
remaining, bound SO4- groups. Amide- 
modified 0.5-km particles were ingested 
in the same proportion (100 percent effi- 
ciency) at which they were in suspension 
(treatment 4, Table 2 ) ,  in contrast to the 
0.5-km unmodified polystyrene particles 
(treatment 1, Table 1). Addition of a 
surfactant caused a statistically signifi- 
cant reduction in capture efficiency of 
0.5-krn unmodified particles (treatment 
3, Table 1) to 44 percent and of amide- 
modified particles (treatment 5, Table 2) 
to 71 percent. These experiments indi- 
cate that capture efficiencies of the 
smallest particles can be affected by 
changing surface charge of the particles 
and by changing wettability. Neutral par- 
ticles were captured more readily than 
particles with a net negative charge, and 
addition of a surfactant, which increases 
the wettability of both particles and ani- 
mals, caused more particles to escape 
the filtering apparatus of the Daphnia. 

Differential particle capture on the ba- 
sis of charge and wettability has general 
significance for freshwater and marine 
filter feeding. Natural particles have a 
range of surface properties that affect 
their adsorption to surfaces and move- 
ment through fluids (16). Anomalous se- 
lective feeding by zooplankton may be 
explained on the basis of surface chemis- 
try, in that the animals' filtering appen- 
dages may have had greater affinities for 
some particles than for others (17). Se- 
lective filter feeding by copepods (18) 
may in fact be due to surface chemistry 
interactions rather than size selection or 
taste selection. Surface charge is affect- 
ed by pH (16), so we may expect that 
environments with extreme pH values 
will affect filter-feeding capabilities of 
small invertebrates. The elimination of 
certain zooplankton species from sys- 
tems with elevated pH due to high rates 
of photosynthesis, or lowered pH due to 
dissolved humic substances or acid rain 
(19), may be due to a reduced ability of 
certain species to capture food as well as 
other effects mediated by pH. Finally, 
we may expect surface adaptations of 
filter-feeding animals and their prey to 
enhance or reduce particle capture. An 
example of this might be the nonwetta- 
bility of the exoskeleton of cladocerans, 
which frequently imprison small individ- 
uals in the surface tension of the water, 
but may aid in particle capture. The 
interactions between surface chemistry 
and feeding may change some of our 
models in aquatic ecology. 
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Deep Oxygenated Ground Water: 
Anomaly or Common Occurrence? 

Abstract. Contrary to the prevailing notion that oxygen-depleting reactions in the 
soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge 
water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in 
water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and 
the hot springs of the folded Appalachians and Arkansas. Most of the waters 
sampled are several thousand to more than 10,000 years old, and some are 80 
kilometers from their point of recharge. 

The geochemical and hydrogeologic 
literature provides a broad spectrum of 
notions regarding the occurrence of dis- 
solved oxygen (DO) in ground water. 
The views range from the idea that DO is 
absent below the water table (1, 2) to the 
idea that DO is purportedly generated by 
the radiolysis of water at depths of 2 to 3 
km (3). The prevailing opinion (1, 4, 5) is 

that the bulk of DO in recharge water is 
consumed in the soil and unsaturated (or 
vadose) zones by microbial respiration 
and the decomposition of organic matter, 
or rapidly thereafter in the aquifer by 
various mineral-water and organic oxida- 
tive reactions. Despite the multitude of 
studies of ground-water geochemistry in 
the last decade, measurements of DO in 

0036-807518210611-1227$01.00/U Copyright 0 1982 AAAS 1227 



water from shallow (< 100 m) aquifers 
(6) are not routine and such measure- / Spring Mountains 

(principal recharge area) 
r i \.. \ Ash Meadows areaa31i (principal discharge area) 

.- 

ments have rarely been made for deeper 
ground water (7). It is our intent here to  
document the widespread presence of 
DO in significant (2 to  8 mgiliter) concen- 
trations in water several thousand to 
more than 10,000 years old from deep 
aquifers of several lithologies in both 
arid and humid climates, and at  distances 
as great as  80 km from recharge areas. 

Because of the ease with which anoxic 
well waters can be oxygenated, special 
precautions were taken during sampling. 
The pumping water levels, in the high- 
capacity production wells chosen for 
sampling, were several meters to tens of 
meters above the pump intakes. In addi- 
tion, many of these wells tap confined 
aquifers; in such wells, entrainment of 
air by pumping is unlikely because of the 

L 
0 2 0 40 60 80 

Approximate distance (km) along flow path 

Fig. 1 .  Variation in the dissolved oxygen content of ground water along an approximately 80-km 
flow path in the Ash Meadows ground-water basin, south-central Nevada. The first number in 
parentheses is the temperature of the water (in degrees Celsius); the second is the number of 
measurements at the site, or at Ash Meadows the number of springs sampled. Error bars 
represent 1 standard deviation for Cold Creek Spring and seven Ash Meadows springs; the 
standard deviation is too small to show for the other three stations. Highly fractured Paleozoic 
carbonate rocks comprise the aquifer; hydrogeologic, hydrochemical, and isotopic studies of 
this ground-water flow system and location of the line of section and sampling sites are given in 
(10). 

absence of unconfined flow. The sample 
bottles were purged and sealed within 
the full flowing discharge pipe. Sampling 
in the flowing artesian wells and springs 
was accomplished by filling and purging 
the sample bottles under water. We car- 
ried out replicate analyses in the field by 
using either a modified Winkler method 
or a dissolved oxygen meter (8). That our 
sampling techniques did not introduce 
O2 is best shown by the absence of DO in 
water sampled in similar ways from deep 
aquifers (9) which contain organic detri- 
tus and in which DO should, intuitively 
at least, be absent. 

Dissolved oxygen occurs at concentra- 

8 Vekol Valley 

Ranegras Plain 

275 A Butler Valley 
Flowing 

275 180 8 San Pedro Valley ;/ 32 + San Simon Wash 

/259 
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tions of 2 to 8 mgiliter in water from a 
variety of aquifers in the south-central 
Great Basin, Nevada. These aquifers- 
principally Paleozoic carbonate rocks, 
Tertiary welded tuffs, and Quaternary 
valley fill-occur at  depths of 200 to 1000 
m (10). Water table (more correctly po- 

Arizona 

tentiometric surface) depths in the region 
range from 200 to 660 m below the sur- 
face (10). The residence time of water 
from most of these aquifers is on the 
order of thousands to more than 10,000 
years (11). Figure 1 shows the variation 
in DO along an 80-km flow path in the 
Paleozoic carbonate-rock aquifer of the 
Ash Meadows ground-water basin (12). 

Dissolved oxygen has been observed 
in all shallow (< 100 m) and deep 
ground water from valley-fill aquifers in 

Distance from recharge area (km) 
the southern Arizona portion of the Ba- 
sin and Range Province. Unequivocal 
evidence of DO at depths of hundreds of 

Fig. 2. D~ssolved oxygen in deep ground waters versus the approximate distance from recharge 
areas In five intermontane basins of southern Arizona. Numbers on the index map identify the 
following locations: 1,  Vekol Valley, 2,  Ranegras Plaln; 3, Butler Valley; 4, San Pedro Valley; 
and 5, San Simon Wash. Numbers next to the well symbols are, from top to bottom: the well 
depth (in meters), the depth to water (In meters), the depth to the top aquifer (in meters), and the 
temperature (in degrees Celsius). Letters designate well locations, based on the U.S. Geological 
Survey and state of Arizona township, range, section, system: well A ,  (D-7-2)18ABA; B, (D-8- 
1)31CBC; C, (D-7-l)lOCBCZ; D, (D-8-1)14BAA; E, (D-9-1)13BBD; F, (D-8-1)35ABD; G, (B-4- 
15118BBB; H, (B-6-16)33AAA; I, (B-6-16)26AAD; J, (B-3-15)2DAB; K, (B-8-14)29CDD; L, (D- 
9-17124DCC; M, (D-8-17)32DAA; and N, (C-16-1)lOCCA. 

meters was obtained from wells in sever- 
al of the agriculturally less developed 
basins where well construction, thick- 
ness of aquifer tapped, location of re- 
charge areas, and the absence of oxygen- 
ated irrigation return flow could be docu- 
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mented. The basins sampled and our 
results are shown in Fig. 2. In many of 
the areas sampled, the aquifers are over- 
lain by a thick (> 100 m) clay stratum, 
which effectively precludes the possible 
mixing of deep water with shallow oxy- 
genated ground water. Hydraulic and 
I4C data (13) indicate water ages in ex- 
cess of 10,000 years for most of the wa- 
ter sampled. 

The DO content of thermal spring wa- 
ters in the Valley and Ridge Province 
from western Georgia to  eastern New 
York and the waters of Hot  Springs 
National Park, Arkansas, ranges from 2 
to 7 mglliter (14). Water temperatures 
are between 30" and 60°C, and the mini- 
mum depths of water circulation are 250 
to 2300 m. Hydrogeologic and isotopic 
evidence suggest relatively short flow 
paths (from recharge to discharge areas), 
on the order of a few kilometers to  at  
most tens of kilometers (14). The flow to 
some springs is chiefly through carbon- 
ate rocks, whereas flow to other springs 
is entirely in siliceous reservoir rocks. 

The 3H data for some of these hot 
springs suggest that their DO content 
may represent a mixture of deeply circu- 
lating thermal water and relatively shal- 
low, cooler, and younger ground water 
(14). However, several spring waters 
that have a DO content of 2 to  7 mglliter 
have negligible 3H (< 1 1 1 tritium 
unit). The low 3H content is a clear 
indicator that these waters are, at the 
least, predominantly of pre-H-bomb (be- 
fore 1952) age. The Arkansas waters 
have a 14C age of about 4000 years (14). 

The presence of D O  in the deep car- 
bonate-rock aquifers of the Great Basin 
and the folded Appalachians (14), like 
that in the shallower carbonate aquifers 
of Great Britain [Edmunds (6); Morgan- 
Jones and Eggboro (6)] did not complete- 
ly surprise us, despite the great differ- 
ence in the age of the shallow and deep 
waters. Commonly, recharge to  such 
aquifers is oxygenated, after passage 
through soils, by flow through fissures 
and caverns in the unsaturated zone. 

More importantly, flow through the 
dense carbonate-rock aquifers that we 
sampled is predominantly by way of so- 
lution-modified fractures rather than 
through intercrystalline pore space; rela- 
tively rapid flow through, and the low 
ratios of rock surface area to  water vol- 
ume in, such fractured aquifers would 
not favor removal of D O  by chemical 
reactions. Moreover, in the middle and 
distal portions of regional flow systems 
comprised of carbonate-rock aquifers, 
oxidizable minerals, if originally present 
along fracture surfaces, are likely to  be 
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coated with calcite or dolomite precip- 
itated from the ground water. 

The presence of D O  contents of 2 to  8 
mglliter in the deep valley fill and tuff 
aquifers of Nevada and Arizona, al- 
though unexpected, appears in hindsight 
to be qualitatively explainable. Valley- 
fill sediments of the Basin and Range 
Province were deposited under generally 
oxidizing conditions and probably re- 
mained exposed to oxidizing arid and 
semiarid climates for tens to  hundreds of 
years prior to  burial; after burial they 
commonly remained in oxidizing unsatu- 
rated zones for tens of thousands to  
perhaps hundreds of thousands of years, 
depending upon the rates of basin sub- 
sidence and the depth to the regional 
water table. Such depositional environ- 
ments hardly favor the preservation of 
readily oxidizable organic or mineral 
matter. Moreover, recharge to such 
aquifers is commonly by way of the 
infiltration of oxygenated runoff along 
the bottoms of major arroyos; such re- 
charge may have little contact with 
readily decomposable o r  relatively unox- 
idized soil organic matter. 

More puzzling is the presence of DO in 
those Arkansan and Appalachian hot 
springs (14) whose water has passed 
principally through fractured siliceous 
rocks. Recharge to  these humid-zone 
aquifers probably had to traverse an or- 
ganic-rich soil zone; moreover, the res- 
ervoir temperature (30" to 60°C) should 
certainly have favored both the outgas- 
sing of the DO and mineral-water reac- 
tions. Perhaps all pertinent reactions (or- 
ganic and inorganic) involving D O  have 
gone to completion within the aquifer 
prior to the entry of the extant ground 
water, as  hypothesized by Galloway (7) 
for the oxidative "tongues" found in 
sandstones containing roll-front uranium 
deposits. 

We hope that this report will stimulate 
a systematic appraisal of DO in future 
geochemical studies of shallow and 
deep ground water. Such measurements, 
which can readily be made in the field, 
are essential for predictions of the move- 
ment of toxic transition metals (15) and 
actinide radionuclides in aquifer environ- 
ments (15). The common assumption 
that reducing conditions prevail in deep 
aquifer environments must be tested on a 
case-by-case basis. 

Note added in proof: Mineralogic evi- 
dence for deep oxidizing conditions in an 
1800-m-thick Tertiary ash-flow and ash- 
fall tuff sequence in the Jackass Flats 
area of southern Nevada is given by Bish 
et al. (16). They found highly oxidized 
iron-titanium minerals in cores (test hole 

USW-GI, Yucca Mountain) from the up- 
per 1600 m of this tuffaceous sequence. 
The water table is about 580 m deep a1 
the site of the test hole. We measured 
DO (6 to 7 mglliter) in ground water. 
from the upper 120 m of the saturated 
zone in this volcanic sequence, a t  nearby 
water-supply wells J-12 and J-13. We are 
not suggesting that the extant ground 
water caused the deep oxidation noted 
by Bish et al., because such oxidatior 
might well have occurred several millior 
years ago. Rather we cite their work tc 
suggest that oxidizing conditions were 
once, and may still be, present withir 
this volcanic rock sequence at  considera. 
bly greater depths than the water we 
sampled. 

ISAAC J. WINOGRAL: 
U.S. Geological Survey, 
Reston, Virginia 22092 

FREDERICK N.  ROBERT SO^ 
U.S. Geological Survey, 
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Induction of Crisis Forms in Cultured Plasmodium falciparum 

with Human Immune Serum from Sudan 

Abstract. Serums from 90 individuals from three areas in Sudan were tested for 
inhibitory activity against cultures of Plasmodium falciparum. In addition to inhibi- 
tory activity against merozoite invasion, all of the serums demonstrated, in varying 
degrees, the ability to retard intraerythrocytic development, leading to crisis forms 
and parasite deterioration. These retardation factors could be removed by absorp- 
tion of immune serum with parasite-infected erythrocytes and were demonstrable in 
purijied immunoglobulin fractions. Serum from donors in hypoendemic Khartoum 
did not retard parasite development. 

Nearly four decades ago, Taliaferro 
and Taliaferro (1) reported that infec- 
tions of Plasmodium brasilianum in Ce- 
bus capucinus monkeys progressed at a 
predictable rate and pattern until the 
host's immune response began to resolve 
the infection. The parasite's highly syn- 
chronous development then became se- 
verely retarded, and "crisis forms" of 
the parasite appeared (1). The crisis was 
characterized by significant changes in 
the synchrony of the parasite's develop- 
mental cycle, a reduced average number 

of merozoites per segmenter, and a retar- 
dation of the periodicity, resulting in 
many deteriorating schizonts within the 
infected erythrocytes. Since this early 
report, the term crisis form has become 
synonymous with obviously degenerat- 
ing intraerythrocytic parasites seen in 
hemoprotozoan infections with Babesia 
and Plasmodium sp. (2). Experimental 
induction of crisis forms is not always 
consistent and, in rodent infections with 
Babesia and Plasmodium sp., nonspecif- 
ic factors associated with Corynebacteri- 
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um parvum, Mycobacterium bovis BCG, 
or endotoxin-stimulated macrophages 
appear to  be important (3). 

Studies of immunity to  primate malar- 
ia-including malaria due to P ,  falci- 
parum in man-have demonstrated that 
serums collected from experimentally in- 
fected animals, or from humans living in 
regions of malaria hyperendemicity, con- 
tain humoral factors that inhibit varasite 
development in vitro (4). Since the mero- 
zoite is the only extracellular stage of the 
blood infection, it is especially suscepti- 
ble to immunologic attack, and numer- 
ous studies have confirmed that malaria- 
immune serum appears to act by block- 
ing invasion of erythrocytes by the mero- 
zoites (5). Attempts to demonstrate 
inhibition of intracellular parasite devel- 
opment or to identify additional protec- 
tive actions for malaria-immune serum 
have been, up to now, unsuccessful (6). 
One result of these studies has been to 
emphasize the merozoite as  the source of 
protective antigen. We now report that 
serums collected from individuals living 
in malarious regions of the Sudan not 
only contain merozoite-blocking anti- 
bodies, but also cause intracellular para- 
site deterioration and classical crisis 
forms in cultures of P. falciparum. 

We have collected more than 300 se- 
rum samples from three different regions 
in Sudan, and of these, 90 have been 
tested for parasite inhibition in continu- 
ous cultures of P. falciparum. Since in 
some areas, particularly Blue Nile Prov- 
ince, the villagers have access to chloro- 
quine, all serums were dialyzed 1: 1000 
against RPMI 1640 medium. This proce- 
dure removes 98 percent of the chloro- 
quine from serum (7). Because dialysis 
also removes hypoxanthine, a required 
nutrient not found in RPMI 1640, com- 
plete medium was supplemented with 
hypoxanthine to give a final concentra- 
tion of 5 x 1 0 - ' ~  (8). All serums were 
heat-inactivated at  56°C for 30 minutes. 
Parasites of P.  falciparum, strain 
FCR3/Gambian, were synchronized with 
a modification of the sorbitol method (9); 
cultures were washed with 5 percent 
(weight to volume) aqueous sorbitol, cul- 
tured for 12 hours, washed again with 
sorbitol, returned to culture for 24 hours, 
then concentrated to 80 to 90 percent 
parasitemia by the gelatin-RPMI 1640 
method (10). This procedure results in 
highly synchronous schizonts with a 6- 
hour age differential. The synchronized 
schizont-infected red cells were diluted 
to a 0.5 to  1.0 percent parasitemia with 
freshly washed O+  erythrocytes and dis- 
persed into 96-well microculture plates 
so that each well received 3 y l  of packed 
erythrocytes. The dialyzed serum was 
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