type of aniso- 
tropic fluid phase will occur between the 
solid and the usual isotropic liquid. In 
their theory two successive phase transi- 
tions occur before all vestiges of the 
solid structure are destroyed. Currently, 
there is considerable activity both in 
computer simulations and in experi- 
ments on two-dimensional systems de- 
signed to test these ideas. Considerable 
progress has been made and some of the 
predictions of this theory have been veri- 
fied, even though we d o  not yet know 
under exactly what circumstances the 
dislocation theory applies. 

Theoretical Concepts 

A two-dimensional solid is in many 
ways similar to  its three-dimensional 
counterpart. It  has well-defined crystal- 
line axes, can form grain boundaries, and 
exhibits resistance to  shear forces. The 
property of resisting shear is probably 
the best definition of a solid and certainly 
the one that is most used in practice. 
There is one important way, however, in 
which two- and three-dimensional solids 
differ. Thermal fluctuations in a solid 
cause displacements of the atoms from 
their perfect lattice positions. In two 
dimensions these fluctuations are such 
that the mean square fluctuation, 
( ( r  - i12), of the distance, r ,  between 
two atoms separated by an average dis- 
tance i diverges as  the logarithm of i. 
For three-dimensional solids the fluctua- 
tions are finite as  i + m, which implies 
that the position of one atom effectively 
determines that of all the other atoms in 
the crystal. This property is known as 
long-range positional order and has been 
used frequently to characterize a solid. 
For two-dimensional solids, however, 
the divergence of the fluctuations implies 
that there is no long-range positional 
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Fig. 1. Schematic representation of a two- 
dimensional solid. The atoms (open circles) 
on the left are positioned coincident with the 
black dots. The atoms in the right-hand region 
are not in registration with those on the left, 
as seen by the lack of registry with the dots. 
The two regions do have the same orientation. 

order. This has been known since the 
1930's (5) and was used by some to argue 
that two-dimensional solids d o  not exist, 
but ignored by others who pointed out 
that ((r - F ) ~ )  is very small unless is 
huge. 

While a two-dimensional solid does 
not have true long-range order, the posi- 
tional correlations do extend to long dis- 
tances, in contrast to  those in a liquid. In 
a liquid the positional correlations decay 
exponentially as exp(-rlt) with a charac- 
teristic correlation length 5 normally 
only a few angstroms in magnitude. In a 
two-dimensional solid, as a consequence 
of its resistance to  shear, the correlations 
decay algebraically as  l/rv, and two- 
dimensional solids are said to exhibit 
algebraic long-range order (6). The expo- 
nent 7 is related to the elastic moduli and 
the temperature, T, and increases as  T 
increases. As we  shall discuss, q is ex- 
perimentally measurable. 

While a two-dimensional solid does 
not have long-range positional order, it 
does have long-range order in the orien- 
tation of the crystalline axes-that is, in 
the direction of the geometric (not chem- 
ical) "bond" between adjacent pairs of 
atoms. A two-dimensional solid there- 
fore looks schematically as  shown in Fig. 
1. Atoms in each region of the solid will 
typically be  displaced from their posi- 
tions in a perfect regular lattice by an 
amount that fluctuates from one region 
to another. The local crystalline axes in 
each region will, however, have the 
same orientation. 

In three dimensions, the atoms in ev- 
ery region of a solid fluctuate only slight- 
ly about their perfect lattice sites. The 
periodicity of the atomic arrangement 
gives rise in three dimensions to  a set of 
sharp delta function peaks in the struc- 
ture factor, S(Q), at the Bragg positions, 
G. These are observed in x-ray Bragg 

diffraction experiments, where Q is the 
difference between incident and scat- 
tered wave vectors. In a two-dimension- 
al solid, on the other hand, as  a conse- 
quence of the large, divergent fluctua- 
tions of the positions of the atoms, the 
underlying periodicity yields only power 
law singularities in S(Q) of the form 
IQ - G I - ~  + ". 

With this understanding of the nature 
of two-dimensional solids the fundamen- 
tal question is how such solids melt or 
transform to the liquid phase as  tempera- 
ture increases. This can occur by a first- 
order transition (as in three dimensions) 
in which large fluctuations at very short 
length scales abruptly change the local 
order of the solid to  the disorder of a 
liquid. As we  shall see, this possibility 
surely does occur. Alternatively, if the 
two-dimensional solid is relatively stable 
to short-range disorder, the dominant 
thermal fluctuations will be of long 
wavelength and a description in terms of 
dislocations might apply. The theoretical 
predictions for this case are quite differ- 
ent from any previous results. 

A dislocation in two dimensions is a 
point defect in an otherwise perfect crys- 
tal in which half an extra row of atoms is 
added. A dislocation in a hexagonal lat- 
tice is illustrated in Fig. 2a. Dislocations 
are described by a Burgers vector b (a 
lattice vector of the crystal) as  suggested 
by the geometric construction shown (7). 
The additional row of atoms induces a 
strain field that decreases as  the inverse 
first power of the distance from the dislo- 
cation, so that the energy cost, U ,  to add 
the simplest dislocation with ibi = a (lat- 
tice spacing) to a solid with linear size R 
is 

where K = 4pB/(p + B), with 1-1, and B 
the shear and bulk moduli, respectively. 
Here E, is the energy of the core of the 
dislocation. A simple argument due to 
Kosterlitz and Thouless yields an esti- 
mate of the melting temperature, TM, by 
considering the free energy of a single 
dislocation. At nonzero temperature the 
free energy cost to add a dislocation is 
given by U - TS, where S = kB I n ( ~ / a ) ~  
is the entropy associated with the num- 
ber of possible positions of the disloca- 
tion (kg is the Boltzmann constant). 
Therefore, neglecting E,, the free energy 
is 

Fig. 2. (a) Schematic representation of a dislo- 
cation in a triangular two-dimensional lattice. 
Such defects are topological defects In the 
displacement fields of the solid. The atoms 
are located at the vertices. (b) Disclination in 
a triangular lattice. The lattice axis rotates by 
60" around the central fivefold symmetric site. 
There are also disclinations in which the rota- 
tion is -60" which have sevenfold symmetry 
in the central region. In the hexatic phase the 
large strains in such disclinations are relieved 
by the free dislocations. 

At low temperatures, the free energy 
for creation of a dislocation is thus very 
large for a macroscopic system. Howev- 
er,  if T > TM, the temperature given by 
kBTM = a 2 K / 1 6 ~ ,  the free energy be- 
comes negative and hence free disloca- 
tions will spontaneously form. Once this 
occurs, the system will no longer resist 
shear, since shear stress can be relaxed 
simply by moving free dislocations. It 
will hence be a fluid for temperatures 
above the melting temperature TM. The 
elastic moduli will jump discontinuously 
to zero at  the melting temperature with 
the combination K having a universal 
jump given by 

K(TM) = 1 6 ~ r k ~ ~ ~ / a ~  (3) 

Remarkably, this prediction (Eq. 3) 
from the simple free energy argument 
turns out to agree exactly with detailed 
calculations of the melting transition, as  
first pointed out for an analogous case by 
Nelson and Kosterlitz (8). In order to  
give a more accurate description of the 
phase transition it is necessary to consid- 
er the effects of interactions between 
pairs of dislocations. If two dislocations 
with opposite Burgers vectors are sepa- 
rated by a distance r ,  their total energy 
will be finite but increase as In r. Thus, in 
the solid phase there will be an equilibri- 
um thermal distribution of dislocation 
pairs with various separations. In the 
presence of an applied stress these pairs 
act very much like electric dipoles in an 
applied electric field in that they tend to 
align with the applied stress in such a 
way as to  reduce the stress in the solid 
just as electric dipoles screen an electric 
field in a dielectric. This effective screen- 
ing by the dislocation pairs will thus 
reduce the elastic constants. A renorma- 
lization group theory of the melting tran- 
sition developed on  the basis of these 
ideas takes into account the effects of 
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dislocation pairs and also triplets. It  
yields a higher order phase transition and 
detailed predictions for the behavior of 
the elastic moduli and other thermody- 
namic quantities near TM.  AS mentioned, 
the jump in the elastic moduli a t  TM still 
obeys Eq.  3. However, the elastic modu- 
li are found to approach this value in a 
singular fashion. For  example, for a hex- 
agonal crystal 

where F is predicted to be 0.36963 (4, 9). 
This behavior is represented by the solid 
line in Fig. 3. 

One very peculiar prediction of the 
dislocation theory is that, in contrast to 
most higher order phase transitions, at 
which the specific heat diverges or has a 
cusp, all the temperature derivatives of 
the free energy are continuous through 
the melting temperature. There is only a 
very difficult to observe essential singu- 
larity in the specific heat at TM.  

Above the melting transition, the posi- 
tional correlations decay exponentially 
with a correlation length, 5, which is the 
characteristic sepaiation of the free dis- 
locations. At wavelengths less than 5 ,  
the fluid can still support shear (and 
indeed transverse sound can propagate), 
but a t  wavelengths greater than 5 motion 
of the free dislocations relaxes shear 
stresses. The correlation length diverges 
very rapidly as  T approaches TM from 
above, namely 

This result is in contrast to  the power law 
divergence of ((T) as  (T - TJ" at most 
higher order transitions. 

Another interesting prediction of the 
theory concerns the bond orientational 
order. In the two-dimensional solid 
phase the bond orientations exhibit long- 
range order as  illustrated in Fig. 1. 
Above the transition temperature TM the 
free dislocations destroy the positional 
order but, as can be crudely seen from 
Fig. 2a, have a lesser effect on the bond 
orientational order. In fact, it has been 
predicted that just above the melting 
temperature the correlations between 
the local bond directions at  two points in 
the liquid will decay algebraically with 
distance (4). This is somewhat analogous 
to the behavior of a two-dimensional 
nematic liquid crystal except that a ne- 
matic liquid crystal has uniaxial ordering 
of the orientation of rodlike molecules, 
whereas this new phase, which has a 
local hexagonal symmetry, can exist 
even for spherical molecules with isotro- 
pic interactions. For  this reason, this 
fluid phase has been named the hexatic 
phase. It should exhibit an orientational 

0 Heating up 
0 Cooling down 

0 
Temperature a r-l  

Fig. 3.  Shear modulus p. plotted against tem- 
perature for the two-dimensional electron gas. 
The solid line is predicted by the dislocation 
theory (15, I n ,  while the open and closed 
circles are the results of Monte Carlo simula- 
tions by Morf (15). [Reprinted by permission 
of the publisher from (15)] 

elastic constant KH that resists variation 
of the bond orientations, analogous to  
the Frank constants of nematic liquid 
crystals, which likewise describe the 
resistance to deformation of the local 
molecular axis. 

Since the hexatic phase still has alge- 
braic long-range order in the orientation- 
al correlations, there must be  a phase 
transition from this phase to the true 
isotropic liquid phase. This phase transi- 
tion, at a temperature T H ,  can again be 
described in terms of spontaneous cre- 
ation of defects-in this case disclina- 
tions in the hexatic order parameter as  
illustrated in Fig. 2b. The bond orienta- 
tion rotates by 60" as  one moves around 
a point disclination. Due to the spontane- 
ous creation of disclinations, the elastic 
constant KH will drop discontinuously 
to zero at  TH in a fashion similar to  K at  
TM . 

As we have seen, the defect-mediated 
melting from a solid to  an isotropic liquid 
is predicted to be  a two-step process 
with an intermediate hexatic phase. Al- 
though this is an attractive picture, it is 
based on a long-wavelength renormaliza- 
tion group approach that is strictly valid 
only in the limit of a low density of 
thermally activated dislocations. Thus, it 
is not obviously applicable to  any given 
system of atoms or molecules. The 
short-wavelength fluctuations, which are 
ignored, may be important enough to 
make the transition first order, a s  in 

three dimensions, with no intermediate 
hexatic phase. Alternatively, the transi- 
tion could be first order but with a small 
region of hexatic phase remaining. One 
recent result that is rather encouraging is 
the strong confirmation of a similar the- 
ory describing two-dimensional super- 
fluids. In a superfluid, the defects analo- 
gous to  dislocations in the solid are su- 
perfluid vortices. Bishop and Reppy (10) 
performed a series of beautiful experi- 
ments on thin helium films which con- 
firm the Kosterlitz-Thouless defect the- 
ory of the phase transition from the 
superfluid to  the normal fluid, in particu- 
lar the universal jump in the superfluid 
density which is analogous to that in Eq. 
3 (8). Additional evidence has accumu- 
lated from studies of the analogous tran- 
sition in thin-film superconductors (11). 
However, the analogous three-dimen- 
sional phase transition in these two cases 
is second order (in contrast to  three- 
dimensional melting) so that a much 
stronger case can be made for the domi- 
nance of long-wavelength fluctuations 
near the phase transition of the two- 
dimensional system. The validity of the 
dislocation theory for melting is thus 
much less clear, and indeed there are 
many cases in which the melting transi- 
tion is first order (12). The remainder of 
this article will be devoted to examining 
the results of computer simulations of 
two-dimensional solids and a number of 
experiments on systems in which true 
two-dimensional behavor can be investi- 
gated and which potentially have sec- 
ond-order transitions. These include 
electrons on the surface of liquid helium, 
ultrathin free-standing liquid crystal 
films, and incommensurate rare gas 
overlayers adsorbed on graphite. 

Numerical Simulations 

In order to test the theory of disloca- 
tion-mediated melting many numerical 
simulations with both Monte Carlo and 
molecular dynamics computations have 
been carried out (13-16). One of the 
advantages of these computer simula- 
tions, which are strictly two-dimension- 
al, is that many quantities that are diffi- 
cult to  measure in experiments are  
"measurable" (that is, numerically cal- 
culable) in simulations. In addition, com- 
puter simulations are possible with a 
wide variety of interactions between the 
atoms. The standard Lennard-Jones po- 
tential involving a strong repulsive core 
with an attractive van der Waals tail, a 
reasonable approximation to the interac- 
tion between rare gas atoms, is frequent- 
ly used, as  well as  purely repulsive pow- 
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er law potentials of the form V(r) x l /ru. 
Generally, the properties of the system 
will depend both on the areal density, n,, 
and the temperature. For  power law in- 
teractions, however, all the properties 
are determined by a single dimensionless 
parameter: the ratio of the characteristic 
potential energy to the mean kinetic en- 
ergy T  (the temperature). For  example, 
the case u = 1 describes a two-dimen- 
sional layer of electrons (see next sec- 
tion) which interact with a potential e2/r, 
where e is the electron charge. The di- 
mensionless parameter is then 

All the properties of a layer of electrons 
can thus be determined by varying only 
the temperature at  a fixed density. In the 
limit where u -+ m, on the other hand, 
the power law interaction becomes 
equivalent to that between hard disks. In 
this case, the order or disorder of the 
atoms is entirely determined by entropy 
or free volume. Hard disks form a solid 
at high densities (near close packing) and 
melt by a first-order transition below a 
critical density which is independent of 
temperature. 

Before discussing the results of the 
computations, we  briefly mention the 
drawbacks of computer simulations. 
Even with the fastest computers, simula- 
tions are limited to  a small number of 
particles, usually less than 1000, so that 
correlations can be measured only out to 
rather short distances. Hence, many ef- 
fects-such as  the statistics of disloca- 
tions near the Kosterlitz-Thouless transi- 
tion-may be obscured, especially since 
the correlation length is expected to  
grow extremely rapidly just above the 
melting transition. Another and probably 
more serious drawback is the relatively 
short time scale in the simulations. The 
longest currently affordable runs corre- 
spond to only a few hundred picosec- 
onds of real time. Because of the slow 
motion of defects, the time needed to 
establish thermal equilibrium will be 
quite long, and there is considerable con- 
troversy over whether the computer sim- 
ulations are in equilibrium in the region 
near the melting temperature. With these 
reservations in mind, we  present below a 
brief summary of the results common to 
several systems. At low temperatures a 
nonzero shear modulus is observed, and 
for most systems the values of the elastic 
moduli at the apparent melting tempera- 
ture, obtained both from the dynamic 
correlation functions and by direct appli- 
cation of stress, are near the Kosterlitz- 
Thouless prediction (14). In particular, 
Morf (15) has found (see Fig. 3) quantita- 

tive agreement at all T  < T M  between 
the computed shear modulus for an elec- 
tron system and analytical calculations 
(15, 17). In addition, the critical value of 

obtained agrees well with renormaliza- 
tion group calculations and with experi- 
ments with electrons on helium (see be- 
low). 

In the solid phase, all simulations yield 
long-range bond orientational and power 
law positional order. In the fluid phase, 
on the other hand, the correlations fall 
off exponentially with a correlation 
length that grows rapidly as  T  -2 T M .  
However, the correlation length typical- 
ly reaches only on the order of five 
lattice spacings in the liquid phase. This 
6 ,  though a factor of 3 larger than typical 
maximum correlation lengths in simple 
three-dimensional fluids, is considerably 
less than the system size. In addition, 
many authors have calculated free ener- 
gy curves and find hysteresis a t  the melt- 
ing transition and an apparent latent 
heat, TAS,  which they interpret as evi- 
dence for a first-order transition. The 
apparent entropy changes A S  are, how- 
ever, typically one-third to one-half of 
the changes at the corresponding three- 
dimensional melting transition. 

Pictures of the dislocation distribu- 
tion, obtained by a clever method pio- 
neered by McTague et al. (16), show 
only bound pairs below T M ,  as expected. 
As the temperature increases they tend 
to show a very rapid rise in the number 
of dislocations near T M ,  including "free" 
ones as well as  a region of possible two- 
phase coexistence consistent with a first- 
order transition. It  appears rather unlike- 
ly, however, that equilibrium can be  
reached, even in the longest computer 
runs, once the correlation length is much 
more than a few lattice spacings. It  is 
thus not clear whether the results are 
more consistent with a second-order 
Kosterlitz-Thouless transition for some 
interactions or always indicate a first- 
order transition. The interpretation of 
the results may well remain a matter of 
controversy and personal prejudice for 
some time. As we  will see, however, 
several real experimental systems al- 
ready yield results that are quite consist- 
ent with the Kosterlitz-Thouless-Hal- 
perin-Nelson-Young theories. 

Electrons on Helium 

One of the simplest two-dimensional 
systems consists of a single layer of 
electrons floating 100 angstroms above 
the surface of superfluid helium-4, re- 
pelled by the bulk helium but held to the 
surface by their image potential interac- 

tion and an applied vertical electric field 
(18). The electrons behave almost com- 
pletely classically-quantum effects are 
negligible due to  the low densities, 
n, = lo8 to lo9 per square centimeter. As 
mentioned above, due to the simple form 
of the Coulomb interaction between the 
electrons, all properties of the system 
are a function only of the dimensionless 
ratio r, given in Eq .  6. At small r the 
electrons are uncorrelated and form a 
fluid or two-dimensional plasma. How- 
ever, when r exceeds a critical value rM,  
the electrons are expected to form a 
hexagonal Wigner crystal-named for 
the first physicist to suggest that at low 
densities electrons should behave classi- 
cally and crystallize. 

A few years ago, in the culmination of 
a series of experiments on the electron 
fluid, Grimes and Adams (19) found that 
if they cooled the electrons on helium in 
their cylindrical experimental cell to  be- 
low 0.5 K ,  several mysterious new reso- 
nances appeared in the radio-frequency 
absorption spectrum. The temperature at  
which these modes appeared scaled 
properly with 6, corresponding to a 
value of r at onset of rM = 137 ? 15, 
which they interpreted a s  the melting 
point of the Wigner crystal. 

A detailed analysis of the experiments 
by Fisher et al. (20) led to  the interpreta- 
tion of the new resonances as coupled 
longitudinal modes of the electron solid 
and helium surface waves (ripplons), 
with wavelengths determined by the cy- 
lindrical sample cell. In the solid phase, 
the electric field pressing the electrons 
onto the helium surface causes a very 
shallow (0.01 to 0.1 A) dimple to  form 
under each electron (21). In the fluid 
phase, the electrons move too rapidly for 
the dimples to  form. The coupled 
modes-which involve relative motion 
of the electron lattice and dimple lat- 
tice-are thus a good indication of the 
presence of a Wigner crystal. 

Experimentally, while the resonances 
appear rapidly as  the system is cooled, 
there is no jump in frequency or ampli- 
tude. In addition, no hysteresis is ob- 
served. Both of these observations are 
consistent with a higher order melting 
transition. 

While it is only possible at present to  
compare rM with the dislocation theory, 
as discussed in the previous section, in 
principle it should be possible to obtain 
the shear modulus of the electron crystal 
by exciting long-wavelength shear waves 
electromagnetically and measuring the 
transverse sound velocity. Direct com- 
parison with the theoretical prediction 
for the jump in the elastic moduli should 
then be possible. 

SCIENCE, VOL. 217 



One of the advantages of electrons on 
helium, in addition to the simple interac- 
tions, the lack of impurities, and the 
possibilities of coupling to the electrons 
electromagnetically, is that the helium 
substrate, unlike solid substrates, does 
not affect any thermodynamic or static 
properties of the electron layer. In fact, 
statistical mechanicians can immediately 
"integrate out" the effects of the helium 
ripplons and henceforth ignore them as 
far as any static properties are con- 
cerned. It is thus rather ironic that the 
first observation of the long expected 
Wigner crystal was made possible by the 
dynamic coupling of the electrons to 
ripplons. 

Liquid crystal thin films 

Spreader 
Liquid 
crystal 7 6  

material p9T 
0.2 mm - 

Liquid Crystal Films 

While electrons on helium form a very 
low density solid that does not have 
structure on atomic scales, most two- 
dimensional solids are formed of atoms 
or molecules with lattice spacings of a 
few angstroms. Since two-dimensional 
melting is basically a structural problem, 
one expects x-ray scattering, which is 
sensitive to structure on atomic scales, 
to be an important experimental probe 
for studying other two-dimensional sys- 
tems. 

However, two major difficulties gener- 
ally prevent routine x-ray studies of two- 
dimensional melting 

b 
Reciprocal space 

First, although sur- 

faces, interfaces, and thin films literally 
surround us, it is quite rare to come upon 
a two-dimensional crystal to use as a 
sample. Nevertheless, as we will de- 
scribe below, it has been possible to 
prepare suitable two-dimensional crys- 
tals and study their behavior near melt- 
ing. Second, the x-ray scattering cross 
section for a two-dimensional system is 
generally small, some four to six orders 
of magnitude weaker than that of three- 
dimensional crystalline specimens. For- 
tunately, the recent development of x- 
ray scattering experiments at high-flux 
synchrotron radiation sources such as 
the Stanford Positron Electron Acceler- 
ating Ring (SPEAR) has overcome the 

T = 40°C 
4 layers n C 4 H o O ~ C H = N - - @ 2 . H j ,  - - --- Resolution IT 

(units 1.45 A- ' )  

2 layers f I --- Resolution I I 

Fig. 4. (a) Schematic representation of the liquid crystal film drawing technique with inset showing an enlarged section of two-layer crystalline 
film. (b) Reciprocal space appropriate to a simple two-dimensional hexagonal lattice, showing the different directions of the x-ray scans described 
in the text. (c) X-ray data obtained on a four-layer film by use of a rotating anode x-ray generator with a diffraction apparatus having a resolution 
shown by the dashed line (width ;= 0.04 A-') .  The solid line is a fit of the power law line shape described in the text with exponent 7 = 0.15. (In- 
set) Temperature dependence of 7 ;  the two curves represent upper and lower limits of the uncertainty in the fitting procedures. [Reprinted by 
permission of the publisher from (23)l (d) X-ray data obtained on a two-layer film at the Stanford Synchrotron Radiation Laboratory, using the im- 
proved resolution available with synchrotron beams (width -- 6 x lW4  k'). The solid line is a fit to the power law line shape with 7 = 0.13. 
[From (25)] 
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intensity limitations of conventional lab- 
oratory x-ray sources. 

The first attempts to study the melting 
of two-dimensional crystals exploited 
the remarkable ability of some liquid 
crystals to form freely suspended films 
(like soap bubble films). These can be 
made as thin as two molecular layers (50 
A) with an area of 1 cm2. This technique 
was developed at Harvard (22) and has 
been exploited in x-ray scaltering experi- 
ments by Moncton and Pindak (23). As 
shown in Fig. 4a, the film is drawn 
across an open hole in a glass cover 
slide. In the crystalline phase, the elon- 
gated molecules order with their long 
axes perpendicular to the plane of the 
film and form a simple close-packed hex- 
agonal lattice on the plane. Optical re- 
flectivity measurements can easily deter- 

mine the thickness of the film-that is, 
the exact number of layers-which is 
found to be uniform over the entire sam- 
ple area. Generally, this thin liquid crys- 
tal film technique offers two important 
advantages. First, it produces single- 
crystal two-dimensional solids that are 
not under the influence of any substrate 
potentials. Second, from the x-ray scat- 
tering viewpoint, the lack of any sub- 
strate or sample cell walls greatly re- 
duces the background scattering against 
which the x-ray signal must be visible. 

In Fig. 4b we show a schematic view 
of the reciprocal space representing this 
two-dimensional hexagonal lattice. In 
diffraction experiments Bragg rods are 
observed by scanning the x-ray momen- 
tum transfer variable Q and measuring 
the scattering intensity. One is generally 

Xenon adsorbed on graphite (001) surface 

Xenon 
Substrate Lennard-Jones 

spacing diameter 

interested in the line shape of the rod, 
scanning out from the origin of recipro- 
cal space; it is this information that is 
directly related to the Fourier transform 
of the positional correlation function dis- 
cussed in the theoretical section. Figure 
4c shows data (24) obtained on a material 
called 40.8 [N-(4-n-butyloxybenzyli- 
dene)-4'-n-octylaniline] by using a con- 
ventional (50-kilowatt) rotating anode x- 
ray generator, and Fig. 4d shows data 
(25) on another material, 14% (4-n-pen- 
tylbenzenethio-4'-n-tetradecyloxybenzo- 
ate) taken with synchrotron radiation. In 
both cases the samples are in the two- 
dimensional crystalline state, where 
Bragg singularities should theoretically 
be of the form S(Q) = IQ - G I - ~ ' ? .  In- 
deed, this form does fit the experimental 
line shapes. The most remarkable aspect 

* 
c - 150 152 154 156 

Temperature (K) 

Fig. 5. (a) Illustration of a monolayer of xenon adsorbed on the (001) surface of graphite. The structure at the full monolayer coverage is 
incommensurate with the substrate because of the large size of the xenon atoms. (b) Typical diffraction profiles from the closed cell solidification 
runs. Empty cell background, corrected for xenon x-ray absorption. has been subtracted. The solid lines for T = 135.0 and 151.3 K are fits to a 
power law line shape, as  discussed in the text. The solid lines for T = 152.0 and 160.0 K are fits to a powder and tilt-averaged Lorentzian. 
[Reprinted by permission of the publisher from (30)] (c) Inverse correlation length K determined from a Lorentzian line shape analysis. The solid 
line is a fit of K versus T to the theoretical prediction with i = 0.4 and T,, = 152 K ,  as discussed in the text. [Reprinted by permission of the pub- 
lisher from (3011 
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of the data is the fact that the line shape 
scales with the instrumental resolution 
when the latter is improved by a factor of 
-50 in going from rotating anode data 
(Fig. 4c) to synchrotron radiation data 
(Fig. 4d). The solid lines in Fig. 4, c and 
d,  are fits to the data obtained by convo- 
luting the resolution function (dashed 
line) with S(Q) = IQ - GI-~ '" .  Since 
this form has no length scale, the result- 
ing convoluted function will depend only 
on the ratio of the momentum transfer to 
the resolution width. This would clearly 
not be the case if the system were a 
liquid, for which the scattering intensity 
is of the form s ( Q ) ~ ( Q ~  -t K ~ ) - ' ,  where 
K = 116 is the inverse of the liquid corre- 
lation length. This resolution scaling is 
thus strong evidence for the applicability 
of the two-dimensional crystalline struc- 
ture factor. 

As discussed at the outset of this arti- 
cle, one expects a two-dimensional solid 
to exhibit a nonzero shear modulus in 
addition to the characteristic structure 
factor discussed above. Pindak et al. (26) 
succeeded in measuring the in-plane 
shear modulus of liquid crystal films by 
using a very sensitive resonant oscillator 
technique. From these experiments 
there is certainly no doubt about the two- 
dimensional solid nature of these materi- 
als, and one is thus encouraged to use x- 
ray data to extract the temperature de- 
pendence of the exponent q. A first 
attempt to do this is shown in the inset in 
Fig. 4c. The measurements are subject to 
some uncertainty and the solid and 
dashed lines represent upper and lower 
limits. The results indicate that q at 
melting (TM = 50°C for 40.8) is close to 
the range predicted by theory, 114 
5 q 5 113. Although there are few data 
so far above TM, experiments on the 
melting of thin-film liquid crystals are 
being continued. 

Studies of thick films (greater than 100 
layers) have produced exciting indirect 
evidence in support of the existence of 
the hexatic phase between the solid and 
fluid phases in a material called 65OBC 
(27) (n-hexyl-4'-n-pentyloxybiphenyl-4- 
carboxylate). In this work, a new liquid 
crystal phase has been discovered which 
can be thought of as a stack of two- 
dimensional hexatic layers. The x-ray 
data show that sixfold bond orientational 
order develops in the layers upon cooling 
through a well-defined higher order 
phase transition. Above the transition, 
the system is in the smectic A phase, 
which is a bulk three-dimensional phase 
that can be thought of as a stack of two- 
dimensional liquid layers. The x-ray 
scattering from this phase consists of a 
cylinder in reciprocal space. The cylin- 

der wall has a Lorentzian intensity pro- 
file as a function of the radial momentum 
transfer, Q 1 (see Fig. 4b). As the transi- 
tion takes place, the scattering in the 
cylinder develops six maxima as a func- 
tion of X ,  indicating the development of 
long-range bond-orientational order; but 
the Lorentzian shape persists in the Q 11 
direction. Obviously the system has not 
developed the positional long-range or- 
der characteristic of a three-dimensional 
crystal. Rather, the observed structure is 
that expected, and in fact anticipated 
(28), in extensions of the Halperin-Nel- 
son ideas to a three-dimensional stack of 
layers, each of which is in the two- 
dimensional hexatic state. In analogy 
with the two-dimensional hexatic phase, 
the three-dimensional stacked hexatic 
phase is not solid and should not support 
a shear force. Indeed, measurements of 
the in-layer shear modulus by Pindak et 
al. (29) reveal that the shear modulus, 
which is nonzero in the lower tempera- 
ture three-dimensional crystalline phase, 
vanishes in the stacked hexatic phase. 
These experiments strongly suggest that 
thin liquid crystal films offer the best 
opportunities for observation of a two- 
dimensional hexatic phase. 

Rare Gases Adsorbed on Graphite 

Having shown the applicability of the 
power law structure factor to the Bragg 
scattering from two-dimensional crystals 
and mentioned the discovery of a three- 
dimensional analog to the hexatic phase, 
we now turn our attention to the details 
of the two-dimensional melting phase 
transition. A class of systems consisting 
of rare gases physisorbed on the (001) 
basal planes of pyrolytic graphite has 
provided an enormous array of surface 
phase transitions that are ideally suited 
to x-ray scattering studies (30). To date, 
the most substantial progress on the two- 
dimensional melting problem has been 
made with the system consisting of 
slightly more than one monolayer of xe- 
non atoms, as shown schematically in 
Fig. 5a. The xenon Lennard-Jones diam- 
eter is larger than the separation of the 
relevant minima in the substrate poten- 
tial of the graphite, and hence the natural 
lattice spacing of the adsorbate is incom- 
mensurate with the substrate. It has been 
shown theoretically that the weak graph- 
ite potential (37 K) should not qualita- 
tively alter the behavior of the melting 
phase transition from that on a smooth 
substrate even though the system differs 
slightly from the ideal two-dimensional 
system. In general, substrate potentials 
and other effects such as promotion to 

the second layer can affect the nature of 
the phase transition. Nevertheless, the 
data shown in Fig. 5, b and c ,  demon- 
strate consistency with the dislocation 
theory at a remarkably quantitative level 
(30). 

In Fig. 5b, we show a series of scans of 
x-ray intensity versus the radial momen- 
tum transfer through the Bragg rods (see 
Fig. 4b). The disorder of the graphite 
substrate causes an azimuthal averaging 
of the scattering, rendering it effectively 
cylindrical. In addition, substrate tilt dis- 
order (that is, in the orientation~ of the 
graphite planes) leads to an asymmetric 
line shape with excess high-Q 1 scatter- 
ing. However, this disorder is well un- 
derstood and does not stand in the way 
of extracting the intrinsic line shapes as 
the data of Fig. 5b demonstrate. In the 
experiment, the melting transition oc- 
curs at TM = 152 K. Two scans below 
TM shown in the upper portion of Fig. 5b 
are well described by line shapes based 
on convoluting power law singularities 
with the resolution function and per- 
forming the appropriate azimuthal and 
tilt averages. In contrast to the liquid 
crystal case, the resolution width here is 
dominated by the coherence size (-2000 
A) of the substrate domains. At low 
temperatures (see the T = 135 K scan) a 
small bump on the high-Q 1 side can be 
seen and is understood in terms of weak 
modulation of the xenon overlayers by 
the substrate potential. This bump weak- 
ens gradually and has vanished before 
reaching T,. Excluding this effect, the 
data in this two-dimensional crystal 
phase can be fit within experimental er- 
ror to the q power law form, with the 
exponent q increasing with temperature 
to a value at melting in the range predict- 
ed by theory. 

Above the higher order transition at 
TM, a free two-dimensional system 
would presumably be in the hexatic 
phase with an isotropic liquid phase at 
higher temperatures. The physisorbed 
systems are expected to exhibit only one 
phase above TM, which will be orienta- 
tionally ordered at all temperatures due 
to the presence of the substrate. Observ- 
ing even this externally imposed orienta- 
tional order is not possible, however, in 
the presence of azimuthal disorder. Nev- 
ertheless, one can see the evolution of 
finite positional correlations above TM, 
which produce a Lorentzian shaped 
structure factor with a temperature-de- 
pendent inverse correlation length K. 

Data taken between 152 and 160 K show 
a continuous evolution of the correlation 
length over an entire decade limited 
above by the finite size of the substrate 
domains. As shown in Fig. 5c, the tem- 
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perature dependence of the correlation 
length is marginally better described by 
the form predicted by the dislocation 
melting theory, KK exp[-B(T - T ~ ) - - ~ I ,  
than by the conventional power law sin- 
gularity of the form KX (T - T,)". Of 
course, the most notable observation is 
that the correlation length grows increas- 
ingly rapidly as TM is approached from 
the fluid side to a length scale far in 
excess of those seen in any three-dimen- 
sional liquid and greater than the size of 
any two-dimensional computer-simulat- 
ed system. These data thus provide very 
convincing evidence for a higher order 
transition. 

While many experiments need to be 
done to make a conclusive case for dislo- 
cation-mediated two-dimensional melt- 
ing, the results of the experiments de- 
scribed here look extremely encouraging 
in a number of cases. 
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logically sophisticated care, scientific re- 
search, scientific management and quali- 
ty control, and the effective teaching and 

Hospital 
Critical Care at Tianjin's First Central 

and the Fourth Modernization 
Renee C. Fox and Judith P. Swazey 

The Chinese 
what they call 

refer appreciatively to 
a "window-picture": a 

dynamic iiew of a landscape; framed by 
a window in such a way that it is not only 
esthetically pleasing but also humanly 
interesting and intellectually and morally 
edifying. The Critical Care Unit (CCU) 
of the Tianjin First Central Hospital con- 
stituted such a window-picture for us (1). 
It provided us with a concrete, focused 
perspective on the application of China's 
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current policy of the four modernizations 
(agriculture, industry, national defense, 
and science and technology) to the field 
of medicine. On this unit, the fourth 
modernization (2)-science and technol- 
ogy-is continuously brought to bear on 
the cases of critically ill patients who are 
sent to the hospital from the cities and 
the countryside of the province in which 
it is located. The CCU is part of a 
prominent, urban, "upper middle level 
hospital" that is known for its leadership 
in nursing and its competence in medi- 
cine and surgery, particularly the treat- 
ment of emergency and critical condi- 
tions. The hospital is committed to serv- 
ing the patient by progressively "scaling 
the heights" of modern medicine 
through advanced scientific and techno- 
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implementation of "medical morality. " 
In striving to realize these goals, the 

CCU epitomizes the complex processes 
of what the Chinese call "walking on two 
legs" (3). A chain of dualities is in- 
volved: an intricate balancing of modern 
Western and traditional Chinese medi- 
cine, community public health and indi- 
vidual patient care, central control and 
institutional autonomy, preventive and 
curative medicine, primary and tertiary 
care, acute and chronic illness, rural and 
urban needs, mental and manual labor, 
being "Red" and being "expert," prole- 
tarianism and elitism, the old and the 
new, and the balancing of ideas and 
resources imported from abroad and 
"made in China." 

A series of dilemmas that ramify be- 
yond the walls of the First Central Hos- 
pital and its CCU are contained in these 
dualities. Societal precepts constantly 
shift concerning how the dilemmas ideal- 
ly should be resolved, and what combi- 
nations of binary elements and states of 
equilibrium between them this implies. 
Proper "two-leggedness" in the medical 
as in all other spheres of Chinese society 
is not only defined and monitored but 
repeatedly altered by the flow of minor 
and major national policy directives that 
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